1. the elevation of death valley, california is - 282 feet. the elevation of tallahassee, florida is 203
feet. the elevation of westmorland, california is -157 feet.
compare the elevations of death valley and tallahassee using < or >
fill in the blank:
death valley (-282 feet)
tallahassee, florida (203 feet)

Answers

Answer 1

Based on the elevations given, Death Valley (-282 feet) < Tallahassee, Florida (203 feet).

To compare the elevations of Death Valley and Tallahassee, we'll use the inequality symbols i.e., "<" or ">" . The symbol "<" indicate less than and ">" indicate greater than.

Death Valley, California has an elevation of -282 feet, while Tallahassee, Florida has an elevation of 203 feet. Since -282 is less than 203, we use the "<" symbol.

So, the comparison is as follows:

Death Valley (-282 feet) < Tallahassee, Florida (203 feet)

This means that the elevation of Death Valley is lower than or less than the elevation of Tallahassee.

Learn more about Inequality:

https://brainly.com/question/11457776

#SPJ11


Related Questions

Third-, fourth-, and fifth-grade students collected food items to be sent to 2 different food pantries. The third-grade students collected 35 items and the fourth-grade students collected 25 items. each food pantry was given 50 items. write and solve an equation to find how many items fifth-grade collected

Answers

Answer: 35 + 25 + 50 / 2 = 85

Step-by-step explanation: You would have to add them all together and then divide them by 2.




Out of a group of 120 students that were surveyed about winter sports, 28 said they ski and 52 said they snowboard.


Sixteen of the students who said they ski said they also snowboard. If a student is chosen at random, find each


probability

Answers

The probability of  P(Ski) is 7 / 30, P(Snowboard) is 13 / 30,P(Ski & Snowboard) is 2/15 and P(ski or snowboard) is  8/15.

1. Probability of a student skiing (P(Ski)):
  P(Ski) = number of students who ski / total number of students = 28 / 120 = 7 / 30

2. Probability of a student snowboarding (P(Snowboard)):
  P(Snowboard) = number of students who snowboard / total number of students = 52 / 120 = 13 / 30

3. Probability of a student skiing and snowboarding (P(Ski & Snowboard)):
  P(Ski & Snowboard) = number of students who ski and snowboard / total number of students = 16 / 120 = 4 / 30

=2/15

4.Probability(ski or snowboard) = (7/30) + (13/30) - (2/15)

P(ski or snowboard) = 8/15
Therefore, the probabilities are:

P(ski) = 7/30

P(snowboard) = 13/30

P(ski and snowboard) = 2/15

P(ski or snowboard) = 8/15

Learn more about probability : https://brainly.com/question/13604758

#SPJ11

A toy tugboat is launched from the side of a pond and travels North at 5cm/s. At the same moment, a toy sail ship from a point 8sqrt(2) m. Northeast of the tugboat and travels West at 7 cm/s. How closely do the two toys approach each other?\

Answers

The toys approach each other at the distance of  630 cm.

To solve the problem, we can use the Pythagorean theorem.

Let the distance between the tugboat and the sail ship be d, and

let t be the time in seconds since they started moving.

Then we have:

Distance traveled by the tugboat (in cm) = 5t

Distance traveled by the sail ship (in cm) = 7t/sqrt(2)

Using the Pythagorean theorem, we have:

d² = (5t)² + (7t/(\sqrt(2)))²

d² = 25t² + 24.5t²

d² = 49.5t²

d = \sqrt(49.5)t

To find how closely the two toys approach each other, we need to find the minimum value of d.

This occurs when t is maximized, which happens when the toys are closest to each other.

The sail ship travels a distance of 8\sqrt(2) meters in the Northeast direction, which is equivalent to 800\sqrt(2) cm. Therefore, the time taken for the sail ship to travel this distance is:

t = (800\sqrt(2) cm) / (7 cm/(\sqrt(2))) = 200\sqrt(2) seconds

Substituting this value of t in the equation for d, we get:

d = \sqrt(49.5)(200\sqrt(2)) = 630 cm (corrected)

Therefore, the minimum distance between the two toys is 630 cm.

To practice more questions on distance:

https://brainly.com/question/7243416

#SPJ11

The area of the triangle below is \frac{2}{25}

25

2



square feet. What is the length of the base? Express your answer as a fraction in simplest form.

1/5 f

Answers

The length of the base of the given triangle can be simplified as 2√2/5 feet, which is equivalent to √8/5 feet.

What is the length of the base of a triangle if its area is (2/25) * 252 square feet and the height is twice the length of the base?

We are given that the area of the triangle is (2/25) * 252 square feet.

Let the length of the base be x. Then, the height of the triangle can be expressed as (2/5)x, since the base divides the triangle into two equal parts.

The area of the triangle is given by the formula A = (1/2)bh, where b is the length of the base and h is the height of the triangle.

Substituting the given values, we get:

(1/2)x(2/5)x = (2/25)*252

Simplifying this equation, we get:

(1/5)x²= 20.16

Multiplying both sides by 5, we get:

x² = 100.8

Taking the square root of both sides, we get:

x =√(100.8)

Simplifying this expression, we get:

x = √(25*4.032)x = 5*√(4.032)x = (5/5)*√(4.032)x = 1*√(4.032)

Therefore, the length of the base is √(4.032) feet, which can be expressed as a fraction in simplest form as 2√(2)/5 feet.

Learn more about triangle

brainly.com/question/2773823

#SPJ11

16


Last Us


A spherical exercise ball has a maximum diameter of 30 inches when filled with air. The ball was completely empty


at the start, and an electric air pump is filling it with air at the rate of 1600 cubic inches per minute.


The formula for the volume of a sphere is 4*


Part A


Enter an equation for the amount of air still needed to all the ball to its maximum volume, y, with respect to the


number of minutes the pump has been pumping air into the ball, X.


Part 8


Enter the total amount of air, in cubic inches, still needed to fill the ball after the pump has been running for 4


minutes


Part C


Enter the estimated number of minutes it takes to pump up the ball to its maximum volume.

Answers

Part A: The equation for the amount of air still needed is: y = 14,137.17 - 1600X

Part B: The total amount of air still needed to fill the ball after 4 minutes is 8,937.17 cubic inches.

Part C: It takes approximately 8.84 minutes to pump up the ball to its maximum volume.

