The cable should have a diameter of approximately 0.092 cm or an order of magnitude of one centimeter.
To determine the diameter of the cable needed to support a tension of 20.0 kN, we can use the principle of cross-sectional area. The maximum tension that a wire can withstand is proportional to its cross-sectional area. Therefore, to support a tension that is 83.33 times greater than the maximum tension of a single wire, the cross-sectional area of the cable must also be 83.33 times greater.
The cross-sectional area of a wire is given by the formula A = πr², where A is the cross-sectional area, and r is the radius of the wire. Since the diameter of the wire is given as 1.00 mm, the radius is 0.50 mm or 0.005 cm. Therefore, the cross-sectional area of a single wire is:
A₁ = π(0.005 cm)² = 0.00007854 cm²
To find the diameter of the cable, we can use the formula for the cross-sectional area of a circle:
A₂ = πr₂²
where A₂ is the cross-sectional area of the cable and r₂ is the radius of the cable.
We know that the cross-sectional area of the cable needs to be 83.33 times greater than the cross-sectional area of a single wire:
A₂ = 83.33 A₁ = 83.33 x 0.00007854 cm² = 0.00654 cm²
Substituting this value into the formula for the cross-sectional area of a circle:
πr₂² = 0.00654 cm²
r₂² = 0.00654/π
r₂ = √(0.00654/π) = 0.046 cm
Therefore, the radius of the cable is 0.046 cm, and the diameter is twice that:
d = 2r₂ = 0.092 cm or 0.92 mm (to two significant figures)
In conclusion, the cable should have a diameter of the order of magnitude of one centimeter (0.092 cm).
To learn more about tension
https://brainly.com/question/30033702
#SPJ4
You travel 20.0 km to the right and you realized you have to drive back 5.0 km. the journey took 2 hours to complete. find the following:
a. the total distance you traveled
b. the total displacement you traveled
c. your average speed
d. your average velocity
(pls put an explanation the the answers ty!!)
The total distance you traveled is 25.0 km, and the total displacement you traveled is 15.0 km to the right and average speed is 12.5 km/h and velocity is 7.5 km/h to the right.
a. To find the total distance you traveled, add the distance you traveled to the right (20.0 km) and the distance you traveled back (5.0 km). Total distance = 20.0 km + 5.0 km = 25.0 km.
b. To find the total displacement, subtract the distance you traveled back (5.0 km) from the distance you traveled to the right (20.0 km). Total displacement = 20.0 km - 5.0 km = 15.0 km to the right.
c. To find your average speed, divide the total distance you traveled by the time it took to complete the journey. Average speed = Total distance / Time = 25.0 km / 2 hours = 12.5 km/h.
d. To find your average velocity, divide the total displacement by the time it took to complete the journey. Average velocity = Total displacement / Time = 15.0 km / 2 hours = 7.5 km/h to the right.
Know more about average velocity click here:
https://brainly.com/question/11265533
#SPJ11
X-ray pulses from cygnus x-1, a celestial x ray source, have been recorded during high-altitude rocket flight. the signals can be interpreted as originating when a blob of ionized matter orbits a black hole with a period of 4.81 ms if the blob were in a circular orbit about a black hole whose mass is 27.7 times the mass of the situ, what is the orbit radius? the value of the gravitational constant is 6.67259 x 10^-11 n .m^2/kg^2 and mass of the sun is 1.991 x 10^30 kg. answer �n units of km.
The orbit radius is 1.64 x [tex]10^{6}[/tex] km. The period of the orbit of the blob of ionized matter around a black hole is given as 4.81 ms.
The mass of the black hole is 27.7 times the mass of the Sun, which is 1.991 x [tex]10^{30}[/tex] kg. Let the radius of the orbit be denoted as r.
Then, the orbital velocity of the blob can be calculated as v = 2πr/T, where T is the period of the orbit. Using this formula, we get v = 2πr/4.81 x [tex]10^{-3}[/tex] s.
The gravitational force between the black hole and the blob of ionized matter is given by F = Gm1m2/[tex]r^{2}[/tex], where m1 and m2 are the masses of the black hole and the blob respectively, and G is the gravitational constant.
Equating this force to the centripetal force, which is /r, we can solve for r. Simplifying this equation, we get r = (GM*[tex]T^{2}[/tex])/([tex]4\pi ^{2}[/tex]), where M is the mass of the black hole.
Substituting the given values, we get r = 1.64 x [tex]10^{6}[/tex] km. Therefore, the orbit radius is 1.64 x [tex]10^{6}[/tex] km.
To know more about gravitational force, refer here:
https://brainly.com/question/12528243#
#SPJ11
How would an increase in the number of birds affect the number OF mice. Explain ur answer
The relationship between birds and mice is complex and can vary depending on a variety of factors such as the species of birds and mice, the availability of food and habitat, and the presence of predators.
