To answer this question, determine the quantity asked for:
Answers are:
Yes - How many hours a week do people exercise?
No - How many hours are there in a day?
Yes - How many rainbows have students seen this month?
To know more about statistical questions:
https://brainly.com/question/30915447
#SPJ11
The regular price of a red T-shirt is $6.93. Ernest has a coupon for $6.75 off. How much will Ernest pay for the T-shirt?
Answer:
18 cent
Step-by-step explanation:
Find the length of the segment indicated. Round your answer to the nearest tenth if necessary.
The value of x in the given circle is 18.1 units.
Given is a circle, where two radii are given one chord is given,
We need to find the value of the x which is also the radius,
We know all the radii in a circle are equal,
So, here the radius = 7.9+10.2 = 18.1 units.
Hence the value of x in the given circle is 18.1 units.
Learn more about radius click;
https://brainly.com/question/13449316
#SPJ1
The length of a rectangle is 3 cm less than twice it’s width. the perimeter of the rectangle is 48cm
The length of the rectangle is 15 cm and the width is 9 cm.
What is the width of the rectangle?Let's start by setting up the equations we need to solve:
L = 2W - 3 (the length is 3 cm less than twice the width)
2L + 2W = 48 (the perimeter is 2 times the length plus 2 times the width)
Now we can substitute the first equation into the second equation and solve for W:
2(2W - 3) + 2W = 48
4W - 6 + 2W = 48
6W = 54
W = 9
Now that we know the width is 9 cm, we can substitute this value back into the first equation and solve for L:
L = 2(9) - 3
L = 15
Learn more about width
brainly.com/question/29281920
#SPJ11
The current student population of the Brentwood student Center is 2500. The enrollment at center increases at a rate of 6% each year. To the nearest whole number, what will the student population closest to seven years?
In seven years, the student population at the Brentwood Student Center will be approximately 4,174.
Using the given terms, the current student population at the Brentwood Student Center is 2,500 and the enrollment increases at a rate of 6% each year. To find the student population closest to seven years from now, we'll use the formula for exponential growth:
Future Population = Current Population × (1 + Growth Rate)^Number of Years
In this case, the future population will be:
Future Population = 2,500 × (1 + 0.06)^7
After calculating, we get:
Future Population ≈ 4,174
So, to the nearest whole number, the student population at the Brentwood Student Center will be approximately 4,174 in seven years.
More on population: https://brainly.com/question/23399375
#SPJ11
Use the digits -9 to 9 to complete the puzzle below. Try all the combinations. But as you begin doing that, you will realize that, in some cases, you are looking for factor combinations with a particular sum or difference. You will see that some numbers must be greater than a particular value in order to produce the product you are looking for. (Hint: Consider a negative imaginary number in the second set of parentheses.) Show your work to confirm your solution.
The correct equation is,
⇒ (5 - 6i) (2 + 4i)
Let us assume that;
⇒ (a + bi) (c + di)
⇒ ac + adi + bci + bdi²
⇒ (ac − bd) + (ad + bc)i
Matching coefficients:
30 < ac − bd < 80
ad + bc = 0
Hence, We need to pick four integers between -9 and 9 such that these two equations are satisfied. One possible combination is:
a = 8, b = -4, c = 6, d = 3
The number would be:
ac − bd = (8)(6) − (-4)(3) = 60
Puzzle 2
Using the result from Puzzle 1:
ac − bd = 34
ad + bc = 8
Like before, it makes sense to assume b is negative. With some trial and error, one possible answer is:
a = 5, b = -6, c = 2, d = 4
Thus, The correct equation is,
⇒ (5 - 6i) (2 + 4i)
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ1
The measures of the angles of a triangle are shown in the figure below. Solve for x.
(2x+16) 48degrees
Answer:
x = 16
Step-by-step explanation:
(2x + 16) = 48
Subtract 16 with the positive 16 to cancel the numbers.
Subtract 16 with 48.
2x = 32
divide 32 by 2 to isolate the x.