Part A:

The formula for the volume of a sphere is 4/3πr³, where r is the radius. Since the maximum diameter of the exercise ball is 30 inches, its radius is 15 inches. Therefore, the maximum volume of the ball is:

4/3π(15)³ = 14,137.17 cubic inches

Let's let y represent the amount of air still needed to fill the ball to its maximum volume, and X represent the number of minutes the pump has been running. We know that the pump is filling the ball at a rate of 1600 cubic inches per minute. Therefore, the equation for the amount of air still needed is:

y = 14,137.17 - 1600X

Part B:

After 4 minutes, the pump has filled the ball with:

1600 x 4 = 6400 cubic inches

Using the equation from Part A, we can find the amount of air still needed after 4 minutes:

y = 14,137.17 - 1600(4) = 8,937.17 cubic inches

Therefore, the total amount of air still needed to fill the ball after 4 minutes is 8,937.17 cubic inches.

Part C:

To find the estimated number of minutes it takes to pump up the ball to its maximum volume, we can set the equation from Part A equal to 0 (since y represents the amount of air still needed):

0 = 14,137.17 - 1600X

Solving for X, we get:

X = 8.84

Therefore, it takes approximately 8.84 minutes to pump up the ball to its maximum volume.

To know more about volume, refer to the link below:

https://brainly.com/question/31546955#

#SPJ11

Can you find the domain and range and type the correct code? help me please.

Answers

The graphs are identified as follows

1. the domain is option G

2. the range is option E

3. the domain is option D

4. the range is option C

What is domain and range in coordinate geometry

In coordinate geometry, the domain and range are concepts used to describe the set of possible inputs (x-values) and outputs (y-values) of a function, respectively.

The domain of a function is the set of all possible x-values for which the function is defined. In other words, it is the set of all values that can be plugged into the function and produce a meaningful output.

The range of a function is the set of all possible y-values that the function can take on as x varies over its domain. In other words, it is the set of all values that the function can output.

Learn more about domain and range at

https://brainly.com/question/2264373

#SPJ1

A statistician for a chain of department stores created the following stem-and-leaf plot showing the number of pairs of glasses at each of the stores: \left| \quad \begin{matrix} 0 \vphantom{\Large{0}} \\ 1 \vphantom{\Large{0}} \\ 2 \vphantom{\Large{0}} \\ 3 \vphantom{\Large{0}} \\ 4 \vphantom{\Large{0}} \\ \end{matrix} \quad \right| \quad \begin{matrix} 9& \vphantom{\Large{0}} \\ 3&6&6&8& \vphantom{\Large{0}} \\ 1&2&3&5&6&9& \vphantom{\Large{0}} \\ 0& \vphantom{\Large{0}} \\ 1&2&3&3&5&7& \vphantom{\Large{0}} \\ \end{matrix} ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ​ 00 10 20 30 40 ​ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ​ 9 3 1 0 1 ​ 0 6 2 0 2 ​ 6 3 3 ​ 8 5 3 ​ 0 6 5 ​ 9 7 ​ 0 0 ​ Key: 4\,|\,1=414∣1=414, vertical bar, 1, equals, 41 pairs of glasses What was the largest number of pairs of glasses at any one department store?

Answers

we can see that there is no stem value of 4 and therefore no department store with 49 pairs of glasses.

What is the purpose of a stem-and-leaf plot?

To find the largest number of pairs of glasses at any one department store, we need to examine the stem-and-leaf plot provided.

The stem-and-leaf plot shows the number of pairs of glasses at each store, with the first digit (the stem) indicating the tens place and the second digit (the leaf) indicating the ones place.

Looking at the plot, we can see that the largest stem is 4, which corresponds to the number 40. The largest leaf for stem 4 is 8, which corresponds to the number 48. Therefore, the largest number of pairs of glasses at any one department store is 48.

We can also verify this by scanning through the leaves in the plot and looking for the largest value. The largest leaf value is 9, which corresponds to the number 49. However, we can see that there is no stem value of 4 and therefore no department store with 49 pairs of glasses.

The largest number of pairs of glasses at any one department store is indeed 48.

Learn more about Stem-and-leaf

brainly.com/question/9798801

#SPJ11

Tayshia mailed two birthday presents in a box weighing 14 pound. One present weighed 15 pound. The other present weighed 12 pound. What was the total weight of the box and the presents.





Group of answer choices



311 lb



1911 lb



1140lb



320lb

Answers

None of the provided answer choices are correct, as the correct answer should be 41 lb.

To find the total weight of the box and the presents, you simply add the weights together:

Box weight: 14 lb
Present 1 weight: 15 lb
Present 2 weight: 12 lb

Total weight = 14 lb + 15 lb + 12 lb = 41 lb

None of the provided answer choices are correct, as the correct answer should be 41 lb.

To learn more about weight, refer below:

https://brainly.com/question/10069252

#SPJ11

The length of a rectangle is 4 m more than the width. if the area of the rectangle is 77 m2. how many meters long is the width of the rectangle?






answer choices d: -11 m: 7 z: 9

Answers

The width of the rectangle is approximately 5.39 meters.

Let's denote the width of the rectangle by x. According to the problem, the length of the rectangle is 4 meters more than the width, which means that the length can be represented as x+4.

The formula for the area of a rectangle is A = length x width. In this case, we know that the area of the rectangle is 77 square meters, so we can set up the following equation:

77 = (x+4)x

Expanding the brackets, we get:

77 = x² + 4x

Rearranging this equation into standard quadratic form, we get:

x² + 4x - 77 = 0

To solve for x, we can use the quadratic formula:

[tex]x = \frac{(-b ± sqrt(b^2 - 4ac))}{ 2a}[/tex]

Plugging in the values for a, b, and c, we get:

[tex]x = \frac{(-4 ± sqrt(4^2 - 4(1)(-77)))}{ 2(1)}[/tex]

Simplifying this expression, we get:

[tex]x = \frac{(-4 ± sqrt(336)} { 2}[/tex]

[tex]x = \frac{(-4 ± 4sqrt(21))}{ 2}[/tex]

x = -2 ± 2[tex]\sqrt{(21)}[/tex]

Since the width of a rectangle cannot be negative, we discard the negative solution and get:

x = -2 ± 2[tex]\sqrt{(21)}[/tex]

Therefore, the width of the rectangle is approximately 5.39 meters (rounded to two decimal places).

To learn more about rectangle refer here:

https://brainly.com/question/29123947

#SPJ11

i need help with these 30 points

Answers

Answer:

0 hrs 32 mins

Step-by-step explanation:

In a circle with radius 6 and angle intercepts an arc of length 3pi find the angle in radians in simplest form

Answers

In a circle with radius 6 and angle intercepts an arc of length 3π , the angle in radians in simplest form is π/2.