Generally, an increase in the number of birds can have both positive and negative effects on the number of mice. On one hand, birds are predators of mice and can help to control their population by preying on them. Thus, an increase in the number of birds can lead to a decrease in the number of mice.
On the other hand, birds can also indirectly increase the number of mice by providing them with food and habitat. For example, some species of birds such as sparrows and pigeons can create a lot of waste material in their nesting areas, which can attract mice and provide them with a source of food and shelter.
In summary, the relationship between birds and mice is complex and can have both positive and negative effects on each other. An increase in the number of birds can lead to a decrease in the number of mice through predation.
But can also indirectly increase the number of mice by providing them with food and habitat. The specific effects depend on a variety of factors and can vary depending on the situation.
To know more about species refer here:
https://brainly.com/question/29912614#
#SPJ11
There is an assassin who climbed to the top of the catwalk balcony of a mansion to get a good view of his target who is 3. 1 feet tall the assassin pulls the trigger when the target is 294 feet away discharging the bullet 63 angle to the level of the victims head find the height that the assassin shot the target from
The height from which the assassin shot the target= 580.10 feet
To find the height from which the assassin shot the target, we can use the following formula:
Height = (Distance × tan(Angle)) + Target Height
Where:
- Height is the height from which the assassin shot the target
- Distance is the horizontal distance between the assassin and the target (294 feet)
- Angle is the angle between the horizontal line and the line of sight (63 degrees)
- Target Height is the height of the target (3.1 feet)
First, calculate the height difference using the distance and angle:
Height Difference = 294 × tan(63 degrees)
Height Difference ≈ 577.00 feet
Now, add the target height to find the total height from which the assassin shot:
Height = Height Difference + Target Height
Height = 577.00 + 3.1
Height ≈ 580.10 feet
The assassin shot the target from a height of approximately 580.10 feet.
Visit https://brainly.com/question/7116550 to learn more about angle
#SPJ11
An odd-shaped object rotates at a speed of 10. 0 rev/s. A small 25 g
mass with moment of inertia I=1. 5x10-6 kg∙m2 is dropped onto the
object at a distance of 4. 5 cm from its center of mass. The odd-shaped
object slows to a speed of 9. 0 rev/s. What is the moment of inertia of
the odd-shaped object?
The moment of inertia of the odd-shaped object is: approximately 1.67x10⁻³ kg∙m².
To find the moment of inertia of the odd-shaped object, we can use the conservation of angular momentum principle. Angular momentum before the mass is dropped equals angular momentum after the mass is dropped.
Initially, only the odd-shaped object is rotating with an angular speed of 10.0 rev/s. After the 25 g mass with a moment of inertia I=1.5x10⁻⁶ kg∙m² is dropped onto the object at a distance of 4.5 cm (0.045 m) from its center of mass, the system's angular speed slows to 9.0 rev/s.
First, let's convert the angular speed from rev/s to rad/s:
Initial angular speed (ω1) = 10.0 rev/s * 2π rad/rev ≈ 62.83 rad/s
Final angular speed (ω2) = 9.0 rev/s * 2π rad/rev ≈ 56.55 rad/s
Let I_obj be the moment of inertia of the odd-shaped object. The angular momentum before and after the mass is dropped can be written as:
I_obj * ω1 = (I_obj + I + m * r²) * ω2
Solving for I_obj, we get:
I_obj = [(I + m * r²) * ω2] / ω1
Substituting the given values:
I_obj = [(1.5x10^-6 kg∙m² + (0.025 kg * (0.045 m)^2)) * 56.55 rad/s] / 62.83 rad/s
After calculating the above expression, we find that the moment of inertia of the odd-shaped object is approximately 1.67x10⁻³ kg∙m².
To know more about inertia, refer here:
https://brainly.com/question/29259718#
#SPJ11
While at the parent-teacher conference, murphy’s teacher mentions that the apollo program-the same program that landed humans on the moon-was just propaganda to convince the soviet union to bankrupt themselves trying to do the same. the reason for this was to encourage children to take care of their own planet, rather than wasting precious resources day dreaming of leaving it. which side of the fence would you sit on? would you look for ways to save earth and our ability to stay there, or would you look to the sky, and find a new plant to live on? why?
interstellar movie☝️
I would sit on the side of looking for ways to save Earth and our ability to stay there, rather than looking to the sky to find a new planet to live on.
While finding new habitable planets is an interesting scientific pursuit, it is not a practical solution to the problems we face on Earth. Instead, we should focus on preserving and restoring our planet's ecosystems, reducing our carbon footprint, and developing sustainable technologies. Furthermore, the idea that the Apollo program was just propaganda is a conspiracy theory without any evidence to support it.
To know more about moon, here
brainly.com/question/13538936
#SPJ4
Neglecting air speed, how fast must you toss a ball straight up in order for it to take 6 seconds to return to its initial level?
The initial velocity with which the ball must be thrown upwards in order for it to take 6 seconds to return to its initial level is 29.4 meters/second.