32/2 = 16
x = 16
A lake currently has a depth of 30 meters. As sediment builds up in the lake, its depth decreases by 2% per year.
This situation represents:
A. Exponential decay
B. Exponential growth
The rate of growth or decay, r, is equal to:
A. 1. 02
B. 0. 02
C. 0. 98
So the depth of the lake each year is ______ times the depth in the previous year.
A. 0. 98
B. 0. 02
C. 1. 02
It will take between _____ years for the depth of the lake to reach 26. 7 meters.
A. 3 and 4
B. 11 and 12
C. 9 and 10
D. 5 and 6
The situation represents exponential decay.
The rate of growth or decay, r, is equal to 0.02.
So the depth of the lake each year is 0.98 times the depth in the previous year.
It will take between 11 and 12 years for the depth of the lake to reach 26. 7 meters.
The situation represents exponential decay, as the depth of the lake decreases by a constant percentage each year. The rate of decay is 2% per year, so the rate of growth or decay, r, is equal to 0.98 (1 - 0.02). This means that the depth of the lake each year is 0.98 times the depth in the previous year.
To find the number of years it will take for the depth of the lake to reach 26.7 meters, we can use the formula for exponential decay:\
D = D₀ *[tex]e^{(-rt)[/tex]
where D is the current depth, D₀ is the initial depth, r is the rate of decay, and t is the number of years.
Substituting the given values, we get:
26.7 = 30 * [tex]e^{(-0.02t)[/tex]
Solving for t, we get:
t = ln(26.7/30) / (-0.02) ≈ 11.33
Therefore, it will take between 11 and 12 years for the depth of the lake to reach 26.7 meters.
To learn more about decay click on,
https://brainly.com/question/23509276
#SPJ4
Find the point (s) on the curve y = x^2/6 closest to the point (0,0) The points) are
The point(s) on the curve y = x²/6 closest to the point (0,0) are (0,0) and (±√2, 2/3).
To find the point(s) on the curve y = x²/6 closest to the point (0,0), we can use the distance formula between two points:
d = √((x₁ - x₂)² + (y₁ - y₂)²)
where (x₁, y₁) is a point on the curve and (x₂, y₂) is the point (0,0).
We want to minimize the distance d, which is equivalent to minimizing d². Therefore, we can minimize:
d² = (x₁ - 0)² + (y₁ - 0)²
= x₁² + y₁²
subject to the constraint that the point (x₁, y₁) is on the curve y = x²/6.
Substituting y = x²/6 into the expression for d², we get:
d² = x₁² + (x₁²/6)
= (7/6)x₁²
To minimize d², we minimize x₁². Since x₁² is always non-negative, the minimum occurs when x₁² = 0 or when the derivative of d² with respect to x₁ is zero.
Taking the derivative of d² with respect to x₁, we get:
d²/dx₁ = (7/3)x₁
Setting this equal to zero, we get x₁ = 0.
Therefore, the point (0,0) is one of the closest points on the curve to the point (0,0).
To find the other closest point(s), we can solve y = x²/6 for x² and substitute it into the expression for d²:
x² = 6y
d² = 7x²/6 = 7y
Therefore, to minimize d², we need to minimize y. Since y is always non-negative, the minimum occurs when y = 0 or when the derivative of d² with respect to y is zero.
Taking the derivative of d² with respect to y, we get:
d²/dy = 7
Setting this equal to zero, we get y = 0.
Substituting y = 0 into y = x²/6, we get x = 0. Therefore, the point (0,0) is one of the closest points on the curve to the point (0,0).
To find the other closest point, we can solve y = x²/6 for x:
x² = 6y
x = ±√(6y)
Substituting this into the equation for y, we get:
y = (√(6y))²/6 = 2/3
Therefore, the other closest points are (±√2, 2/3).
For more questions like Equation click the link below:
https://brainly.com/question/16663279
#SPJ11
A UPS driver need to drive 600 miles. The drivers average speed for the first 160 miles is b miles per hour. The drivers average speed for the rest of the trip is c miles per hour. Write an equation for the total time, t, in hours it took the UPS driver to complete the trip.