In a circle, the length of an arc is proportional to the angle that it intercepts. The ratio of the arc length to the circumference of the circle is equal to the ratio of the angle in radians to 2π. Thus, we can write:

(arc length) / (circumference) = (angle) / (2π)

In this problem, we are given that the circle has a radius of 6 and that the arc length is 3π. We can use the formula for the circumference of a circle, which is C = 2πr, to find the circumference of this circle:

C = 2πr = 2π(6) = 12π

Now we can use the formula above to find the angle in radians:

(3π) / (12π) = (angle) / (2π)

Simplifying this equation, we get:

angle = (3π * 2π) / 12π = 1/2 * π

To learn more about circle click on,

https://brainly.com/question/15233719

#SPJ1

The area of a rug is 108 square feet and the length it it’s diagonal is 14 feet. what are the length and width of the rug. write a system of equations tk answer this equation

Answers

The system of equation is 7.71 feet, under the condition the area of a rug is 108 square feet and the length it it’s diagonal is 14 feet.

Now to solve this problem, we can use the formula for the area of a rectangle which is A = L x W . Therefore, we can write the equation 108 = L x W

Now the length of the diagonal is 14 feet. We can use this information to write another equation using the Pythagorean theorem which states that for any right triangle with legs of length a and  b  and hypotenuse of length c ,
a² + b² = c²
Since a rectangle is made up of two right triangles, we can use this theorem to find the length and width of the rectangle.

Let us assume the length of the rug L and the width of the rug  W

L²+ W² = 14²

We have two equations with two unknowns

108 = L x W
L² + W² = 14²

We can solve for one variable in terms of another using substitution. From the first equation,

W = 108 / L

Substituting this into the second equation gives:


L² + (108 / L)² = 14²
L² - 196L² + 11664 = 0


This is a quadratic equation in terms of  L². We can solve for L²  


L² = (196 ± √(196² - 4 x 11664)) / 2
L² = (196 ± √(38416)) / 2
L² = (196 ± 196) / 2


Taking the positive root gives:

L² = 196

So:

L = √(196) = 14

Substituting this back into one of our original equations gives:

W = 108 / L
= 108 / 14
≈ 7.71

Therefore, the length of the rug is 14 feet and its width is approximately 7.71 feet.
To learn more about quadratic equation
https://brainly.com/question/28038123
#SPJ4

12. reasoning a rectangular piece of cardboard with dimensions 5 inches
by 8 inches is used to make the curved side of a cylinder-shaped
container. using this cardboard, what is the greatest volume the cylinder
can hold? explain.
answer asap

Answers

If a rectangular piece of cardboard with dimensions 5 inches by 8 inches is used to make the curved side of a cylinder-shaped container, the greatest volume the cylinder can hold is 80/π cubic inches.

To find the greatest volume the cylinder can hold, we need to determine the dimensions of the cylinder that can be made from the given cardboard.

First, we need to calculate the circumference of the cylinder using the length of the cardboard, which will be the height of the cylinder. The length of the cardboard is 8 inches, so the circumference of the cylinder will be 8 inches.

The circumference of a cylinder is given by the formula C = 2πr, where r is the radius of the cylinder.

Therefore, 8 = 2πr, or r = 4/π inches.

Next, we need to determine the length of the curved side of the cylinder, which is given by the formula L = 2πr.

So, L = 2π(4/π) = 8 inches.

Finally, we can calculate the volume of the cylinder using the formula V = πr²h, where h is the height of the cylinder, which is 5 inches.

V = π(4/π)²(5) = 80/π cubic inches.

To learn more about volume click on,

https://brainly.com/question/29063195

#SPJ4

y = 3x⁴ + 4x³
Find the
1) Domain
2) Intercepts
3) Asymptotes
4) Symmetry
5) Critical Points
6) Maxima/Minimum
7) Concavity

Answers

1)  The domain of Y = 3x⁴ + 4x³ is (-∞, ∞).

2) The x-intercepts are (0, 0) and (-4/3, 0) and the y-intercept is (0, 0)

3)  The horizontal asymptote is y = infinity.

4) Function does not exhibit any symmetry with respect to the y-axis or origin.

5)  The critical points are x = 0 and x = -1.

6)  The critical points are x = 0 and x = -1.

7) The function is concave down on the interval (-∞, -2/3) and concave up on the intervals (-2/3, 0) and (0, ∞).

How to find domain?

1) The domain of a polynomial function is all real numbers, so the domain of Y = 3x⁴ + 4x³ is (-∞, ∞).

How to find Intercepts?

2) To find the x-intercepts, we set Y equal to zero and solve for x:

0 = 3x⁴ + 4x³

0 = x³(3x + 4)

x = 0 or x = -4/3

Therefore, the x-intercepts are (0, 0) and (-4/3, 0).

To find the y-intercept, we set x equal to zero and solve for Y:

Y = 3(0)⁴ + 4(0)³

Y = 0

Therefore, the y-intercept is (0, 0).

How to find Asymptotes?

3) Polynomial functions do not have vertical asymptotes. However, as x approaches positive or negative infinity, the function approaches infinity. Therefore, the horizontal asymptote is y = infinity.

How to find Symmetry?

4) The function Y = 3x⁴ + 4x³ is neither even nor odd. Therefore, it does not exhibit any symmetry with respect to the y-axis or origin.

How to find Critical Points?

5) To find the critical points, we take the first derivative of Y and set it equal to zero:

Y' = 12x³ + 12x²

0 = 12x²(x + 1)

Therefore, the critical points are x = 0 and x = -1.

How to find Maxima/Minimum?

6) To determine whether the critical points are maxima or minima, we take the second derivative of Y and evaluate it at each critical point:

Y'' = 36x² + 24x

At x = 0, Y'' = 0, which means that the second derivative test is inconclusive. To determine whether x = 0 is a maxima or minima, we look at the sign of the first derivative to the left and right of the critical point. We find that Y' is negative to the left of x = 0 and positive to the right, so x = 0 is a local minimum.

At x = -1, Y'' = 12, which is positive. Therefore, x = -1 is a local minimum.

How to find Concavity?

7) To determine the concavity of the function, we look at the sign of the second derivative:

Y'' = 36x² + 24x

When Y'' > 0, the function is concave up, and when Y'' < 0, the function is concave down.

At x < -2/3, Y'' is negative, so the function is concave down.

At -2/3 < x < 0, Y'' is positive, so the function is concave up.

At x > 0, Y'' is positive, so the function is concave up.