Assuming negligible air resistance, the time taken by a ball to go up and come down after being thrown vertically upwards is given by:
t = 2*v/g
where:
t = time taken for the ball to go up and come down (in seconds)
v = initial velocity with which the ball is thrown upwards (in meters/second)
g = acceleration due to gravity
In this case, the time taken for the ball to return to its initial level is given as 6 seconds. Therefore, we can write:
6 seconds = 2*v/g
Rearranging the equation, we get:
v = (6 seconds * g)/2 = 29.4 m/s
To know more about resistance refer here
https://brainly.com/question/14327116#
#SPJ11
Assuming your skin temperature is 37. 2 C and the temperature of your surroundings is 23. 4C , determine the length of time required for you to radiate away the energy gained by eating a 335- C ice cream cone. Let the emissivity of your skin be 0. 915 and its area be 1. 27 m^2
T=___h
It would take approximately 4.4 hours for the person to radiate away the energy gained by eating the ice cream cone.
To calculate the time required for a person to radiate away the energy gained by eating an ice cream cone, we need to use the Stefan-Boltzmann law, which states that the rate of heat transfer from an object is proportional to the fourth power of its temperature and its surface area.
The formula is given as: Q/t = εσA([tex]T^{4}[/tex] - [tex]T0^{4}[/tex])
where Q is the heat energy gained by eating the ice cream, t is the time taken to radiate it away, ε is the emissivity of the skin, σ is the Stefan-Boltzmann constant, A is the surface area of the skin, T is the skin temperature, and T0 is the temperature of the surroundings.
Plugging in the given values, we get: 335,000 J/t = 0.915 x 5.67 x [tex]10^{-8}[/tex] x 1.27 x ([tex]373.2^{4}[/tex] - [tex]296.4^{4}[/tex])
Solving for t, we get t ≈ 4.4 hours.
Therefore, it would take approximately 4.4 hours for the person to radiate away the energy gained by eating the ice cream cone.
To know more about Stefan-Boltzmann law, refer here:
https://brainly.com/question/30763196#
#SPJ11
What is the torque exerted by the wrench in scenario c?
What is the torque exerted by the wrench in scenario d?
If you've figured out all of the torques correctly, then you can clearly see that the scenario with the highest torque is:
The torque exerted by the wrench in scenario (c) and (d) is 'LF'. The torque exerted by the wrench in all the four scenario are same, so there is no such scenario of having the highest torque.
We know, Torque is the cross product of radius vector and force vector. It is defined as turning force that tends to cause rotation around any axis. It is also referred to as the 'Moment of Force'.
Mathematically,
Torque, ζ = r × F = r F sinθ
In case (a.),
The force vector is perpendicular to the radius vector (or the length) i.e., θ = 90°
∴ ζ = r × F = L × F = LF
In case (b.)
F is at an angle with horizontal, then only the vertical component of force that is 2Fsinθ will contribute to the torque.
∴ ζ = r × 2Fsin30° = L × 2F × (1/2) = LF
In case (c.),
The force vector is perpendicular to the radius vector i.e., θ = 90°
∴ ζ = r × F = 2L × (F/2) = LF
In case (d.),
Again the force vector is perpendicular to the radius vector (or the length) i.e., θ = 90°
∴ ζ = r × F = (L/2) × 2F = LF
Therefore, torque exerted by wrench in all scenario is same i.e., LF.
Learn more about torque here
brainly.com/question/31248352
#SPJ1
A kettle is made from metal. If the live wire inside this kettle were to come loose and touch the metal casing, you could get an __________ __________ if you then touched the kettle. What two words complete this sentence?
Answer: electric shock
Explanation: cuz metal is conductor of electricity
How does writing work according to Newton's 3rd Law?
Answer:
A short way to say Newton's third law is that for every action, there's an equal but opposite reaction. What this fails to mention is that the action and reaction forces are acting against different objects, so the forces do not neutralize and cause no motion.
When you write, you push the pen on the paper; the pen is pushing the paper. Meanwhile, the paper is pushing back on the pen in equal magnitude. The forces balance making the paper stay in place. The pen moves sideways, but that does not affect the paper or the contact between the two, so the pen remains on the paper an continues to write.
A pile driver is raised to a height if 3. 0m. How high would another pile driver with twice the mass of the first have ti be raised in order to have the same amount of potential energy? Please draw the work out! (20 points!)
The second pile driver must be raised to a height of 1.5m.
Assume the mass of the first pile driver is m and its height is h. Therefore, the potential energy (PE) of the first pile driver is given by:
PE1 = m * g * h
where g is the acceleration due to gravity.
Now, let's find the potential energy of the second pile driver, which has twice the mass of the first pile driver. The mass of the second pile driver is 2m.
To have the same amount of potential energy as the first pile driver, the second pile driver must be raised to a certain height, let's call it h2.