The spinner below is spun and a letter from the word MATH is chosen. Draw a tree
diagram and list the sample space.
Spinner:
Red
Blue
Yellow
The sample space of the number of outcomes is A = 12
Given data ,
To create a tree diagram and list the sample space, we need to consider the possible outcomes at each stage of the event.
First, we have three options for the spinner: Red, Blue, and Yellow.
Now, let's consider the possible outcomes when a letter is chosen from the word MATH
The total number of outcomes A = 12 outcomes
where A = { RM , BM , YM , RA , BA , YA , RT , BT , YT , RH , BH , YH }
Red Blue Yellow
/ \ / \ / \
M A M A M A
/ \ / \ / \
T H T H T H
Hence , the number of outcomes is A = 12 and the tree diagram is solved
To learn more about probability click :
https://brainly.com/question/17089724
#SPJ1
A father and his three children decide on all matters with a vote. Each member of the family gets as many votes as their age. Right now, the family members are 36, 13, 6, and 4 years old, so the father always wins. How many years will it take for the three children to win a vote if they all agree? Show your work.
Answer:
Step-by-step explanation:
Answer:
13 years
Step-by-step explanation:
Intuition for how sons can collectively win after a certain period of time:- After a certain period of time the father's age will increase by that certain period of time (say 5 years) but for the sons (since there are 3 of them) their collective age will increase by three times that of their father (5 for each 1 one them). Therefore there exist a time after which collective increase in sons' age can cover the current gap of 13 years.
Write as a logarithm with a base of 4.
2
To express the number 2 as a logarithm with a base of 4, you would write it as log₄(16). This is because 4² = 16.
In general, the logarithm function is the inverse of exponentiation. When we write logₐ(b) = c, it means that a raised to the power of c equals b.
In your example, you want to find the logarithm of 2 with a base of 4, which means you are looking for the exponent to which 4 must be raised to obtain 2.
So, log₄(2) represents the exponent c such that 4 raised to the power of c equals 2.
To learn more about exponent, refer below:
https://brainly.com/question/5497425
#SPJ11
Matemáticamente estos dos conjuntos son lo mismo o son una manera de reescribir al otro o son distintos? (2,6) y [1,5]
The sets (2,6) and [1,5] are not the same mathematically but they do have some overlap.
What is the text about?The first pair, (2,6), signifies a number line interval that is open and commences at 2, concluding at 6, while excluding the endpoints.
So one can say that the closed interval on the number line between 1 and 5, including both endpoints, is represented by the set [1,5]. any integer that is seen between 1 and 5, inclusive, is included in this set.
Although there is some similarity between the two groups, namely the presence of numbers 2 to 5, they are distinct from each other. The numerical interval (2,6) does not contain the values 2 and 6, whereas those two numbers are part of the range [1,5].
Learn more about sets from
https://brainly.com/question/13458417
#SPJ4
See transcribed text below
Mathematically these two sets are the same or are they a way of rewriting the other or are they different? (2,6) and [1,5]
20
Sean pays £10 for 24 chocolate bars.
He sells all 24 chocolate bars for 50p each.
Work out Sean's percentage profit. .
Sean's percentage profit is 20% on selling 24 chocolate bars.
What is Sean's percentage profit?
Sean's cost price for each chocolate bar is:
£10 / 24 bars = £0.4167 per bar
Sean sells each chocolate bar for 50p, which is £0.5
Sean's revenue from selling all 24 chocolate bars is:
24 bars x £0.5 per bar = £12
Sean's profit is the difference between his revenue and his cost:
Profit = £12 - £10 = £2
To calculate the percentage profit, we can use the following formula:
Percentage profit = (Profit / Cost price) x 100%
So, plugging in the values we get:
Percentage profit =[tex](2 / 10) x 100% = 20%[/tex]= 20
Therefore, Sean's percentage profit is 20%. He earned a profit of £2 on his initial investment of £10, which is equivalent to a 20% return on investment.
