25. A small cone of height 8 cm is cut off from a bigger cone to leave a frustum of height 16 cm. If the volume of the smaller cone is 160 cm, find the volume of the frustum. ​

Answers

Answer 1

The volume of the frustum is approximately 634.3 cubic centimeters.

How to find the volume?

Let the radius of the smaller cone be 'r' and the radius of the bigger cone be 'R'.

Since the height of the smaller cone is 8 cm and its volume is 160 cm³, we have:

1/3 * π * r² * 8 = 160

r² = 60/π

r ≈ 4.03 cm

Now, using similar triangles, we can find the radius 'R' of the bigger cone:

(R - r)/16 = R/24

24R - 24r = 16R

R = 2r/3

R ≈ 2.69 cm

Therefore, the volume of the frustum is:

1/3 * π * (2.69² + 2.69*4.03 + 4.03²) * 16 - 1/3 * π * 4.03² * 8

≈ 634.3 cm³

So, the volume of the frustum is approximately 634.3 cubic centimeters.

Learn more about radius

brainly.com/question/31744314

#SPJ11


Related Questions

Shea wrote the expression 5(y + 2) + 2 to show the amount of money five friends paid for snacks at a basketball game. Which expression is equivalent to the one Shea wrote?
a 5 + y + 5 + 2 + 4
b 5 x y x 5 x 2 +4
c 5 x y x 4 + 5 x 2 x 4
d 5 x y + 5 x 2 + 4

Answers

The expression that is equivalent to the one Shea wrote is b 5 x y x 5 x 2 +4

Which expression is equivalent to the one Shea wrote?

From the question, we have the following parameters that can be used in our computation:

5(y + 2) + 2 shows the amount of money five friends paid for snacks at a basketball game

This means that

Amount = 5(y + 2) + 2

When expanded, we have

Amount = 5 * y + 5 * 2 + 2

Using the above as a guide, we have the following:

The expression that is equivalent to the one Shea wrote is b 5 x y x 5 x 2 +4

Read more about expression at

https://brainly.com/question/15775046

#SPJ1

Let
D = Ф(R), where Ф(u, v) = (u , u + v) and
R = [5, 6] × [0, 4].
Calculate∫∫dydA.

Answers

Finally, integrate with respect to u:

[4u](5 to 6) = 4(6) - 4(5) = 4

So, the double integral ∫∫R dydA is equal to 4.

To compute the double integral ∫∫R dydA, where D = Ф(R) and Ф(u, v) = (u, u + v), we first need to transform the integral using the given mapping.

The region R is defined as the set of all points (u, v) such that u ∈ [5, 6] and v ∈ [0, 4]. According to the transformation Ф, we have x = u and y = u + v.

Now we need to find the Jacobian determinant of the transformation:

J(Ф) = det([∂x/∂u, ∂x/∂v; ∂y/∂u, ∂y/∂v]) = det([1, 0; 1, 1]) = (1)(1) - (0)(1) = 1

Since the Jacobian determinant is nonzero, we can change the variables in the double integral using the transformation Ф:

∫∫R dydA = ∫∫D (1) dydx = ∫(5 to 6) ∫(u to u + 4) dydu

Now, compute the integral:

∫(5 to 6) ∫(u to u + 4) dydu = ∫(5 to 6) [y](u to u + 4) du
= ∫(5 to 6) [(u + 4) - u] du = ∫(5 to 6) 4 du

Finally, integrate with respect to u:

[4u](5 to 6) = 4(6) - 4(5) = 4

So, the double integral ∫∫R dydA is equal to 4.

Learn more about determinant here:

https://brainly.com/question/13369636

#SPJ11

Please help I need it ASAP, also needs to be rounded to the nearest 10th

Answers

The length of segment BC is given as follows:

BC = 47.2 km.

What is the law of cosines?

The Law of Cosines is a trigonometric formula that relates the lengths of the sides of a triangle to the cosine of one of its angles. It is also known as the Cosine Rule.

The Law of Cosines states that for any triangle with sides a, b, and c and angle C opposite to side c, the following equation holds true:

c² = a² + b² - 2ab cos(C)

The parameters for this problem are given as follows:

a = 27.8, b = 24.7, C = 129.1

Hence the length of segment BC is given as follows:

(BC)² = 27.8² + 24.7² - 2 x 27.8 x 24.7 x cosine of 129.1 degrees

(BC)² = 2249.0497

[tex]BC = \sqrt{2249.0497}[/tex]

BC = 47.2 km.

More can be learned about the law of cosines at https://brainly.com/question/4372174

#SPJ1

Use the Mean Value Theorem to show that if * > 0, then sin* < x.

Answers

According to the Mean Value Theorem, if a function is continuous on the interval [a, b] and differentiable on the open interval (a, b), there exists a point c in (a, b) such that the derivative at c equals the average rate of change between a and b.

To use the Mean Value Theorem to show that if * > 0, then sin* < x, we first need to apply the theorem to the function f(x) = sin x on the interval [0, *].

According to the Mean Value Theorem, there exists a number c in the interval (0, *) such that:

f(c) = (f(*) - f(0)) / (* - 0)

where f(*) = sin* and f(0) = sin 0 = 0.