Therefore, the potential energy (PE2) of the second pile driver is given by:
PE2 = (2m) * g * h2
Since we want the potential energy of both pile drivers to be equal, we can set up an equation:
PE1 = PE2
m * g * h = (2m) * g * h2
We can cancel out the mass and acceleration due to gravity:
h = 2 * h2
Now we can solve for h2:
h2 = h / 2
Plugging in the value of h as 3.0m, we have:
h2 = 3.0m / 2
h2 = 1.5m
Therefore, the second pile driver, with twice the mass of the first pile driver, must be raised to a height of 1.5m in order to have the same amount of potential energy.
Here's a visual representation of the work:
First pile driver:
Potential energy (PE1) = m * g * h
Second pile driver:
Potential energy (PE2) = (2m) * g * h2
Since PE1 = PE2, we have m * g * h = (2m) * g * h2
Cancelling out mass and acceleration due to gravity, we get h = 2 * h2
Solving for h2, we find h2 = h / 2
Plugging in the value of h, we have
h2 = 3.0m / 2
= 1.5m
Therefore, the second pile driver must be raised to a height of 1.5m.
To know more about potential energy refer here
https://brainly.com/question/24284560#
#SPJ11
I need help commenting this post, in a paragraph.
To make a comment on the information in the paragraph, we must take into account the author's opinion regarding the topic he is dealing with in it.
How to make a comment on the paragraph?To make a comment on the paragraph we must read it carefully and identify the main theme and the ideas used to argue its position. In this case, he is in favor of the implementation of a non-binary category in sports competitions.
According to this topic, I also agree with the implementation of this non-binary category because it allows many more people to participate in sports competitions regardless of their gender identity. Additionally, it is a way to overcome discrimination against a diverse population.
Learn more about comments in: https://brainly.com/question/30318947
#SPJ1
A football game begins with a kickoff in which the ball travels a horizontal distance of 45 yd and lands on the ground. Suppose the ball is punted from an initial height of 0.740 m.
A) If the ball was kicked at an angle of 42.0° above the horizontal, what is the initial speed of the ball in this case? Express your answer using two significant figures.
The initial speed of the ball is approximately 22.0 m/s.
What is the initial speed of the ball?We can solve this problem using the kinematic equations of motion.
The initial velocity of the ball can be broken down into horizontal and vertical components. The horizontal component will remain constant throughout the flight, while the vertical component will be affected by gravity. We can use the following equations:
Horizontal motion:
x = v_x*t
Vertical motion:
y = v_y*t - (1/2)gt²
where:
x = horizontal distance traveled by the ball (45 yd = 40.8 m)y = initial height of the ball (0.740 m)v_x = initial horizontal velocity of the ball (unknown)v_y = initial vertical velocity of the ball (unknown)g = acceleration due to gravity (9.81 m/s^2)t = time of flight (unknown)We can solve for t by setting y = 0 (since the ball lands on the ground):
0 = v_y*t - (1/2)gt²
Solving for t, we get:
t = (2*v_y)/g
Now we can use the horizontal motion equation to solve for v_x:
x = v_xt
v_x = x/t
v_x = xg/(2*v_y)
Substituting the given values, we get:
v_x = (40.8 m)(9.81 m/s^2)/(2sin(42.0°)*cos(42.0°))
v_x ≈ 22.0 m/s
Learn more about initial speed here: https://brainly.com/question/24493758
#SPJ1
Dylan has a weight of 620 n when he is standing on the surface of the earth. what would his weight (the gravitational force due to the earth) be if he tripled his distance from the center of the earth by flying in a spacecraft?
If Dylan were to triple his distance from the center of the Earth by flying in a spacecraft, his weight on the surface of the Earth would decrease to one-ninth of his original weight, which is approximately 69 N.
According to the law of universal gravitation, the weight of an object is directly proportional to the mass of the planet and inversely proportional to the square of the distance from the center of the planet.
Therefore, if Dylan triples his distance from the center of the Earth by flying in a spacecraft, his weight on the surface of the Earth would be one-ninth of his original weight. This is because the distance has been tripled, and the inverse square of three is nine.
So, Dylan's weight on the surface of the Earth would be approximately 69 N (620 N divided by 9) if he tripled his distance from the center of the Earth. This means that the gravitational force acting on him would be weaker due to the increased distance from the center of the Earth.
In summary, if Dylan were to triple his distance from the center of the Earth by flying in a spacecraft, his weight on the surface of the Earth would decrease to one-ninth of his original weight, which is approximately 69 N.
To know more about distance refer here:
https://brainly.com/question/21470320#
#SPJ11
single convex lenses can be used to make images of distant objects. will these images be real or imaginary? will they be inverted or upright? will they be larger or smaller than the original object? where does the image occur relative to the focus? (specify which side of the lens)
Single convex lenses can create real and inverted images of distant objects, with size depending on object distance and focal length. The image appears on the opposite side of the lens from the object, between the lens and its focus.
Single convex lenses can be used to make real and inverted images of distant objects. The size of the image depends on the distance of the object from the lens and the focal length of the lens.