Learn more about Sean's profit
brainly.com/question/23211206
#SPJ11
Solve each of the following systems of equations. Find all solutions.
(a)
x+y=-1
3x=4-3y
(b)
3x-4y+2=0
10-10y=10y-15x
Answer:
Step-by-step explanation:
(a)
x + y = -1
3x = 4 - 3y
from 1st equation we can write x = -1 - y and put this x in the 2nd equation
3(-1 -y) = 4 -3y
-3 -3y = 4 -3y
now here y is getting cancel so that means this two equation has no common solution.
(b)
3x - 4y +2 = 0
10 -10y = 10y -15x
from 1st equation we can write x = (4y - 2)/3 and put this x in the 2nd equation
10 = 10y +10y -15((4y - 2)/3)
2 = 2y +2y - 3((4y -2)/3)
2 = 4y - (4y - 2)
again here 4y and 4y getting cancel so both the equation has no common solution.
measured in astronomical units, can be modeled using the expression ((1)/(52)x)^((2)/(3)) , where x is the number of Earth weeks it takes for the planet to orbit the sun. Which expression could also be used to represent the average distance of a planet from the sun using radicals?
So the expression that represents the average distance of a planet from the sun using radicals is: d = k/2√13 * √x
What is exponent?An exponent, also known as a power, is a mathematical notation that indicates the number of times a quantity is multiplied by itself. It is usually written as a small number (the exponent) placed to the right and above a larger number (the base). Exponents are used in many mathematical concepts, including logarithms, roots, and scientific notation.
Here,
The expression ((1)/∛(52)x)²) can be simplified using exponent rules:
((1)/∛(52)x)²) =((1)/∛(52)x)²) * ∛x²)
= 1/(∛52² * ∛x²)
The average distance of a planet from the sun measured in astronomical units can be represented using the formula:
d = k * √T
where d is the distance from the sun, T is the time it takes for the planet to orbit the sun, and k is a constant of proportionality.
We can rewrite this formula in terms of Earth weeks by noting that there are 52 weeks in a year, so T = (1/52)x years. Substituting this into the formula, we get:
d = k * √((1/52)x)
Simplifying this expression using exponent rules, we get:
d = k * √(1/52)* √x
So an equivalent expression using radicals to represent the average distance of a planet from the sun is:
d = k * √(1/(52)) * √x
which simplifies to:
d = k/√(52) * √x
or
d = k/2√13 * √x
To know more about exponent,
https://brainly.com/question/11709654
#SPJ1
You get a job as a nurse. Your salary for the first year is $74,000. You will
receive a 1.2% increase every year. If you could save your entire salary, how
much money would you have in 5 years? Round to the nearest cent (2 decimal
places). Hint: What is a₁? What is r? Then use the formula for a finite
geometric series.
Answer: The amount of money you would have in 5 years if you could save your entire salary with a 1.2% increase every year would be $87,357.41.
Explanation:
The initial term, a₁, is $74,000, and the common ratio, r, is 1 + 1.2% = 1.012. To find the sum of the first 5 terms, we use the formula for a finite geometric series:
S₅ = a₁(1 - r⁶)/(1 - r)
Plugging in the values, we get:
S₅ = $74,000(1 - 1.012⁵)/(1 - 1.012) = $87,357.41 (rounded to the nearest cent)
Therefore, if you save your entire salary, you would have approximately $87,357.41 in 5 years with a 1.2% increase every year.
Ms. Regan is making a circular quilt and wants to include a lace pattern
around the outside of the quilt. If the area of the quilt is 28. 26 square feet, how many feet of lace does Ms. Regan need to purchase? (Use 3. 14 for pi. )
To find out how much lace Ms. Regan needs to purchase, we first need to calculate the circumference of the circular quilt. We know that the area of the quilt is 28.26 square feet, and we can use the formula A = πr^2 to find the radius of the quilt.
28.26 = 3.14 x r^2
r^2 = 9
r = 3
Now that we know the radius is 3 feet, we can use the formula C = 2πr to find the circumference of the quilt.