Simplifying this equation, we get:

sin c = sin* / *

Now, since * > 0, we have sin* > 0 (since sin x is positive in the first quadrant). Therefore, dividing both sides of the equation by sin*, we get:

1 / sin c = * / sin*

Rearranging this inequality, we have:

sin* / * > sin c / c

But c is in the interval (0, *), so we have:

0 < c < *

Since sin x is a decreasing function in the interval (0, π/2), we have:

sin* > sin c

Combining this inequality with the earlier inequality, we get:

sin* / * > sin c / c < sin* / *

Therefore, we have shown that if * > 0, then sin* < x.
I understand that you'd like to use the Mean Value Theorem to show that if x > 0, then sin(x) < x. Here's the answer:

According to the Mean Value Theorem, if a function is continuous on the interval [a, b] and differentiable on the open interval (a, b), there exists a point c in (a, b) such that the derivative at c equals the average rate of change between a and b.

Let's consider the function f(x) = x - sin(x) on the interval [0, x] with x > 0. This function is continuous and differentiable on this interval. Now, we can apply the Mean Value Theorem to find a point c in the interval (0, x) such that:

f'(c) = (f(x) - f(0)) / (x - 0)

The derivative of f(x) is f'(x) = 1 - cos(x). Now, we can rewrite the equation:

1 - cos(c) = (x - sin(x) - 0) / x

Since 0 < c < x and cos(c) ≤ 1, we have:

1 - cos(c) ≥ 0

Thus, we can conclude that:

x - sin(x) ≥ 0

Which simplifies to:

sin(x) < x

This result is consistent with the Mean Value Theorem, showing that if x > 0, then sin(x) < x.

To know more about Mean Value Theorem click here:

brainly.com/question/29107557

#SPJ11

Please help with this math problem!

Answers

The equation of the ellipse is x^2/9 + y^2/6.75 = 1

Finding the equation of the ellipse

To find the equation of an ellipse, we need to know the center, the major and minor axis, and the foci.

Since we are given the eccentricity and foci, we can use the following formula:

c = (1/2)a

Since the foci are (0, +/-3), the center is at (0, 0). We know that c = 3/2, so we can find a:

c = (1/2)a

3/2 = (1/2)a

a = 3

The distance from the center to the end of the minor axis is b, which can be found using the formula:

b = √(a^2 - c^2)

b = √(3^2 - (3/2)^2)

b = √6.75

So the equation of the ellipse is:

x^2/a^2 + y^2/b^2 = 1

Plugging in the values we found, we get:

x^2/3^2 + y^2/6.75 = 1

Simplifying:

x^2/9 + y^2/6.75 = 1

Therefore, the equation of the ellipse is x^2/9 + y^2/6.75 = 1

Read more about ellipse at

https://brainly.com/question/3202918

#SPJ1

Pls help I really need help on this

Answers

The operations that results in a rational numbers are C + D, A · B and C · D.

How to obtain a rational number from combining irrational numbers

In this problem we must determine what operations between irrational numbers are equivalent to a rational number. Real numbers are result of the union between rational and irrational numbers. We need to check if each operation is equivalent to a rational number:

Case 1: A + B

A + B = √3 + 2√3 = 3√3 (Irrational)

Case 2: C + D

C + D = √25 + √16 = 5 + 4 = 9 (Rational)

Case 3: A + D

A + D = √3 + √16 = √3 + 4 (Irrational)

Case 4: A · B

A · B = √3 · 2√3 = 2 · 3 = 6 (Rational)

Case 5: B · D

B · D = 2√3 · √16 = 2√3 · 4 = 8√3 (Irrational)

Case 6: C · D

C · D = √25 · √16 = 5 · 4 = 20 (Rational)

Case 7: A · A

A · A = √3 · √3

A · A = 3 (Rational)

To learn more on irrational numbers: https://brainly.com/question/17450097

#SPJ1

A ball is drawn randomly from a jar that contains 8 red balls, 7 white balls, and 3 yellow balls. Find the probability of the given event. Write your answers as reduced fractions or whole numbers. (a) P(A red ball is drawn) = (b) P(A white ball is drawn) = (c) P(A yellow ball is drawn) = (d) P(A green ball is drawn) =

Answers

(a) P(A red ball is drawn) = 4/9

(b) P(A white ball is drawn) = 7/18

(c) P(A yellow ball is drawn) = 1/6

(d) P(A green ball is drawn) = 0



(a) To find the probability that a red ball is drawn, we'll use the following formula:
P(A red ball is drawn) = (Number of red balls) / (Total number of balls)

There are 8 red balls and a total of 8+7+3 = 18 balls in the jar. So, the probability of drawing a red ball is:
P(A red ball is drawn) = 8/18 = 4/9

(b) To find the probability that a white ball is drawn:
P(A white ball is drawn) = (Number of white balls) / (Total number of balls)

There are 7 white balls, so the probability of drawing a white ball is:
P(A white ball is drawn) = 7/18

(c) To find the probability that a yellow ball is drawn:
P(A yellow ball is drawn) = (Number of yellow balls) / (Total number of balls)

There are 3 yellow balls, so the probability of drawing a yellow ball is:
P(A yellow ball is drawn) = 3/18 = 1/6

(d) To find the probability that a green ball is drawn:
P(A green ball is drawn) = (Number of green balls) / (Total number of balls)

There are no green balls in the jar, so the probability of drawing a green ball is:
P(A green ball is drawn) = 0/18 = 0

To know more about probability click here:

https://brainly.com/question/11234923

#SPJ11

QUESTION 3 2 - 1 Let () . Find the interval (a,b) where y increases. As your answer please input a+b QUESTION 4 Let(x) = xº - 6x3 - 60x2 + 5x + 3. Find all solutions to the equation f'(x) = 0. As your answer please enter the sum of values of x for which f() -

Answers

The interval where y increases for the function f(x) = (4x² - 1)/(x² + 1) is (-∞, -0.5) U (0.5, ∞) is 0.5-(-∞) = ∞.