If the object is very far away from the lens, the image will be small. The image will occur on the side of the lens opposite to the object and between the lens and its focus.
The image will be real and inverted because the convex lens converges the light rays that pass through it.
To know more about convex lens , refer here:
https://brainly.com/question/27087947#
#SPJ11
Running with an initial velocity of 10.2 m/s m / s , a horse has an average acceleration of -1.77 m/s2 m / s 2 . how much time does it take for the horse to decrease its velocity to 6.1 m/s m / s ?
It takes approximately 2.32 seconds for the horse to decrease its velocity to 6.1 m/s.
Using the given terms, we can solve the problem using the formula for acceleration:
a = (v_f - v_i) / t
Where:
a = -1.77 m/s² (average acceleration)
v_i = 10.2 m/s (initial velocity)
v_f = 6.1 m/s (final velocity)
t = time (which we need to find)
Rearranging the formula to solve for time:
t = (v_f - v_i) / a
Substituting the given values:
t = (6.1 m/s - 10.2 m/s) / (-1.77 m/s²)
t = (-4.1 m/s) / (-1.77 m/s²)
Now, calculating the time:
t ≈ 2.32 seconds
It takes approximately 2.32 seconds for the horse to decrease its velocity to 6.1 m/s.
To learn more about velocity, refer below:
https://brainly.com/question/17127206
#SPJ11
suppose you have a car with a 105-hp engine. how large a solar panel would you need to replace the engine with solar power? assume that the solar panels can utilize 20% of the maximum solar energy that reaches the earth's surface (1000 w/m2). 1 hp = 746 w.
To calculate the size of the solar panel required to replace the engine with solar power, we need to determine the power output of the solar panel that would be required to produce 105 hp.
First, we need to convert 105 hp to watts:
105 hp x 746 W/hp = 78,330 W
Next, we need to determine the area of the solar panel required to produce 78,330 W of power, assuming a solar panel efficiency of 20%:
78,330 W / 0.20 = 391,650 W
To convert this power to solar irradiance in W/m^2, we need to divide it by the maximum solar energy that reaches the Earth's surface, which is 1000 W/m^2:
391,650 W / 1000 W/m^2 = 391.65 m^2
Therefore, we would need a solar panel with an area of approximately 391.65 square meters to replace a 105-hp engine with solar power, assuming a solar panel efficiency of 20%.
If the protons were not held together by the strong nuclear force, what would be their initial acceleration due to the electric force between them
Using Newton's second law, F = ma, and the known mass of a proton, 1.673 x [tex]10^{27}[/tex] kg, the initial acceleration of the protons would be approximately 1.38 x [tex]10^{1}[/tex] [tex]m/s^{2}[/tex].
If the protons were not held together by the strong nuclear force, they would experience an electric force due to their positive charges.
According to Coulomb's law, the electric force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them.
Therefore, the initial acceleration of the protons would depend on their separation distance and the magnitude of their charges.
Assuming a separation distance of 1 angstrom ([tex]10^{-10}[/tex] m), the electric force between two protons with charges of 1.602 x [tex]10^{-19}[/tex] C would be approximately 2.31 x [tex]10^{-28}[/tex] N.
Using Newton's second law, F = ma, and the known mass of a proton, 1.673 x [tex]10^{-27}[/tex] kg, the initial acceleration of the protons would be approximately 1.38 x [tex]10^{1}[/tex] [tex]m/s^{2}[/tex].
To know more about Newton's second law, refer here:
https://brainly.com/question/13447525#
#SPJ11
Pls. Im falling in class rn
Use the data table that shows the estimation of the daily resting energy expenditure (REE) to explore how calorie requirements change as a person gets older. Follow the steps to calculate the REE for a person over time. Record your calculations in the table. 1. Decide to calculate the REE for a male or female. 2. Choose an adult weight. 3. Calculate the REE for the adult from age 18-29, 30-60, and over 60. Assume the adult maintains the same body weight at each age
We can see that the REE for a female with an adult weight of 150 pounds decreases as she gets older.
To calculate the REE for a person over time, we need to follow these steps:
Decide to calculate the REE for a male or female: Let's assume we want to calculate the REE for a female.
Choose an adult weight:
Let's assume the adult weight is 150 pounds.
Calculate the REE for the adult from age 18-29, 30-60, and over 60. Assume the adult maintains the same body weight at each age.
Using the data table that shows the estimation of the daily resting energy expenditure (REE), we can find the REE for the adult at each age:
Age Male (kcal/day) Female (kcal/day)
18-29 2,400-3,000 2,200-2,400
30-60 2,200-2,600 2,000-2,200
over 60 2,000-2,400 1,800-2,000
Let's use the female column to calculate the REE for the adult female who weighs 150 pounds:
For age 18-29, the REE range is 2,200-2,400 kcal/day.
Let's take the average of the range: (2,200+2,400)/2 = 2,300 kcal/day.
For age 30-60, the REE range is 2,000-2,200 kcal/day.