C = 2 x 3.14 x 3
C = 18.84 feet
Therefore, Ms. Regan needs to purchase 18.84 feet of lace to go around the outside of her circular quilt.
In summary, to find out how much lace Ms. Regan needs to purchase, we need to calculate the circumference of the circular quilt. We do this by first finding the radius using the formula A = πr^2. Once we know the radius, we can use the formula C = 2πr to find the circumference. In this case, the circumference is 18.84 feet, so Ms. Regan needs to purchase that amount of lace.
To know more about circumference refer here
https://brainly.in/question/26350347#
#SPJ11
Dolly went to the Walmart and he buy 14 teddy bears and 3 dolls for 158 $ and her sister went to the Gwinnett place mall and she buy 8 teddy bears and 12 dolls for 296 $. If they both buy same brand bears and dolls, then what is price of one teddy bear and one doll? (use matrices multiplication to solve system of equations. ) (Show work)
The price of one teddy bear is $7 and the price of one doll is $14.
Let's use matrices to solve this system of equations:
First, we need to define the variables:
x = price of one teddy bear
y = price of one doll
Then we can write the system of equations:
14x + 3y = 158
8x + 12y = 296
system of matix:
| 14 3 | | x | | 158 |
| 8 12 | * | y | = | 296 |
To solve for x and y, we can use matrix multiplication and inversion:
| x | | 12 -3 | | 158 | | 99 |
| y | = | -8 14 | * | 296 | = | -14 |
So, x = $7 and y = $14. Therefore, the price of one teddy bear is $7 and the price of one doll is $14.
To know more about matrix multiplication refer here:
https://brainly.com/question/13006200
#SPJ11
This graph represents the equation y=(x-5)^2-1 .
How many ordered pairs (x, y) for 3 < x < 7 satisfy this equation?
There are 3 ordered pairs (x, y) that satisfy the equation y=(x-5)^2-1.
To find the ordered pairs (x, y) for 3 < x < 7 that satisfy the equation y=(x-5)^2-1, follow these steps:
Step 1: Set the range of x values: 3 < x < 7
Step 2: Plug in each whole number value of x within the given range (4, 5, and 6) into the equation and calculate the corresponding y values.
For x = 4:
y = (4 - 5)^2 - 1
y = (-1)^2 - 1
y = 0
For x = 5:
y = (5 - 5)^2 - 1
y = (0)^2 - 1
y = -1
For x = 6:
y = (6 - 5)^2 - 1
y = (1)^2 - 1
y = 0
Step 3: Write the ordered pairs (x, y) based on the calculated y values.
For x = 4, the ordered pair is (4, 0)
For x = 5, the ordered pair is (5, -1)
For x = 6, the ordered pair is (6, 0)
In the given range, there are 3 ordered pairs (x, y) that satisfy the equation y=(x-5)^2-1.
Learn more about equation,
https://brainly.com/question/30339992
#SPJ11
In January, 280 guests at a hotel chose to use the valet service to park their cars during their stay. At the same time, 120 guests chose to use a public parking garage for their cars during their stay. What percentage of the guests at this hotel used the valet service?
70 percent of the guests at this hotel used the valet service.
To find the percentage of guests who used the valet service, we can follow these steps:
1. Add the number of guests who used the valet service (280) and those who used the public parking garage (120) to find the total number of guests with cars: 280 + 120 = 400 guests.
2. Divide the number of guests who used the valet service (280) by the total number of guests with cars (400).
3. Multiply the result by 100 to convert it into a percentage.
So, let's calculate the percentage:
(280 / 400) * 100 = 0.7 * 100 = 70%
Thus, 70% of the guests at this hotel used the valet service.
Learn more about percentage,
https://brainly.com/question/24339661
#SPJ11
(a) What is the mean of this stem and leaf plot? Show your work. What is the median of the data? Show your work
The mean of the given stem and leaf plot is 24.5 and the median of the data is 25.