To find the intervals where the function f(x) = (4x² - 1)/(x² + 1) increases, we need to find its derivative and determine its sign. The derivative of f(x) can be found using the quotient rule:

f'(x) = [(8x)(x² + 1) - (4x² - 1)(2x)]/(x² + 1)²

Simplifying this expression, we get:

f'(x) = (12x - 4x³)/(x² + 1)²

To find the critical points, we need to solve the equation f'(x) = 0:

12x - 4x³ = 0

4x(3 - x²) = 0

This gives us the critical points x = 0 and x = ±√3. We can now test the intervals between these critical points to determine the sign of f'(x) in each interval.

Testing x < -√3, we choose x = -4, and we get f'(-4) = (-224)/(17²) < 0. Therefore, f(x) is decreasing on this interval.

Testing -√3 < x < 0, we choose x = -1, and we get f'(-1) = (16)/(2²) > 0. Therefore, f(x) is increasing on this interval.

Testing 0 < x < √3, we choose x = 1, and we get f'(1) = (16)/(2²) > 0. Therefore, f(x) is increasing on this interval.

Testing x > √3, we choose x = 4, and we get f'(4) = (-224)/(17²) < 0. Therefore, f(x) is decreasing on this interval.

Hence, the interval where f(x) increases is (-∞, -0.5) U (0.5, ∞). Therefore, the answer is 0.5 - (-∞) = ∞.

For more questions like Function click the link below:

https://brainly.com/question/16008229

#SPJ11

A $70,000 mortgage is $629. 81 per month. What was the percent and for how many years?


9%, 20 years



9%, 25 years



7%, 20 years



9%, 30 years

Answers

The closest answer is 9% interest rate and 25 years term of the loan.

Assuming the $70,000 mortgage is a fixed-rate mortgage, we can use the formula for the monthly payment of a mortgage to solve for the interest rate and the term of the loan.

The formula is:

M = P [ i(1 + i)^n ] / [ (1 + i)^n - 1 ]

where:

M = monthly payment

P = principal (amount borrowed)

i = interest rate (per month)

n = number of months

Substituting the given values, we get:

$629.81 = $70,000 [ i(1 + i)^n ] / [ (1 + i)^n - 1 ]

Using a mortgage calculator or by trial and error, we can find that the closest answer is 9% interest rate and 25 years term of the loan.

learn more about "Principal amount":- https://brainly.com/question/25720319

#SPJ11

Analyze the diagram below and answer the questions that follow.
F
G
t
How many different ways can the line above be named? What are those names?
A. 2 ways; FG, GF
B. 3 ways; t, FG, GF
C. 4 ways; t, FG, FG, GF
D. 5 ways; t, FG, GF, FG GF

Answers

Answer: A. 2 ways; FG, GF

Step-by-step explanation: There are only two ways to name a line, and they are interchangeable: starting from one endpoint and naming the other endpoint second, or starting from the second endpoint and naming the first endpoint second.

THIS IS DUE TONIGHT! PLEASE HELP ME! :c
USE STRUCTURE Complete the table to show the effect that the transformation has on the table of the parent function f(x)=x2.

g(x)is a reflection of f(x)across the x-axis.
x f(x) g(x)
-2 4
-1 1
0 0
1 1
2 4

Answers

The table of values to show the effect of the transformation is

x f(x) g(x)

-2 4   -4

-1 1      -1

0 0     0

1 1       -1

2 4     -4

Completing the table of values to show the effect

From the question, we have the following parameters that can be used in our computation:

f(x) = x²

Also, we have

g(x) is a reflection of f(x)across the x-axis

This means that

g(x) = -f(x)

So, we have

g(x) = -x²

Using the above as a guide, we have the following:

x f(x) g(x)

-2 4   -4

-1 1      -1

0 0     0

1 1       -1

2 4     -4

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

A translation is applied to the square formed by the points A(−3, −4) , B(−3, 5) , C(6, 5) , and D(6, −4) . The image is the square that has vertices ​ A′(−3, −6) ​, ​ B′(−3, 3) ​, C′(6, 3) and D′(6, −6) . Select the phrase from the drop-down menu to correctly describe the translation. The square was translated Choose... .

Answers

The square was translated 2 units downwards.

Describing the transformation

From the question, we have the following parameters that can be used in our computation:

Points A(−3, −4) , B(−3, 5) , C(6, 5) , and D(6, −4) . The image is the square that has vertices ​ A′(−3, −6) ​, ​ B′(−3, 3) ​, C′(6, 3) and D′(6, −6)

The square was translated 2 units downward since all the y-coordinates of the vertices of the image square are 2 units less than the corresponding y-coordinates of the vertices of the pre-image square.