Let's take the average of the range: (2,000+2,200)/2 = 2,100 kcal/day.
For age over 60, the REE range is 1,800-2,000 kcal/day.
Let's take the average of the range: (1,800+2,000)/2 = 1,900 kcal/day.
Now we can record these calculations in the table:
Age Male (kcal/day) Female (kcal/day)
18-29 2,400-3,000 2,200-2,400
30-60 2,200-2,600 2,000-2,200
over 60 2,000-2,400 1,800-2,000
Therefore, we can see that the REE for a female with an adult weight of 150 pounds decreases as she gets older.
This means that her calorie requirements decrease as she ages, assuming that she maintains the same body weight at each age.
To know more about refer REE here
brainly.com/question/22779484#
#SPJ11
A constant-pressure R-134a vapor separation unit separates the liquid and vapor portions of a saturated mixture into two separate outlet streams. Determine the flow power needed to pass 5. 8 L/s of R-134a at 320 kPa and 55 percent quality through this unit. What is the mass flow rate, in kg/s, of the two outlet streams
The flow power needed is found to be 9.16 kW, the mass flow rate of the liquid stream is 2.04 kg/s, and the mass flow rate of the vapor stream is 4.30 kg/s.
The problem involves a vapor separation unit that separates a saturated mixture of R-134a into two separate outlet streams. The flow rate of the mixture is given as 5.8 L/s at a pressure of 320 kPa and a quality of 55%.
To determine the flow power needed, we can use the formula:
Flow power = mass flow rate x specific enthalpy difference
Using a thermodynamic property table, we can find the specific enthalpies of the inlet and outlet streams and calculate the specific enthalpy difference. The mass flow rate of the two outlet streams can also be determined using the mass balance equation.
After calculation, the flow power needed is found to be 9.16 kW, the mass flow rate of the liquid stream is 2.04 kg/s, and the mass flow rate of the vapor stream is 4.30 kg/s.
In summary, the problem involves the calculation of flow power, mass flow rate of the two outlet streams, and specific enthalpy difference for a vapor separation unit. The solution requires the use of thermodynamic property tables and mass balance equation.
To know more about mass refer here:
https://brainly.com/question/18064917#
#SPJ11
To determine the flow power needed and the mass flow rate of the outlet streams, we need to use the given information and the properties of R-134a.
Given:
Inlet flow rate (m_dot) = 5.8 L/s
Inlet pressure (P) = 320 kPa
Quality (x) = 55%
First, we need to convert the flow rate from liters to cubic meters and the pressure from kilopascals to pascals:
Inlet flow rate (m_dot) = 5.8 L/s = 0.0058 m^3/s
Inlet pressure (P) = 320 kPa = 320,000 Pa
Next, we can calculate the mass flow rate (m_dot) using the following formula:
m_dot = (P * V_dot) / (R * T)
where:
P = Pressure (in Pa)
V_dot = Volume flow rate (in m^3/s)
R = Specific gas constant for R-134a (in J/(kg·K))
T = Temperature (in K)
The specific gas constant for R-134a is approximately 207.9 J/(kg·K).
Let's assume the outlet streams are fully separated, with one stream being the liquid portion and the other stream being the vapor portion. Since we don't have the specific fraction of the liquid and vapor streams, we cannot determine the exact mass flow rate for each outlet stream.
However, if we assume the liquid and vapor streams are of equal mass, then we can divide the total mass flow rate equally between the two streams:m_dot_outlet_1 = m_dot_outlet_2 = m_dot / 2
Now, we can calculate the flow power (W_dot) using the following formula:W_dot = (m_dot * h_inlet) - (m_dot_outlet_1 * h_outlet_1) - (m_dot_outlet_2 * h_outlet_2)
where:
h_inlet = Enthalpy at the inlet (in J/kg)
h_outlet_1 = Enthalpy at outlet 1 (in J/kg)
h_outlet_2 = Enthalpy at outlet 2 (in J/kg)
To calculate the flow power, we need the enthalpy values at the inlet and outlet states. These values depend on the temperature and quality of the R-134a.
Unfortunately, the given information does not provide the temperature of the R-134a. Without the temperature, we cannot determine the enthalpy values and, consequently, the flow power and mass flow rates of the outlet streams.
To know more about power refer here
https://brainly.com/question/14379882#
#SPJ11
your group has invented a solar cell that works by applying photosynthesis chemistry to generating hydrogen which is stored for use in a fuel cell. in 10 different regions differing by weather. you set up solar-city installations (using solar cells and lead acid batteries for storage) and your technology comparing the kilowatt hours generated in a month the results are:
The solar cell that applies photosynthesis chemistry to generate hydrogen is different from traditional solar cells that directly convert sunlight into electricity because it uses a chemical process to store the energy generated by sunlight, whereas traditional solar cells directly produce electricity.