Therefore, the function is concave down on the interval (-∞, -2/3) and concave up on the intervals (-2/3, 0) and (0, ∞).

Learn more about function analysis

brainly.com/question/30841403

#SPJ11

Marcus is taking part in a charity run. He has received $250 in fixed pledges, and he will receive $25 more in pledges for each mile he runs. Write an equation for the amount of money P Marcus will earn in terms of the distance d he runs, measured in miles

Answers

Answer:

250+25d= P

Step-by-step explanation:

How to say it aloud: "$250 plus 25 times miles ran is equal to total amount earned"

250 is a fixed amount that is apart of the equation. In order to get a correct total at the end, $250 must be added to 25d.

25d stands for $25 times the amount of miles ran, which according to the word problem is represented by d. The reason we multiply 25 times d is because Marcus is getting $25 for every mile he runs. At the end of his run, we need to multiply $25 by those miles.

The reason everything equals P is because according to the word problem, P is the amount of money earned.

I hope that makes sense.

The equation r = 3cos(6θ) represents a rose curve. How many petals does the graph contain

Answers

Check the picture below.

Answer:

C (12)

Step-by-step explanation:

Quadratic function for (1,-3) in vertex form

Answers

The quadratic function in vertex form that passes through the point (1, -3) is: f(x) = (x - 1)²  - 3

What is vertex form?

Vertex form is a way of expressing a quadratic function of the form:

f(x) = a(x - h)² + k

where (h, k) is the vertex of the parabola, and a is a constant that determines the shape and direction of the parabola.

The quadratic function in vertex form is given by:

f(x) = a(x - h)²  + k

where (h, k) is the vertex of the parabola.

We are given the point (1, -3), which lies on the parabola. This means that:

f(1) = -3

Substituting x = 1 into the vertex form of the equation, we get:

f(1) = a(1 - h)²  + k

-3 = a(1 - h)²  + k

Since we don't know the value of h or a, we can't solve for k directly. However, we can use the vertex form of the equation to find the values of h and k.

The vertex of the parabola is the point (h, k). Since the parabola passes through the point (1, -3), we know that the vertex lies on the axis of symmetry, which is the vertical line x = 1.

Therefore, the x-coordinate of the vertex is h = 1. Substituting this into the equation above, we get:

-3 = a(1 - 1)²  + k

-3 = a(0) + k

k = -3

Now that we know the value of k, we can substitute it back into the equation above and solve for a:

-3 = a(1 - h)²  + k

-3 = a(1 - 1)²  + (-3)

-3 = a(0) - 3

a = 1

Therefore, the quadratic function in vertex form that passes through the point (1, -3) is:

f(x) = (x - 1)²  - 3

To learn more about vertex form visit the link:

https://brainly.com/question/30339547

#SPJ9

Find the solution tox'=y-x+ty'=yif x(0)=9 and y(0)=4.x(t)=y(t)=

Answers

The solution to the system of differential equations x' = y - x + t and y' = y with initial conditions x(0) = 9 and y(0) = 4 is x(t) = 10e^t - t - 1 and y(t) = 9e^t - 5t - 5.To find this solution, we first solve for y in the second equation:y' - y = 0y(t) = Ce^tNext, we substitute this expression for y into the first equation and solve for x:x' = Ce^t - x + tx' + x = Ce^t + tMultiplying both sides by e^t, we get:(e^t x)' = Ce^2t + te^tIntegrating both sides:e^t x(t) = (C/2)e^2t + te^t + DUsing the initial condition x(0) = 9, we get:D = 9Using the expression for y(t) and the initial condition y(0) = 4, we get:C = 5Substituting these values into the equation for x(t), we get:x(t) = 10e^t - t - 1Finally, we substitute the expression for y(t) into the given initial condition y(0) = 4 and solve for the constant C:C = 9 - 5tSubstituting this expression for C into the equation for y(t), we get:y(t) = 9e^t - 5t - 5

For more similar questions on topic Vectors in 2D is a sub-topic in linear algebra that deals with the study of vectors in two-dimensional space. In two-dimensional space, vectors are represented as ordered pairs of real numbers and can be used to describe quantities such as displacement, velocity, and force. The magnitude and direction of a vector can be calculated using trigonometry, and vectors can be added, subtracted, and multiplied by scalars using the rules of vector algebra.

In the context of the given problem, we are asked to find two unit vectors in 2D that make an angle of 45 degrees with a given vector 6i + 5j, where i and j are the unit vectors in the x and y directions, respectively. To solve this problem, we need to use the properties of vectors and trigonometry to find the appropriate unit vectors that satisfy the given conditions. The solution to this problem involves finding the components of the given vector, calculating the angle between this vector and the x-axis, and using this angle to construct the desired unit vectors.

https://brainly.com/app/ask?q=Vectors+in+2D+is+a+sub-topic+in+linear+algebra+that+deals+with+the+study+of+vectors+in+two-dimensional+space.+In+two-dimensional+space%2C+vectors+are+represented+as+ordered+pairs+of+real+numbers+and+can+be+used+to+describe+quantities+such+as+displacement%2C+velocity%2C+and+force.+The+magnitude+and+direction+of+a+vector+can+be+calculated+using+trigonometry%2C+and+vectors+can+be+added%2C+subtracted%2C+and+multiplied+by+scalars+using+the+rules+of+vector+algebra.In+the+context+of+the+given+problem%2C+we+are+asked+to+find+two+unit+vectors+in+2D+that+make+an+angle+of+45+degrees+with+a+given+vector+6i+%2B+5j%2C+where+i+and+j+are+the+unit+vectors+in+the+x+and+y+directions%2C+respectively.+To+solve+this+problem%2C+we+need+to+use+the+properties+of+vectors+and+trigonometry+to+find+the+appropriate+unit+vectors+that+satisfy+the+given+conditions.+The+solution+to+this+problem+involves+finding+the+components+of+the+given+vector%2C+calculating+the+angle+between+this+vector+and+the+x-axis%2C+and+using+this+angle+to+construct+the+desired+unit+vectors.