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

An architect needs to design a new light house. an average-man (6 ft tall) can see 1 mile


into the horizon with binoculars. if the company building the light house would like for


their guests to be able to see 20 miles out from the top of the light house with binoculars,


then how tall does the building need to be?

Answers

The lighthouse needs to be at least 270.7 feet tall to allow guests to see 20 miles out with binoculars.

Assuming the Earth is a perfect sphere, the distance a person can see to the horizon is given by: d = 1.22 * sqrt(h)

Where d is the distance in miles, h is the height of the observer in feet, and 1.22 is a constant based on the radius of the Earth.

Using this formula, we can solve for the required height of the lighthouse: 20 = 1.22 * sqrt(h), 20/1.22 = sqrt(h), h = (20/1.22)^2, h ≈ 270.7 feet

Therefore, the lighthouse needs to be at least 270.7 feet tall to allow guests to see 20 miles out with binoculars.

To know more about radius, refer here:

https://brainly.com/question/4865936#

#SPJ11

Gross Monthly Income: Jackson works for a pipe line company and is paid $18. 50 per hour. Although he will have overtime, it is not guaranteed when or where, so Jackson will only build a budget on 40 hours per week. What is Jackson’s gross monthly income for 40 hours per week? Type in the correct dollar amount to the nearest cent. Do not include the dollar sign or letters.


A. Gross Annual Income: $


B. Gross Monthly Income: $

Answers

Jackson's gross monthly income for 40 hours per week is approximately $3,201.70 and gross annual income s $38,480.

To find Jackson's gross monthly income, we first need to find his gross weekly income.

Jackson's hourly wage is $18.50, so his weekly gross income for 40 hours of work is:

40 hours/week x $18.50/hour = $740/week

Calculate annual income:

To determine the gross annual income, we need to consider how many weeks there are in a year. Assuming 52 weeks in a year:

Annual income = Weekly income * Number of weeks in a year

Annual income = $740 * 52 = $38,480

To find Jackson's gross monthly income, we can multiply his weekly gross income by the number of weeks in a month (approximately 4.33):

$740/week x 4.33 weeks/month ≈ $3,201.70/month

Therefore, Jackson's gross monthly income for 40 hours per week is approximately $3,201.70.

To know more about gross monthly income, visit:

https://brainly.com/question/30617016#

#SPJ11

A sector with a central angle measure of 4/ 7π(in radians) has a radius of 16 cm. what is the area of the sector.

Answers

The area of the sector is approximately 73.14 square centimeters.

The formula to calculate the area of a sector is given by A = (θ/2) × r^2, where θ is the central angle measure in radians, and r is the radius of the circle.

Substituting the given values in the formula, we get A = (4/7π/2) × 16^2

Simplifying this expression, we get A = (8/7) × 16^2 × π/2

A = 128π square centimeters/7

Using the approximation π ≈ 3.14, we can calculate the value of A as follows:

A ≈ (128 × 3.14) square centimeters/7 ≈ 573.44 square centimeters/7 ≈ 73.14 square centimeters (rounded to two decimal places)

Therefore, the area of the sector is approximately 73.14 square centimeters.

For more questions like Sector click the link below:

https://brainly.com/question/7512468

#SPJ11

Find all solutions of the equation in the interval [0, 2π). Show formula and steps used, not a calculator problem. (8 csc x - 16)(4 cos x - 4) = 0

Answers

The solutions for the equation in the interval [0, 2π) are x = 0, x = π/6, and x = 5π/6.

To find all solutions of the equation (8 csc x - 16)(4 cos x - 4) = 0 in the interval [0, 2π), we can set each factor equal to zero and solve for x separately.

1) 8 csc x - 16 = 0
8 csc x = 16
csc x = 2

Recall that csc x = 1/sin x, so:

1/sin x = 2
sin x = 1/2

In the interval [0, 2π), sin x = 1/2 at x = π/6 and x = 5π/6. So, the solutions for this part are x = π/6 and x = 5π/6.

2) 4 cos x - 4 = 0
4 cos x = 4
cos x = 1

In the interval [0, 2π), cos x = 1 at x = 0 and x = 2π. However, since 2π is not included in the interval, we only have x = 0 as a solution for this part.

Combining both parts, the solutions for the equation in the interval [0, 2π) are x = 0, x = π/6, and x = 5π/6.

To learn more about interval, refer below:

https://brainly.com/question/13708942

#SPJ11

O is the centre of the given circle. if OX⊥PQ, OY⊥RS and PQ=RS, write down the relation between OX and OY.

Answers

Since OX is perpendicular to PQ, and OY is perpendicular to RS, we know that OX and OY are both radii of the circle. Therefore, we can write:

OX = OY

This is because all radii of a circle are equal in length. Alternatively, we could also say that OX and OY are both the distance from the center O to the respective lines PQ and RS. Since PQ=RS, OX and OY are equal in length.

What is the circle about?

In a circle, the center is the point from which all points on the circumference are equidistant. This means that any line segment from the center to a point on the circle is a radius of the circle.