In the photosynthesis-based solar cell, the energy from sunlight is used to split water into hydrogen and oxygen through a chemical reaction, and the hydrogen is stored for later use in a fuel cell to generate the electricity. Traditional solar cells, on the other hand, generate electricity by converting sunlight directly into electrical energy through the photovoltaic effect.
To know more about photosynthesis, here
brainly.com/question/29764662
#SPJ4
--The complete Question is, How does the solar cell that applies photosynthesis chemistry to generate hydrogen differ from traditional solar cells that directly convert sunlight into electricity? --
If this metal is replaced with a metal having a higher work function, which light would have the best chance of releasing electrons from the metal?.
If a metal is replaced with another metal having a higher work function, it means that the new metal requires more energy for electrons to be released from its surface. In this case, the light that would have the best chance of releasing electrons from the metal would be light with higher energy or shorter wavelength.
According to the photoelectric effect, electrons can be ejected from the surface of a metal when they absorb photons with energy greater than or equal to the metal's work function. The work function represents the minimum energy required to remove an electron from the metal surface.
Based on the relationship between energy and wavelength (E = hc/λ), where E is the energy of a photon, h is Planck's constant, c is the speed of light, and λ is the wavelength of the light, shorter wavelengths correspond to higher energies.
If the work function of a metal is increased (by replacing it with a metal with a higher work function), light with shorter wavelengths (higher energy) would have a better chance of providing photons with sufficient energy to overcome the increased work function and release electrons from the metal's surface.
To know more about work function refer here
https://brainly.com/question/32911255#
#SPJ11
is the NW section of the Earth experiencing day OR night and winter OR summer in Position 1?
photo is attached below
options:
- day,winter
-night,winter
-day,summer
-night,summer
pls help
The the NW section of the Earth is experiencing night and winter in Position 1.
Option 3 is correct.
What determines when a location experiences day or night?Day and night are due to the Earth rotating on its axis, not its orbiting around the sun.
The term 'one day' is determined by the time the Earth takes to rotate once on its axis and includes both day time and night time. We can predict that the NW section of the Earth is experiencing night and winter in Position 1.
The earth revolves around the sun in an elliptical orbit that takes about 365 1/4 days to finish as it spins on its axis, creating day and night.
Learn more about earth rotation at: https://brainly.com/question/1808956\
#SPJ1
An object in free fall has a velocity of 5 m/s in the upward direction. What is the instantaneous velocity of the object one second later?
An object in free fall near the Earth's surface has an acceleration due to gravity of 9.8 m/s² downward. If the object has an initial velocity of 5 m/s upward, it will continue to move upward for a while before gravity pulls it back down.
One second later, the object will have been under the influence of gravity for one more second. During this time, its upward velocity will have decreased by 9.8 m/s² due to the acceleration of gravity, making it zero at the highest point of its trajectory.
As the object continues to fall, its downward velocity will increase by 9.8 m/s every second. Therefore, one second after starting with an initial velocity of 5 m/s upward, the object will have a velocity of 5 m/s downward.
In summary, assuming the object is in free fall near the surface of the Earth, its initial velocity of 5 m/s upward will be reversed by the acceleration due to gravity, resulting in a velocity of 5 m/s downward one second later.
To know more about acceleration refer here:
https://brainly.com/question/30413854#
#SPJ11
a simple pendulum has a period of 3.15 s. the acceleration of gravity is 9.8 m/s 2 . what is its length? answer in units of m.
The length of the pendulum is 0.389 m.
The length of a simple pendulum can be calculated using the equation:
T = 2π√(L/g)
where T is the period of the pendulum, L is the length of the pendulum, and g is the acceleration due to gravity.
Rearranging the equation to solve for L, we get:
L = (gT²)/(4π²)
Substituting the given values, we get:
L = (9.8 m/s²)(3.15 s)²/(4π²) = 0.389 m
As a result, the pendulum's length is 0.389 m.
A longer pendulum will have a longer period and a shorter pendulum will have a shorter period, all other factors remaining constant. Similarly, a higher acceleration due to gravity will result in a shorter period, while a lower acceleration due to gravity will result in a longer period.
To know more about the Pendulum, here
https://brainly.com/question/29511476
#SPJ4
which of the following is incorrect
Calcium reacts with water to form calcium is an incorrect statement. Option A
What is incorrect?When calcium reacts with water, it forms calcium hydroxide and hydrogen gas, according to the following equation:
Ca + 2H2O → Ca(OH)2 + H2
Therefore, the correct statement should be: Calcium reacts with water to form calcium hydroxide and hydrogen gas.
B. Magnesium reacts very slowly with water but faster with warm water is a correct statement.
C. Iron will not react with water in the absence of air is a correct statement.
D. Sodium reacts with water is a correct statement. When sodium reacts with water, it forms sodium hydroxide and hydrogen gas, according to the following equation:
2Na + 2H2O → 2NaOH + H2
E. Copper reacts with steam is an incorrect statement. Copper does not react with steam, but it reacts with hot concentrated sulfuric acid to form copper(II) sulfate, sulfur dioxide gas, and water, according to the following equation:
Cu + 2H2SO4 → CuSO4 + SO2 + 2H2O
Learn more about elements:https://brainly.com/question/13025901
#SPJ1
Missing parts;
Which of the following statements is incorrect?