#SPJ11

The solution to the system of differential equations is:
x(t) = 5 e^(t/2) - 4 e^(3t/2)
y(t) = 4

To solve this system of differential equations, we can use Laplace transforms. Taking the Laplace transform of both sides of each equation, we get:

sX(s) - x(0) = Y(s) - X(s) + T Y(s)
sY(s) - y(0) = Y(s)

Substituting in the initial conditions x(0) = 9 and y(0) = 4, we can solve for X(s) and Y(s):

X(s) = (s + 1)/(s^2 - s - T)
Y(s) = 4/s

To find x(t) and y(t), we need to inverse Laplace transform these expressions. We can use partial fractions to simplify the expression for X(s):

X(s) = A/(s - r1) + B/(s - r2)

where r1 and r2 are the roots of the denominator s^2 - s - T, given by:

r1 = (1 - sqrt(1 + 4T))/2
r2 = (1 + sqrt(1 + 4T))/2

Solving for A and B, we get:

A = (r2 + 1)/(r2 - r1)
B = -(r1 + 1)/(r2 - r1)

Substituting these values back into the expression for X(s), we get:

X(s) = (r2 + 1)/(r2 - r1)/(s - r1) - (r1 + 1)/(r2 - r1)/(s - r2)

Taking the inverse Laplace transform of this expression, we get:

x(t) = (r2 + 1)/(r2 - r1) e^(r1 t) - (r1 + 1)/(r2 - r1) e^(r2 t)

Substituting in the values for r1 and r2, we get:

x(t) = 5 e^(t/2) - 4 e^(3t/2)

Similarly, taking the inverse Laplace transform of Y(s) = 4/s, we get:

y(t) = 4

Therefore, the solution to the system of differential equations is:

x(t) = 5 e^(t/2) - 4 e^(3t/2)
y(t) = 4

To learn more about differential equations, refer below:

https://brainly.com/question/16663279

#SPJ11

Solve each system by substitution
Y=-7x-24
Y=-2x-4

Answers

Answer:

(- 4, 4 )

Step-by-step explanation:

y = - 7x - 24 → (1)

y = - 2x - 4 → (2)

substitute y = - 2x - 4 into (1)

- 2x - 4 = - 7x - 24 ( add 7x to both sides )

5x - 4 = - 24 ( add 4 to both sides )

5x = - 20 ( divide both sides by 5 )

x = - 4

substitute x = - 4 into either of the 2 equations and evaluate for y

substituting into (1)

y = - 7(- 4) - 24 = 28 - 24 = 4

solution is (- 4, 4 )

You work for a contractor a customer wants you to install chicken wire along the perimeter of a rectangular garden that measures 8 feet by 6 feet what is the perimeter of a what is the perimeter in feet of the garden

Answers

The perimeter of the 8 feet by 6 feet rectangular garden is 28 feet.

We will need to install chicken wire along this entire length to satisfy the customer's requirements. Good luck with your project!

To find the perimeter of a rectangular garden, you can use the formula:

Perimeter = 2(Length + Width). In this case, the garden measures 8 feet by 6 feet,

so the length is 8 feet and the width is 6 feet.
Add the length and width.
8 feet + 6 feet = 14 feet
Multiply the sum by 2.
2(14 feet) = 28 feet.
The perimeter of the rectangular garden is 28 feet.

As a contractor, you will need to install chicken wire along this entire 28 feet of the garden's perimeter to meet the customer's request.
Remember to choose the appropriate type of chicken wire, considering factors such as durability, mesh size, and material (e.g., galvanized steel or plastic).

Additionally, we may need to install supporting posts at regular intervals to ensure the stability and effectiveness of the chicken wire fence.

For similar question on rectangular.

https://brainly.com/question/30087016

#SPJ11

Round your answer to three decimal places. A car is traveling at 112 km/h due south at a point = kilometer north of an intersection. A police car 5 2 is traveling at 96 km/h due west at a point kilometer due east of the same intersection. At that instant, the radar in the police car measures the rate at which the distance between the two cars is changing. What does the radar gun register? km/h Round your final answers to four decimal places if necessary. Suppose that the average yearly cost per item for producing x items of a business product is 94 C(x) = 11 + The three most recent yearly production figures are given in the table. Year 012 Prod. (x) 7.2 7.8 8.4 Estimate the value of x'(2) and the current (year 2) rate of change of the average cost. x'(2) = ; The rate of change of the average cost is per year. Plate A baseball player stands 5 meters from home plate and watches a pitch fly by. In the diagram, x is the distance from the ball to home plate and is the angle indicating the direction of the player's gaze. Find the rate e' at which his eyes must move to watch a fastball with x'()=-45 m/s as it crosses home plate at x = 0. 05 Player O'= rad/s. Round your answers to the three decimal places. Repo A dock is 1 meter above water. Suppose you stand on the edge of the dock and pull a rope attached to a boat at the constant rate of a 1 m/s. Assume the boat remains at water level. At what speed is the boat approaching the dock when it is 10 meters from the dock? 15 meters from the dock? Isn't it surprising that the boat's speed is not constant? Guid At 10 meters.x'= at 15 meters x'=

Answers

The instant when the radar gun is used, the rate at which the distance between the two cars is changing is g'(t) = 7968t + 368/5 kilometers per hour.

Let's break down the problem. We have two cars, one traveling south at 112 km/h and another traveling west at 96 km/h. The police car is stationed at an intersection and the two cars are at different points relative to the intersection. The first car is 4/5 kilometer north of the intersection while the second car is 2/5 kilometer east of the intersection.

Let's call this distance "d". Using the Pythagorean theorem, we can write:

d² = (4/5)² + (2/5)² d² = 16/25 + 4/25 d² = 20/25 d = sqrt(20)/5 d = 2sqrt(5)/5 kilometers

Now, we need to find the rate at which the distance between the two cars is changing. This is equivalent to finding the derivative of the distance with respect to time. Let's call this rate "r".

To find "r", we need to use the chain rule. The distance between the two cars is a function of time, so we can write:

d = f(t)

where t is time. We can then write:

r = d'(t) = f'(t)

where d'(t) and f'(t) denote the derivatives of d and f with respect to time, respectively.

To find f'(t), we need to express d in terms of t. We know that the first car is traveling at a constant speed of 112 km/h due south. Let's call the position of the first car "x" and the time "t". Then we have:

x = -112t

The negative sign indicates that the car is moving south. Similarly, we can express the position of the second car in terms of time. Let's call the position of the second car "y". Then we have:

y = 96t

The positive sign indicates that the car is moving west.

Now, we can use these expressions to find the distance between the two cars as a function of time. Let's call this function "g(t)". Then we have:

g(t) = √((x + 4/5)² + (y - 2/5)²) g(t) = √((-112t + 4/5)² + (96t - 2/5)²)

To find g'(t), we need to use the chain rule. We have:

g'(t) = (1/2)(x + 4/5)'(x + 4/5)'' + (y - 2/5)'x(y - 2/5)''

where the primes denote derivatives with respect to time. We can simplify this expression by noting that x' = -112 and y' = 96. We also have x'' = y'' = 0, since the speeds of the two cars are constant.