In this problem, we have two lines PQ and RS, both of which are tangent to the circle at points P and R respectively. We also have two lines OX and OY, each of which is perpendicular to one of the tangent lines.

Because the tangent lines are perpendicular to their respective radii (PQ is perpendicular to OX, and RS is perpendicular to OY), we can conclude that OX and OY are both radii of the circle, and therefore, they have the same length.

Note that both are still angles at 90 degrees.

Learn more about circle from

https://brainly.com/question/14283575

#SPJ1

out of 500 people , 200 likes summer season only , 150 like winter only , if the number of people who donot like both , the seasons is twice the people who like both the season , find summer season winter season , at most one season with venn diagram​

Answers

Answer:

250 people like the summer season, 200 people like the winter season, and 50 people like both seasons.

Step-by-step explanation:

Let's assume that the number of people who like both summer and winter is "x". We know that:

- 200 people like summer only

- 150 people like winter only

- The number of people who don't like either season is twice the number of people who like both seasons

To find the value of "x", we can use the fact that the total number of people who don't like either season is twice the number of people who like both seasons:

150 - 2x = 2x

Solving for "x", we get:

x = 50

150 people like the winter season, 200 people like the summer season.

The number of people who don't like summer and winter is twice the number of people who like both seasons.

The number of people who like both the seasons= x

The number of people like summer 200

The number of people who like winter 150

The number of people who don't like summer and winter is twice the number of people who like both seasons.

To find the value of x, we can use the equation:

150-x= 2x

150= 3x

x= 50

The number of people who like both seasons is 50

The number of people who don't like both seasons is 100

For more information:

brainly.com/question/31893545

A lube and oil change business believes that the number of cars that arrive for service is the same each day of the week. If the business is open six days a week (Monday - Saturday) and a random sample of n = 200 customers is selected, the critical value for testing the hypothesis using a goodness-of-fit test is x2 = 9. 2363 if the alpha level for the test is set at. 10

Answers

The hypothesis to be tested here is that the number of cars arriving for service is the same for each day of the week.

The null hypothesis, denoted as H0, is that the observed frequency distribution of cars is the same as the expected frequency distribution.

The alternative hypothesis, denoted as H1, is that the observed frequency distribution of cars is not the same as the expected frequency distribution.

To test this hypothesis, we use a goodness-of-fit test with the chi-square distribution. The critical value for a chi-square distribution with 6 - 1 = 5 degrees of freedom (one for each day of the week) and alpha level of 0.10 is 9.2363.

If the computed chi-square statistic is greater than 9.2363, then we reject the null hypothesis and conclude that the observed frequency distribution is significantly different from the expected frequency distribution.

Thus, if the computed chi-square statistic is greater than 9.2363, we can conclude that the number of cars arriving for service is not the same for each day of the week, and there is evidence to support the alternative hypothesis.

If the computed chi-square statistic is less than or equal to 9.2363, then we fail to reject the null hypothesis, and there is not enough evidence to suggest that the observed frequency distribution is different from the expected frequency distribution.

To know more about hypothesis, refer here:

https://brainly.com/question/29519577#

#SPJ11

Given that MNPQ is a rectangle with vertices M(3, 4), N(1, -6), and P(6, -7), find the coordinates Q that makes this a rectangle

Answers

Given that MNPQ is a rectangle with verticles M(3, 4), N(1, -6), and P(6, -7), to find the coordinates of point Q, we can use the fact that opposite sides of a rectangle are parallel and have equal lengths.

First, let's find the vector MN and MP:

MN = N - M = (1 - 3, -6 - 4) = (-2, -10)
MP = P - M = (6 - 3, -7 - 4) = (3, -11)

Now, let's add the vector MN to point P:

Q = P + MN = (6 + (-2), -7 + (-10)) = (4, -17)

Therefore, the coordinates of point Q that make MNPQ a rectangle are Q(4, -17).


If you want to learn more about verticles, click here:
https://brainly.com/question/24681896
#SPJ11

Find parametric equations for the line that is tangent to the given curve at the given parameter value.
r(t) = 3t^2 i +(4t-1)j + t^3 k t = T_o = 4
what is the standard parameterization for the tangent line. (type expressions using t as the variable)
x =
y=
z=

Answers

The standard parametric equations for the tangent line to the curve r(t) at t = T₀ = 4 are: x = 24(t-4) + 48, y = 15(t-4) - 3, z = 64(t-4) + 64

To find the parametric equations for the tangent line to the curve r(t) at t = T₀ = 4, we can follow these steps:

Step 1: Find the point on the curve at t = T₀.

To find the point on the curve at t = T₀ = 4, we simply evaluate r(4):

r(4) = 3(4²)i + (4(4)-1)j + 4³k

= 48i + 15j + 64k

So the point on the curve at t = 4 is (48, 15, 64).

Step 2: Find the direction of the tangent line at t = T₀.

To find the direction of the tangent line, we need to take the derivative of r(t) and evaluate it at t = 4. So we first find r'(t):

r'(t) = 6ti + 4j + 3t²k

Then we evaluate r'(t) at t = 4:

r'(4) = 6(4)i + 4j + 3(4²)k

= 24i + 4j + 48k

So the direction of the tangent line at t = 4 is the vector <24, 4, 48>.

Step 3: Write the parametric equations for the tangent line.