The stem and leaf plot represents the given data as:
| 2 | 4, 5, 6, 9
| 3 | 1, 4, 5, 5, 7, 8
| 4 | 2, 5, 7, 8, 9
To find the mean, we need to add up all the values and divide by the total number of values.
Mean = (24 + 25 + 26 + 29 + 31 + 34 + 35 + 35 + 37 + 38 + 42 + 45 + 47 + 48 + 49) / 15
= 367 / 15
= 24.5
To find the median, we need to arrange the data in order and find the middle value. As there are 15 data points, the median will be the average of the 8th and 9th data points.
Data in order: 24, 25, 25, 26, 29, 31, 34, 35, 35, 37, 38, 42, 45, 47, 48
Median = (35 + 37) / 2
= 36.
For more questions like Mean click the link below:
https://brainly.com/question/31101410
#SPJ11
Select the correct answer
a mine extracts 2 metric tons of coal in an hour. the
number of hours spent mìning, which expression re
oa. the expression is at. the amount of ore
ob. the expression
The expression that represents the amount of ore sold and how much ore can the mine sell after extracting ore for 12 hours is option B: The expression is 2t−14t. The amount of ore is 21 metric tons.
The reasoning for the selection of the expression and amount of ore can the mine sell after extracting ore for 12 hours is as follows.
1: Determine the amount of coal used for electricity generation in terms of t.
The mine uses 14 tons of coal every hour, so the total amount used for electricity generation is 14t.
2: Determine the total amount of coal extracted in terms of t.
The mine extracts 2 tons of coal every hour, so the total amount extracted is 2t.
3: Calculate the amount of coal sold in terms of t.
To find the amount of coal sold, subtract the amount used for electricity generation from the total amount extracted: 2t - 14t.
4: Determine the amount of coal sold after 12 hours.
Substitute t = 12 into the expression:
2(12) - 14(12) = 24 - 168 = -144.
However, since the mine uses 14 tons of the extracted coal every hour, it cannot sell more coal than it extracts. So, the correct expression should be 2t - 14 (without the t for the amount used for electricity generation).
5: Calculate the amount of coal sold after 12 hours using the corrected expression.
Substitute t = 12 into the expression: 2(12) - 14 = 24 - 14 = 10 metric tons.
The correct expression should be 2t - 14, and the amount of coal the mine can sell after extracting coal for 12 hours is 10 metric tons. Hence, the correct answer is option B.
Note: The question is incomplete. The complete question probably is: A mine extracts 2 metric tons of coal in an hour. The mine uses 14 ton of the extracted coal every hour to generate electricity for the mine and sells the rest. If t is the number of hours spent mining, which expression represents the amount of ore sold? How much ore can the mine sell after extracting ore for 12 hours? A) The expression is 2t−1/4t. The amount of ore is 23 3/4 metric tons. B) The expression is 2t−1/4t. The amount of ore is 21 metric tons. C) The expression is 2t+1/4t. The amount of ore is 24 metric tons. D) The expression is 2t+1/4t. The amount of ore is 24 1/4 metric tons.
Learn more about Expression:
https://brainly.com/question/4541471
#SPJ11
A wheat farmer is converting to corn because he believes that corn is a more lucrative crop. It is not feasible for him to convert all his acreage to corn at once. He is farming 400 acres of corn in the current year and is increasing that number by 20 acres per year. As he becomes more experienced in growing corn, his output increases. He currently harvests 120 bushels of corn per acre, but the yield is increasing by 4 bushels per acre per year. When both the increasing acreage and the increasing yield are considered, how rapidly is the total number of bushels of corn currently increasing? bushels per year
When both the increasing acreage and the increasing yield are considered, the total number of bushels of corn currently increasing at a rate of 4000 bushels per year.
The wheat farmer is currently farming 400 acres of corn and increasing that number by 20 acres per year. He harvests 120 bushels of corn per acre, with an increasing yield of 4 bushels per acre per year.
To determine the rate of increase in the total number of bushels, we need to consider both the increasing acreage and the increasing yield.