Substituting these values, we get:

g'(t) = -112x(-112t + 4/5)/√((-112t + 4/5)² + (96t - 2/5)²) + 96x(96t - 2/5)/√((-112t + 4/5)² + (96t - 2/5)²)

Simplifying this expression, we get:

g'(t) = (-112x(-112t + 4/5) + 96x(96t - 2/5))/√((-112t + 4/5)² + (96t - 2/5)²)

We can further simplify this expression by multiplying out the terms in the numerator:

g'(t) = (-12544t + 560/5 + 9216t - 192/5)/√((-112t + 4/5)² + (96t - 2/5)²)

g'(t) = (7968t + 368/5)/√((-112t + 4/5)² + (96t - 2/5)²)

g'(t) = 7968t + 368/5

To know more about distance here

https://brainly.com/question/4199102

#SPJ4

Complete Question:

A car is traveling at 112 km/h due south at a point 4/5 kilometer north of an intersection_ police, the car Is traveling at 96 km/h due west to at point 2/5 kilometer due cust of the same intersection. At that instant; the radar in the police car measures the rate at which the distance between the two cars [ changing: What does the radar gun register?

Qué expresión es igual a 4.6?
a. 1.6 + (3 × 4) – 2 ÷ 2
b. 1.6 + 3 × 4 – 2 ÷ 2
c. [1.6 + (3 × 4)] – (2 ÷ 2)
d. (1.6 + 3) × (4 – 2) ÷ 2

Answers

The correct expression that is equal to 4.6 is option c. [1.6 + (3 × 4)] – (2 ÷ 2)

Let's evaluate each expressions using the BODMAS rule of mathematics,

a. 1.6 + (3 × 4) – 2 ÷ 2

= 1.6 + 12 - 1

= 12.6

b. 1.6 + 3 × 4 – 2 ÷ 2

= 1.6 + 12 - 1

= 12.6

c. [1.6 + (3 × 4)] – (2 ÷ 2)

= [1.6 + 12] - 1

= 12.6

d. (1.6 + 3) × (4 – 2) ÷ 2

= 4.6 × 2 ÷ 2

= 4.6

BODMAS is an acronym used to remember the order of operations in mathematics: Brackets, Orders, Division, Multiplication, Addition, Subtraction. It is used to perform calculations in the correct order to obtain the correct result. Therefore, the correct answer is (c).

To know more about BODMAS rule, visit,

https://brainly.com/question/29626868

#SPJ4

Complete question - Which expression is equal to 4.6?

a. 1.6 + (3 × 4) – 2 ÷ 2

b. 1.6 + 3 × 4 – 2 ÷ 2

c. [1.6 + (3 × 4)] – (2 ÷ 2)

d. (1.6 + 3) × (4 – 2) ÷ 2

Manuel types at a rate of 34 words per minute. How many words does he type in 2 minutes?

Answers

Manuel can type 68 words in two minutes at a rate of 34 words per minute.

What is the number of words typed in the given time?

Given that; Manuel types at a rate of 34 words per minute.

To determine how many words Manuel can type in two minutes, we simply need to multiply his typing rate by the number of minutes he is typing.

Since Manuel is typing for two minutes

Hence;

Number of words = Typing rate × Time

Plugging in the values we have from the problem.

Number of words = 34 words/minute × 2 minutes

Simplifying

Number of words = 34 words × 2

Number of words = 68 words

Therefore, he can type 68 words in two minutes.

Learn more about algebraic expressions here: brainly.com/question/4344214

#SPJ1

Diego selling raffle tickets for $1.75 per ticket complete the table to show how much she earned for 50 tickets 20 tickets and r tickets

Answers

Diego selling raffle tickets for $1.75 per ticket and she earned for 50 tickets is $87.50.

When a purchase, appropriation, requisition, or direct engagement with the customer occurs at the point of sale, the seller or supplier of the products or services completes a transaction. Title (property or ownership) of the object is transferred, and a price is settled, meaning a price is agreed upon for which the ownership of the item will transfer.

We can calculate how much money Diego would make if he sold each quantity of raffle tickets for $1.75 each using Excel's multiplication function. It is possible to create a table with the number of tickets sold in one column and the money taken in the other.

Diego would receive $17.50, for instance, if he sold 10 tickets (10 x $1.75). If he sold 20 tickets, he would earn $35 (20 x $1.75), and so on. Using Excel's fill handle, you can quickly fill the table with the totals for each sold ticket.

The table would look like this:

Number of Tickets Sold | Amount of Money Earned

•----------------------------------|---------------------------------------•

   10                                |    $17.50

   20                               |    $35.00

   30                               |    $52.50

   40                               |    $70.00

   50                               |    $87.50

By using the multiplication function in Excel, we can quickly calculate the amount of money Diego would earn for any number of raffle tickets sold at $1.75 per ticket.

Learn more about Tickets problems:

https://brainly.com/question/16746114

#SPJ4

To conserve water, many communities have developed water restrictions. The water utility charges a fee of $34, plus an additional $1.36 per hundred cubic feet (HCF) of water. The recommended monthly bill for a household is between $60 and $85 dollars per month. If x represents the water usage in HCF in a household, write a compound inequality to represent the scenario and then determine the recommended range of water consumption. (Round your answer to one decimal place.

Answers

60 ≤ 1.36x + 34 ≤ 85; To stay within the range, the usage should be between 19.1 and 37.5 HCF.

Hown to write the inequality

The correct compound inequality to represent the scenario is:

60 ≤ 1.36x + 34 ≤ 85

To solve for x, we need to isolate it in the middle of the inequality:

60 - 34 ≤ 1.36x ≤ 85 - 34

26 ≤ 1.36x ≤ 51

Finally, we divide by 1.36 to isolate x:

19.12 ≤ x ≤ 37.5

Therefore, the recommended range of water consumption is between 19.1 and 37.5 HCF. The answer is (D) 60 ≤ 1.36x + 34 ≤ 85; To stay within the range, the usage should be between 19.1 and 37.5 HCF.

Read more on inequality bhere:https://brainly.com/question/24372553

#SPJ1

complete question

To conserve water, many communities have developed water restrictions. The water utility charges a fee of $34, plus an additional $1.36 per hundred cubic feet (HCF) of water. The recommended monthly bill for a household is between $60 and $85 dollars per month. If x represents the water usage in HCF in a household, write a compound inequality to represent the scenario and then determine the recommended range of water consumption. (Round your answer to one decimal place.)