To write the parametric equations for the tangent line, we use the point and direction found in steps 1 and 2. We can write the parametric equations as:

x = 48 + 24(t-4)

y = 15 + 4(t-4)

z = 64 + 48(t-4)

Simplifying these equations gives us:

x = 24t + 48

y = 4t - 3

z = 48t + 64

These are the standard parametric equations for the tangent line to the curve r(t) at t = 4.

To know more about standard parametric equations, refer here:
https://brainly.com/question/29734728#
#SPJ11

1
(Lesson 8.2) Which statement about the graph of the rational function given is true? (1/2 point)
4. f(x) = 3*-7
x+2
A. The graph has no asymptotes.
B.
The graph has a vertical asymptote at x = -2.
C. The graph has a horizontal asymptote at y =
+

Answers

The statement about the graph of rational function which is true is option B.  that is "The graph has a vertical asymptote at x = -2

What is a rational function?

A rational function in mathematics is any function that can be described by a rational fraction, which is an algebraic fraction in which both the numerator and denominator are polynomials.

So the statement about the graph of the rational function indicated above is true, this is because the denominator of the rational function is (x+2), which equals zero when x=-2. Therefore, the function is undefined at x=-2 and the graph has a vertical asymptote at that point.

Learn more about vertical asymptote:
https://brainly.com/question/4084552
#SPJ1

3/4+(1/3 divided by 1/6) - (-1/2)

Answers

3/4 + (1/3 divided by 1/6) - (-1/2) when simplified give 3 1/4

How to determine this

3/4 + (1/3 divided by 1/6) - (-1/2)

3/4 + (1/3 ÷ 1/6) - (-1/2)

Using the rule of BODMAS

Whee B = Bracket

O = Order

D = Division

M = Multiplication

A = Addition

S = Subtraction

By removing the bracket

3/4 + 1/3 ÷ 1/6 + 1/2

By dividing

3/4 + 1/3 * 6/1 + 1/2

3/4 + 6/3 + 1/2

3/4 +2 + 1/2

By finding the LCM

The LCM is lowest common factor of the denominator which is 4

= [tex]\frac{3+8+2}{4}[/tex]

= 13/4

= 3 1/4

Read more about Fractions

https://brainly.com/question/26366075

#SPJ1

Goldilocks walked into her kitchen to find that a bear had eaten her tasty can of soup. All that was left was the label below that used to completely cover the sides of the can (without any overlap). What was the volume of the can of soup that the bear ate? The label is 22 in. (top) by 9 in. (side).

Answers

The volume of the can of soup that the bear ate was approximately 4644.64 cubic inches.

To solve this problem, we need to make some assumptions about the can of soup. Let's assume that the can is cylindrical and that it is completely filled with soup. We also need to assume that the label covered the entire surface area of the can without any overlap.

The label is 22 inches tall and 9 inches wide, so it covered a total surface area of 22 x 9 = 198 square inches. Since the label completely covered the sides of the can without any overlap, we can use this surface area to find the surface area of the can itself.

The surface area of a cylinder is given by the formula A = 2πrh + 2πr², where r is the radius of the base of the cylinder, and h is the height of the cylinder. In this case, we know that the height of the cylinder is 22 inches (the height of the label), and the circumference of the base of the cylinder is 9 inches (the width of the label).

Using these values, we can solve for the radius of the cylinder:

9 = 2πr
r = 4.53 inches

Now we can use the formula for the surface area of a cylinder to solve for the volume of the can:

A = 2πrh + 2πr²
198 = 2π(22)(4.53) + 2π(4.53)²
198 = 634.26
A = πr²h
V = A x h/3
V = 634.26 x 22/3
V ≈ 4644.64 cubic inches

To know more about volume, refer to the link below:

https://brainly.com/question/23687218#

#SPJ11

Walmart is contacting all of the manufacturers that supply its more than 4,000 u. s. stores with a logistics proposition: the world’s largest retailer wants to use its own fleet of trucks to pick up products directly from manufacturers and deliver the merchandise to walmart’s stores. in short, walmart’s truck fleet would replace manufacturers’ or common carriers’ trucks. by doing so, walmart believes it will enjoy substantial cost savings while allowing manufacturers to concentrate on what they do best—making products rather than managing logistical systems. walmart, with about 6,500 trucks and over 50,000 trailers, believes it has the capacity to implement this new logistical program

Answers

Walmart's decision to use its own fleet of trucks to pick up products directly from manufacturers and deliver them to its stores is a strategic move that has the potential to benefit both Walmart and manufacturers.

By using its own fleet, Walmart will be able to cut down on transportation costs and gain more control over the supply chain, which can lead to better efficiency and cost savings. This is especially important given Walmart's massive scale, with over 4,000 stores in the US alone.

For manufacturers, this move by Walmart could be a relief as they can focus on their core competency of making products rather than managing logistics. With Walmart taking over the transportation aspect, manufacturers can rest assured that their products will be delivered on time and in the right condition.

The fact that Walmart already has a large fleet of trucks and trailers means that it has the capacity to implement this new program without too much additional investment. However, it remains to be seen how manufacturers will respond to this proposal, as they may have existing contracts with other carriers or may be hesitant to rely too heavily on Walmart for their transportation needs.