First, let's find the increase in bushels due to the increasing acreage:
20 acres/year * 120 bushels/acre = 2400 bushels/year
Next, let's find the increase in bushels due to the increasing yield:
400 acres * 4 bushels/acre/year = 1600 bushels/year
Now, add both increases together to find the total increase in bushels:
2400 bushels/year + 1600 bushels/year = 4000 bushels/year
So, the total number of bushels of corn is currently increasing at a rate of 4000 bushels per year.
For more such questions on Yield.
https://brainly.com/question/23577349#
#SPJ11
i need help its due in 2 hours
Answer:
C. The product of two irrational numbers is irrational.
Example: √3•√3=3
HELPPP SOMEBODY PLEASEEE WITH THIS MATHHHH
The correct statement is given as follows:
The function g(t) reveals the market value of the house increases by 3.6% each year.
How to define an exponential function?An exponential function has the definition presented as follows:
[tex]y = ab^x[/tex]
In which the parameters are given as follows:
a is the value of y when x = 0.b is the rate of change.The parameter b for this problem is given as follows:
b = 1.036.
As the parameter b has an absolute value greater than 1, the function is increasing, with a rate given as follows:
1.036 - 1 = 0.036 = 3.6% a year.
More can be learned about exponential functions at brainly.com/question/2456547
#SPJ1
The circumference (C) of a circle is 16 cm. Which formula can you use to find the diameter (d) if you know that C = π
d?
Answer:
c/π=d
explanation:
d × π = c
divide c to isolate d
Answer: I would multiply pie by a diameter until it equals 16.
(I know this probably isn’t the professional way but it should work.
One side of an isosceles triangle is 2x + 1ft long. The other two sides are both 3x-14 long. The perimeter of the triangle is 55 ft. What is the length of each side? Show your work.
Let's use "a" to represent the length of the equal sides of the isosceles triangle, and let's use "b" to represent the length of the third side. We're told that one of the equal sides is 2x + 1ft long, so we can set up an equation:
2a + b = 55
We're also told that the other two sides are both 3x - 14ft long, so we can set up another equation:
a = 3x - 14
Now, we can substitute the second equation into the first equation and solve for "b":
2a + b = 55
2(3x-14) + b = 55
6x - 28 + b = 55
b = 83 - 6x
Now, we can substitute both equations into the equation a = 3x - 14 and solve for "x":
3x - 14 = 2x + 1 + 3x - 14
6x - 27 = 0
x = 4.5
Finally, we can substitute "x" into our equations to find the lengths of the sides:
a = 3x - 14 = 3(4.5) - 14 = 0.5
b = 83 - 6x = 83 - 6(4.5) = 55
So the length of the equal sides is 0.5ft, and the length of the third side is 55ft. Therefore, the lengths of the sides of the isosceles triangle are 0.5ft, 0.5ft, and 55ft.