60 ≤ 1.36x − 34 ≤ 85; To stay within the range, the usage should be between 69.1 and 87.5 HCF.

60 ≤ 1.36x − 34 ≤ 85; To stay within the range, the usage should be between 44.1 and 87.5 HCF.

60 ≤ 1.36x + 34 ≤ 85; To stay within the range, the usage should be between 37.5 and 44.1 HCF.

60 ≤ 1.36x + 34 ≤ 85; To stay within the range, the usage should be between 19.1 and 37.5 HCF.

The bulldogs, a baseball team, has nine starting players the height of the starting players are 72in 71in 78in 70in 72in 72in 73in 70in and 72 in which team best describes the data value 78 in

Answers

The value 78 inches best describes the tallest player on the Bulldogs baseball team. This height is an outlier within the data set and may affect statistical analyses.

The Bulldogs, a baseball team, consists of nine starting players with varying heights. Their heights are as follows: 72 in, 71 in, 78 in, 70 in, 72 in, 72 in, 73 in, 70 in, and 72 in. To describe the data, we can analyze the presence of the 78 in height value.

In this case, the value 78 in represents the tallest player on the team. When examining this data set, it is important to understand how this value affects the overall distribution of heights among the players. One way to determine this is by calculating the mean, median, and mode of the height data.

The mean (average) height for the team is 71.22 inches, and the median (middle) value is 72 inches. The mode (most frequent) height is also 72 inches. The value 78 inches is above the mean and median values, indicating that it is an outlier, or a value that is significantly different from the majority of the other data points.

In conclusion, the value 78 inches best describes the tallest player on the Bulldogs baseball team. This height is an outlier within the data set and may affect statistical analyses. However, it provides valuable information about the diversity of heights among the starting players on the team.

To know more about outlier, refer to the link below:

https://brainly.com/question/26958242#

#SPJ11

Philip is downloading applications (apps) and songs to his tablet. He
downloads 7 apps and 6 songs. Each song takes an average of 0.8 minutes
longer to download than each app. If it takes 21.7 minutes for his
downloads to finish, which of the following systems could be used to
approximate a, the average number of minutes it takes to download one
app, and s, the average number of minutes it takes to download one song?

Answers

Answer:

a + s = 21.7

7a = 6s - 0.8

Step-by-step explanation:

I just used pattern recognition in my head and stuff i dont know how to explain

1) Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (If an answer does not exist, enter DNE.)
f(x, y) = 5x^2 + 5y^2; xy = 1
2) Find the extreme values of f subject to both constraints. (If an answer does not exist, enter DNE.)
f(x, y, z) = x + 2y; x + y + z = 6, y^2 + z^2 = 4

Answers

The maximum and minimum values for given function f(x, y) = 5x² + 5y² subject to xy = 1 are both 10. The extreme values of f(x, y, z) = x + 2y; x + y + z = 6, y² + z² = 4 subject to both constraints are 7 and -4.

We can use Lagrange multipliers to find the maximum and minimum values of f(x, y) subject to the constraint xy = 1.

First, we set up the Lagrange function

L(x, y, λ) = 5x² + 5y² + λ(xy - 1)

Then, we take partial derivatives of L with respect to x, y, and λ and set them equal to 0

∂L/∂x = 10x + λy = 0

∂L/∂y = 10y + λx = 0

∂L/∂λ = xy - 1 = 0

Solving these equations simultaneously, we get

x = ±√2, y = ±√2, λ = ±5/2√2

We also need to check the boundary points where xy = 1, which are (1, 1) and (-1, -1). We evaluate f at these points and compare them to the values we get from the Lagrange multipliers.

f(√2, √2) = 10, f(-√2, -√2) = 10

f(1, 1) = 10, f(-1, -1) = 10

So the maximum and minimum values of f(x, y) subject to xy = 1 are both 10.

We can use Lagrange multipliers to find the extreme values of f(x, y, z) subject to both constraints.

First, we set up the Lagrange function

L(x, y, z, λ, μ) = x + 2y + λ(x + y + z - 6) + μ(y² + z² - 4)

Then, we take partial derivatives of L with respect to x, y, z, λ, and μ and set them equal to 0

∂L/∂x = 1 + λ = 0

∂L/∂y = 2 + λ + 2μy = 0

∂L/∂z = λ + 2μz = 0

∂L/∂λ = x + y + z - 6 = 0

∂L/∂μ = y² + z² - 4 = 0

Solving these equations simultaneously, we get

x = -1, y = 2, z = 3, λ = -1, μ = -1/2

x = 3, y = -2, z = -1, λ = -1, μ = -1/2

We also need to check the boundary points where either x + y + z = 6 or y² + z² = 4. These points are (0, 2, 2), (0, -2, -2), (4, 1, 1), and (4, -1, -1). We evaluate f at these points and compare them to the values we get from the Lagrange multipliers.

f(-1, 2, 3) = 7, f(3, -2, -1) = -1

f(0, 2, 2) = 4, f(0, -2, -2) = -4

f(4, 1, 1) = 6, f(4, -1, -1) = 2

So the maximum value of f subject to both constraints is 7, which occurs at (-1, 2, 3), and the minimum value of f subject to both constraints is -4, which occurs at (0, -2, -2).

To know more about  Lagrange multipliers here

https://brainly.com/question/30776684

#SPJ4

Use cylindrical coordinates. Evaluate SITE . 742 + x2) dv, where E is the solid in the first octant that lies beneath the paraboloid z = 1 – x2 - y2. Need Help? Read It

Answers

To evaluate the given integral using cylindrical coordinates, we need to first express the given solid E and the differential volume element dv in terms of cylindrical coordinates.

In cylindrical coordinates, the paraboloid z = 1 – x^2 - y^2 can be expressed as z = 1 – r^2, where r is the distance from the z-axis and θ is the angle made with the positive x-axis. Since the solid E lies in the first octant, we have 0 ≤ r ≤ √(1-z), 0 ≤ θ ≤ π/2, and 0 ≤ z ≤ 1 – r^2.

The differential volume element dv in cylindrical coordinates is given by dv = r dz dr dθ.