Overall, Walmart's move towards using its own fleet of trucks is a smart one that has the potential to benefit both the retailer and its suppliers.

To know more about Walmart refer here

https://brainly.com/question/29887733#

#SPJ11

Sort each set of triangle measurements into the appropriate category for number of possible triangles. No Triangles One Triangle Many Triangles 5, 15", 160 45°, 45°, 90° 2.8. 10 7, 24, 25 30", 85°, 60° 5 of 5 Done​

Answers

No Triangles: 160
One Triangle: 45°, 45°, 90°; 2.8, 10; 30", 85°, 60°
Many Triangles: 5, 15"; 7, 24, 25; 5 of 5 Done.

Rob bought a 1965 Fender Jazzmaster vintage electric guitar in 1980 for a price of $150. In 2010 it was appraised for $4,200. Suppose $150 was deposited in a variable-rate certifi cate of deposit for 30 years with interest compounded daily. A. If the CD paid 12. 3% interest for the fi rst 7 years, what would the balance be after the fi rst 7 years? Round to the nearest cent. B. If the CD paid 6% interest for the next 10 years, what would the balance be after the fi rst 17 years? Round to the nearest cent. C. If the CD paid 4. 1% interest for the remaining 13 years, what would the balance be after 30 years? Round to the nearest cent. D. What is the difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD?

Answers

a.  If the CD paid 12. 3% interest for the first 7 years, he balance be after the first 7 years will be $492.89.

b.  If the CD paid 6% interest for the next 10 years, the balance be after the first 17 years would be $784.98.

c.  If the CD paid 4. 1% interest for the remaining 13 years, the balance be after 30 years would be $1,265.59.

d. The difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD is $2,784.41.

A. The annual interest rate for a CD that pays 12.3% interest compounded daily is 12.3%/365 ≈ 0.0337% per day. The balance after 7 years can be calculated using the formula:

Balance = $150 x (1 + 0.000337)^((365 x 7) / 365) ≈ $492.89

Rounding to the nearest cent, the balance after 7 years is $492.89.

B. After 7 years, the remaining term of the CD is 30 - 7 = 23 years. The annual interest rate for a CD that pays 6% interest compounded daily is 6%/365 ≈ 0.0164% per day. The balance after 17 years can be calculated using the formula:

Balance = $492.89 x (1 + 0.000164)^((365 x 10) / 365) ≈ $784.98

Rounding to the nearest cent, the balance after 17 years is $784.98.

C. After 17 years, the remaining term of the CD is 30 - 17 = 13 years. The annual interest rate for a CD that pays 4.1% interest compounded daily is 4.1%/365 ≈ 0.0112% per day. The balance after 30 years can be calculated using the formula:

Balance = $784.98 x (1 + 0.000112)^((365 x 13) / 365) ≈ $1,265.59

Rounding to the nearest cent, the balance after 30 years is $1,265.59.

D. The difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD is:

$4,200 - $1,265.59 - $150 ≈ $2,784.41

Rounding to the nearest cent, the difference is $2,784.41.

Learn more about interest rate at https://brainly.com/question/25068711

#SPJ11

the figure above, AB is parallel to DE; (ABC = 800 and (CDE = 280. Find (DCB.(3mks)

Answers

Answer:

Step-by-step explanation:

Since AB is parallel to DE, we know that:

(ABC + BCD) = (CDE + EDC)

Substituting the given values, we get:

800 + BCD = 280 + EDC

Simplifying, we get:

BCD = EDC - 520

We also know that:

(BCD + CDE + DCE) = 180

Substituting BCD = EDC - 520 and CDE = 280, we get:

(EDC - 520 + 280 + DCE) = 180

Simplifying, we get:

EDC + DCE - 240 = 0

EDC + DCE = 240

Now we can solve for DCE in terms of BCD:

DCE = 240 - EDC

DCE = 240 - (BCD + 520)

DCE = 760 - BCD

Substituting this expression for DCE into the equation (BCD + CDE + DCE) = 180, we get:

BCD + 280 + (760 - BCD) = 180

Simplifying, we get:

1040 - BCD = 180

BCD = 860

Therefore, (DCB) = 180 - (BCD + CDE) = 180 - (860 + 280) = -960. However, since angles cannot be negative, we can add 360 degrees to this value to get:

(DCB) = -960 + 360 = -600

Therefore, (DCB) = -600 degrees.

what is the sampling distribution of the sample mean? group of answer choices in practice, to estimate the mean values of a varibale in a large population, we only get to observe a sample, and we can only plot the distribution of this sample, not the distribution of the whole population. the distribution of the sample we have have observed is called the sampling distribution of the sample mean. if we hypothetically had a large number of samples taken from the same population, the distribution of the means of those individual samples is called the sampling distribution of the sample mean

Answers

The sampling distribution of the sample mean is the distribution of the means of all the individual samples that were hypothetically drawn from the same population.

A sampling distribution refers to the probability distribution of a statistic that is obtained from a large number of random samples drawn from a population. The sampling distribution is important because it enables us to make statistical inferences about the population based on the sample data.

This makes the sampling distribution a valuable tool for making statistical inferences about population parameters. We could randomly select a sample of students and compute their mean height. If we repeat this process many times and compute the mean height for each sample, we would obtain a sampling distribution of means. This distribution would provide information about the range of possible mean heights we might expect to see if we were to repeat the sampling process many times.