Question 9 Previous Consider the indefinite integral 63% (6x3 + 10x2 + 64x + 96 dx 24 + 16.02 Then the integrand has partial fractions decomposition b CC +d + + 22 + 16 where a - 2 a = b = C = du Integrating term by term, we obtain that 16x3 + 10x2 + 64x + 96 dc 24 + 16x2 +C
To do this, we first need to factor the denominator of the integrand into linear factors. In this case, the denominator is given as 24 + 16.02 = 40, which is already a factorization. Therefore, we can write:
∫ (6x3 + 10x2 + 64x + 96)/(24 + 16.02) dx = ∫ [(a/(24 + 16.02)) + (b/(22 + 16))] dx
where a, b are constants that we need to find. To do this, we can use the method of partial fractions, which involves equating the coefficients of like terms on both sides of the equation. Specifically, we can write:
6x3 + 10x2 + 64x + 96 = (a/(24 + 16.02))(22 + 16) + (b/(22 + 16))(24 + 16.02)
Multiplying both sides by the common denominator (24 + 16.02)(22 + 16), we get:
(6x3 + 10x2 + 64x + 96)(24 + 16.02)(22 + 16) = a(22 + 16) + b(24 + 16.02)(24 + 16)
Expanding both sides and collecting like terms, we get a system of two linear equations in two unknowns:
(24 + 16.02)(22 + 16)a + (24 + 16.02)(24 + 16)b = 6(24 + 16.02)(22 + 16) + 10(22 + 16)(24 + 16.02) + 64(24 + 16.02) + 96(22 + 16)
(22 + 16)a + (24 + 16.02)b = 6(22 + 16) + 10(24 + 16.02) + 64 + 96
Solving this system (which involves some algebraic manipulation) gives:
a = -6/5
b = 18/5
Therefore, we can write:
∫ (6x3 + 10x2 + 64x + 96)/(24 + 16.02) dx = (-6/5) ∫ (22 + 16)/(24 + 16.02) dx + (18/5) ∫ (24 + 16.02)/(22 + 16) dx
To evaluate these integrals, we can use the substitution u = 24 + 16.02 in the first integral and u = 22 + 16 in the second integral. This gives:
∫ (6x3 + 10x2 + 64x + 96)/(24 + 16.02) dx = (-6/5) ln|24 + 16.02| + (18/5) ln|22 + 16| + C
where C is the constant of integration. Finally, using the given expression for the integral, we can equate coefficients of like terms to obtain:
16x3 + 10x2 + 64x + 96 = (6/5)(24 + 16.02) ln|24 + 16.02| - (18/5)(22 + 16) ln|22 + 16| + C
Visit here to learn more about partial fractions brainly.com/question/30894807
#SPJ11
A triangle is shown with its exterior angles. The interior angles of the triangle are angles 2, 3, 5. The exterior angle at angle 2 is angle 1. The exterior angle at angle 3 is angle 4. The exterior angle at angle 5 is angle 6. Which statements are always true regarding the diagram? Select three options. m∠5 + m∠3 = m∠4 m∠3 + m∠4 + m∠5 = 180° m∠5 + m∠6 =180° m∠2 + m∠3 = m∠6 m∠2 + m∠3 + m∠5 = 180°
The true triangle statement regarding the diagram are:
1. m∠5 + m∠6 = 180° ________Linear Pair
2. ∠ 2+ ∠ 3 = ∠ 6________Exterior angle Property of Triangle
3. m∠2 + m∠3 + m∠5 = 180°________Triangle Sum Property
What is the angle measurement?From the question, Δ ABC with Exterior angles as ∠ 1 , ∠ 4 ,and ∠ 6
Note that the Exterior angle Property of Triangle state that An exterior angle of a triangle is equal to the sum of the opposite interior angles.
Hence: For Exterior ∠ 1 :
∠ 1 = ∠ 5 + ∠ 3 ________Exterior angle Property of Triangle
Also,
For Exterior ∠ 4:
∠ 4 = ∠ 5 + ∠ 2 ________Exterior angle Property of Triangle
Also,
In regards to Exterior ∠ 6:
∠ 6 = ∠ 2 + ∠ 3 ________ Exterior angle Property of Triangle
Using Triangle Sum Property, it state that In a triangle sum of the measures of angles is equal to 180° Hence: m∠2 + m∠3 + m∠5 = 180° ________Triangle Sum Property
The Linear Pair will be: The measure of a straight angle is 180 degrees, so a linear pair of angles must add up to 180 degrees.
Therefore, m∠5 + m∠6 = 180° ________Linear Pair
Learn more about angle from
https://brainly.com/question/14256482
#SPJ1
See full question below
A triangle is shown with its exterior angles. The interior angles of the triangle are angles 2, 3, 5. The exterior angle at angle 2 is angle 1. The exterior angle at angle 3 is angle 4. The exterior angle at angle 5 is angle 6. Which statements are always true regarding the diagram? Select three options.
m∠5 + m∠3 = m∠4
m∠3 + m∠4 + m∠5 = 180°
m∠5 + m∠6 =180°
m∠2 + m∠3 =
m∠6 m∠2 + m∠3 + m∠5 = 180°