Substituting these expressions in the given integral, we get:

SITE . 742 + x^2 dv = ∫∫∫E (742 + r^2) r dz dr dθ

= ∫θ=0π/2 ∫r=0√(1-z) ∫z=0^(1-r^2) (742 + r^2) r dz dr dθ

= ∫θ=0π/2 ∫r=0√(1-z) [(742r + r^3/3) - (742r^3/3 + r^5/5)] dr dθ

= ∫θ=0π/2 ∫z=0^1 [247/3(1-z)^(3/2) - 185/6(1-z)^(5/2)] dz dθ

= ∫θ=0π/2 [98/15 - 185/21] dθ

= ∫θ=0π/2 [56/315] dθ

= [28/315]π

Therefore, the value of the given integral using cylindrical coordinates is [28/315]π.

To evaluate the given integral using cylindrical coordinates, we need to express the function and limits of integration in terms of cylindrical coordinates (r, θ, z). The conversion between Cartesian and cylindrical coordinates is given by:

x = r*cos(θ)
y = r*sin(θ)
z = z

The given function in the problem is z = 1 - x^2 - y^2. Substituting the expressions for x and y in terms of cylindrical coordinates, we get:

z = 1 - r^2(cos^2(θ) + sin^2(θ))
z = 1 - r^2

Now, we need to find the limits of integration for r, θ, and z. Since E is the solid in the first octant, the limits for θ are 0 to π/2. For r, the limits are 0 to √(1 - z), and for z, the limits are 0 to 1. Then, the integral becomes:

∫(0 to π/2) ∫(0 to √(1 - z)) ∫(0 to 1) (742 + r^2cos^2(θ) + r^2sin^2(θ)) * r dz dr dθ

Solve this triple integral to find the volume of the solid E.

To learn more about function visit;

brainly.com/question/12431044

#SPJ11

Find the total surface area of the following


cone. Leave your answer in terms of a.


4 cm


3 cm


SA = [ ? ]7 cm


Hint: Surface Area of a Cone = tre + B


Where e = slant height, and B = area of the base

Answers

The total surface area of the cone is 44π cm², where π represents the mathematical constant pi.

We have,

To find the total surface area of a cone, we need to calculate the lateral surface area (denoted by L) and the base area (denoted by B), and then sum them.

The lateral surface area of a cone is given by L = πrℓ, where r is the radius of the base and ℓ is the slant height.

The base area is given by B = πr², where r is the radius of the base.

Given the dimensions:

Radius of the base (r) = 4 cm

Slant height (ℓ) = 7 cm

We can calculate the lateral surface area as L = π(4)(7) = 28π cm².

The base area can be calculated as B = π(4^2) = 16π cm².

Now, to find the total surface area (SA), we sum the lateral surface area and the base area:

SA = L + B = 28π + 16π = 44π cm².

Therefore,

The total surface area of the cone is 44π cm², where π represents the mathematical constant pi.

Learn more about cones here:

https://brainly.com/question/13798146

#SPJ12

Other Questions
Cleo bought a computer for $1,495. What is it worth after depreciating for 3years at a rate of 16%per year? Match each angle description on the left with its possible angle measure, m, on the right. question content area blackwelder factory produces two similar products: small table lamps and desk lamps. the total factory overhead budget is $640,000 with 400,000 estimated direct labor hours. it is further estimated that small table lamp production will require 275,000 direct labor hours, and desk lamp production will need 125,000 direct labor hours. using a single plantwide factory overhead rate with an allocation base of direct labor hours, the factory overhead that blackwelder factory will allocate to small table lamp production if actual direct labor hours for the period for small table lamp production is 285,000 would be a.$275,000 b.$440,000 c.$456,000 d.$285,000 Probability & Sampling:Question 1Stephanie recorded the time, in minutes, she took to walkfrom home to work. {15, 16, 18, 20, 21)She also recorded the time, in minutes, she took to walkfrom work to home. (14, 21, 21, 25, 27)Based on the data she collected, what is the bestconclusion Stephanie can make? The Smith family goes to Happy Burger and orders 6 hamburgers and 3 fries for a total of $19. 50. The Jansen family also goes to Happy Burger and orders 8 hamburgers and 6 fries for a total of $29. 0. Write the system of equations that represents this situation and determine the cost of one hamburger and one order of fries. suppose the government allows imports of leather footwear into the united states. the market price falls to $18. what is the value of domestic producer surplus? group of answer choices how many different triangles can be formed by side lengths 2 cm, 7cm, and 70 degrees angle formed by these given sides? How do you continue an abandoned shrine investigation? Find the area under the standard normal distribution curve between z=0 and z=0. 98 In the diagram below, DE is parallel to AB. If CE = 2,AC = 3.6, AB = 4.2, and DC = 2.4, find the length of CB.Figures are not necessarily drawn to scale. How do the wavelengths of ultraviolet light compare to those of visible light, infrared waves or radio waves? Ultraviolet light exhibits Example 1: Define a function that takes an argument. Call the function. Identify what code is the argument and what code is the parameter. Example 2: Call your function from Example 1 three times with different kinds of arguments: a value, a variable, and an expression. Identify which kind of argument is which. Example 3: Create a function with a local variable. Show what happens when you try to use that variable outside the function. Explain the results. Example 4: Create a function that takes an argument. Give the function parameter a unique name. Show what happens when you try to use that parameter name outside the function. Explain the results. Example 5: Show what happens when a variable defined outside a function has the same name as a local variable inside a function. Explain what happens to the value of each variable as the program runs The test scores of 40 students are listed below. 30 35 43 44 47 48 54 55 56 57 59 62 63 65 66 68 69 69 71 72 72 73 74 76 77 77 78 79 80 81 81 82 83 85 89 92 93 94 97 98 a. Find the standard deviation and the variance for the data b find the five-number summery for the data c construct a boxplot for the given data. Include the value of the 5-number summery in the boxplot For the past 10 to 25 years, farmers have planted crop seeds that have been genetically modified to withstand treatment with a common weed killer called Roundup. This allows the farmers to spray their fields to get rid of weeds without harming their crops. Recently, more and more farmers have discovered that their fields have Roundup-resistant pigweed growing along with their crop. Use what youve learned in this activity to explain how this came about A plane flying horizontally at an altitude of 1 mi and a speed of 510 mi/h passes directly over a radar station. find the rate at which the distance from the plane to the station is increasing when it is 2 mi away from the station. According to the social-cognitive perspective, _____ influence both behavior and the environment that is sought americans overestimate the size of minority groups You are given to design an Aircraft Model which has ability to fly at low altitude with low engine noise. Explain why and what modelling type(s) will you chose to design, if you are required to analysis aircraft aerodynamics, its detection on enemy radar, and its behavior when anti-missile system is detected by aircraft Explain with words how the parent nucleus changes in alpha decay? During a new moon the moon is where in relation to the sun and earth?.