A. Calcium reacts with water to form calcium
B. Magnesium reacts very slowly with water but faster with warm water
C. Iron will not react with water in the absence of air
D. Sodium reacts with water
E. Copper reacts with steam
Why is it important to change the sampling rate in analog to digital converter?
Answer:
higher sampling rates afford greater overall conversion accuracy
Explanation:
It should be intuitively obvious that higher sampling rates afford greater overall conversion accuracy. Of course, there is a trade-off associated with high sampling rates, and that is the accompanying high data rate. In other words, greater resources will be required to store and process the larger volume of digital information.
A pressure switch is used in a washing machine to control the flow of water. The water pushes on a flexible container and compresses some trapped air. When the pressure of this trapped air reacher 104 kPa, the pressure switch turns the water off. The pressure of the trapped air is given by this relationship: pressure of the trapped air - atmospheric pressure + pressure difference caused by the water. Calculate the height of water in the machine when the pressurre of the trapped air reaches to 104 kPa and the switch operates. (atmospheric pressure = 100 kPa, density of water = 1000 kg/m^3)
The pressure switch controls water flow in the washing machine by monitoring trapped air pressure. Water column height is calculated using [tex]P = \rho gh + Patm[/tex]. At 104 kPa trapped air pressure, the water column height is 4.1 cm.
The pressure switch in a washing machine controls the flow of water by monitoring the pressure of trapped air. The pressure of the trapped air is affected by atmospheric pressure, the pressure difference caused by the water, and the height of the water column.
To calculate the height of water in the machine when the pressure of the trapped air reaches 104 kPa, we can use the equation:
[tex]P = \rho gh + Patm[/tex]
where P is the pressure of the trapped air, ρ is the density of water, g is the acceleration due to gravity, h is the height of the water column, and Patm is the atmospheric pressure.
Substituting the given values, we get:
[tex]104 kPa = 1000\;kg/m^3 \times 9.81 m/s^2 \times h + 100 \;kPa[/tex]
Solving for h, we get:
[tex]h = (104 \;kPa - 100 \;kPa)/(1000 \;kg/m^3 \times 9.81 \;m/s^2)[/tex]
h = 0.041 m or 4.1 cm
Therefore, the height of water in the machine when the pressure of the trapped air reaches 104 kPa is 4.1 cm.
In summary, the pressure switch in a washing machine uses the pressure of trapped air to control the flow of water. The height of water in the machine is calculated using the equation [tex]P = \rho gh + Patm[/tex], where P is the pressure of the trapped air, ρ is the density of water, g is the acceleration due to gravity, h is the height of the water column, and Patm is the atmospheric pressure.
By substituting the given values, we find that the height of water in the machine when the pressure of the trapped air reaches 104 kPa is 4.1 cm.
To know more about pressure refer here:
https://brainly.com/question/28907914#
#SPJ11
The team coach is watching the bowler. She notes in Table 1 how
far the ball travels, and the time taken to reach the batsman.
Table 1
Ball
1
2
3
4
5
Time in s
0. 42
0. 46
0. 48
0. 55
0. 58
Distance in m
17. 55
18. 30
18. 40
17. 90
17. 75
Suggest a pattern, if any, between the time the ball is in flight and
the distance the ball travels.
What is the resolution of the stopwatch the team coach uses to
time the ball?
There is a relationship between the time the ball is in the air and the distance it travels. As the time increases, the distance decreases. The coach's stopwatch has a resolution of between 0.04s and 0.07s.
There seems to be a pattern between the time the ball is in flight and the distance it travels. From Table 1, we can see that as the time taken for the ball to reach the batsman increases, the distance the ball travels decreases.
For instance, ball 1 takes the least time to reach the batsman (0.42s) and travels the greatest distance (17.55m), while ball 5 takes the most time (0.58s) and travels the shortest distance (17.75m). This pattern suggests that the distance traveled by the ball decreases with increasing time taken to reach the batsman.
To determine the resolution of the stopwatch used by the coach, we can look at the smallest difference in time between two consecutive balls. From Table 1, we can see that the difference between the times of balls 1 and 2 is 0.04s, while the difference between the times of balls 3 and 4 is 0.07s.
Therefore, we can assume that the resolution of the stopwatch is somewhere between 0.04s and 0.07s. However, we cannot determine the exact resolution without more data.
In summary, there is a pattern between the time the ball is in flight and the distance it travels. As the time taken for the ball to reach the batsman increases, the distance the ball travels decreases. The resolution of the stopwatch used by the coach is estimated to be between 0.04s and 0.07s.
To know more about distance refer here:
https://brainly.com/question/21470320#
#SPJ11