To learn more about Sampling distribution visit here:

brainly.com/question/29375938

#SPJ4

Given the following point on the unit circle, find the angle, to the nearest tenth of a
degree (if necessary), of the terminal side through that point, 0<θ<360.
p=(-√2/2,√2/2)

Answers

Answer: Therefore, the angle of the terminal side through the point p is 315.0 degrees (to the nearest tenth of a degree).

Step-by-step explanation:

The point p = (-√2/2,√2/2) lies on the unit circle, which is centered at the origin (0,0) and has a radius of 1. To find the angle of the terminal side through this point, we need to use the trigonometric ratios of sine and cosine.

Recall that cosine is the x-coordinate of a point on the unit circle, and sine is the y-coordinate. Therefore, we have:

cos(θ) = -√2/2

sin(θ) = √2/2

We can use the inverse trigonometric functions to solve for θ. Taking the inverse cosine of -√2/2, we get:

θ = cos⁻¹(-√2/2)

Using a calculator, we find that θ is approximately 135.0 degrees.

However, we need to ensure that the angle is between 0 and 360 degrees. Since the point lies in the second quadrant (i.e., x < 0 and y > 0), we need to add 180 degrees to the angle we found. This gives:

θ = 135.0 + 180 = 315.0 degrees

The angle of the terminal side through the point p is 315.0 degrees (to the nearest tenth of a degree).

To know more about terminal refer here

https://brainly.com/question/27349244#

#SPJ11

Other Questions
Please answer the question correctly and neatly. Will upvote ifcorrect.The temperatue of a town t months after January can be estimated by the function f(t) = 20 cos (64) +66 Find the average temperature from month 1 to month 6 7. If the total output of a country (GDP) in a given year is 100 million US dollar and the lost part of capital goods in generating this national output is 9. 5 million US dollar, then findA)the net domestic product (NDP) of the country in that particular year. Comment s'appelle le petit du cheval ? What did the us do in the 1950s that has caused a problem with us/iranian relations to today?. Elliott has the following capital gain and loss transactions for 2020. A. Short-term capital gain $1,500 b. Short-term capital loss ($3,600) c. Long-term capital gain (28%) $12,000 d. Long-term capital gain (25%) $4,800 e. Long-term capital gain (15%) $6,000 f. Long-term capital loss (28%) ($4,500) g. Long-term capital loss (15%) ($9,000) What is the probability that a randomly chosen contestant had a brown beard and is only in the beard competition How much money did King Louis XVI give to the United States to fight in the American Revolution Help What is the purpose of the theory of perspective in technical drawing? A. it enables artists to draw technical drawings much faster B. it enables artists to make authentic copies of technical drawings C. it permits artists to design objects keeping functionality in mind D. it enables three-dimensional objects to be presented on a flat surface Trapper Corporation is comparing two different capital structures, an all-equity plan (Plan I) and a levered plan (Plan II). Under Plan I, the company would have 205,000 shares of stock outstanding. Under Plan II, there would be 155,000 shares of stock outstanding and $3.1 million in debt outstanding. The interest rate on the debt is 8 percent, and there are no taxes. What is the break-even EBIT? A small country emits 80,000 kilotons of carbon dioxide per year. In a recent global agreement, the country agreed to cut its carbon emissions by 2.5% per year for the next 7 years. In the first year of the agreement, the country will keep its emissions at 80,000 kilotons and the emissions will decrease 2.5% in each successive year. How many total kilotons of carbon dioxide would the country emit over the course of the 7 year period, to the nearest whole number? 5. read the following excerpt from dr. martin luther king, jr. s "letter from birmingham," then answer the question,"i submit that an individual who breaks a law that conscience tells him is unjust, and willingly accepts the penalty by staying in jail to arouse the conscience of the community over its injustice,is in reality expressing the very highest respect for law. "in this excerpt, king develops his rhetorical purpose by utilizing (5 points)metaphoranalogyhyperbolejuxtaposition What happens if the birth rate in a population is more than the death rate? What happens if it is less? A compound event may consist of two dependent events.A. TrueB. False What are the rumors about Roger Chillingworth? He could not get a job in Europe He is a demon or Satan meant to test Dimmesdale Heaven had brought him to save the minister He practices the black arts His laboratory fire came from hell He was secretly a learned prince if you are an astronaut on a planet with twice the mass of the earth, but eight times the radius of the earth, how would the planet's escape velocity compare to earth's escape velocity? my tongue is divided into two The cultural experience being conveyed is... Moody discusses the positive impact that education had on him.Horace Mann, an American political and educational reformer, once called education "the great equalizer" .Do you agree? How can education improve a person's situation? Why do you believe that even errors and small details were copied (e. G. , repair patch, wing hole, paint color) by the Soviets? Two containers designed to hold water are side by side, both in the shape of a cylinder. Container A has a radius of 4 feet and a height of 18 feet. Container B has a radius of 5 feet and a height of 15 feet. Container A is full of water and the water is pumped into Container B until Container A is empty. To the nearest tenth, what is the percent of Container B that is empty after the pumping is complete? Help with chemistry please!!