A sample of helium gas occupies 12. 4 L at 23°C and 0. 956 atm. What volume will it occupy at 1. 20 atm assuming that the temperature stays constant?

Answers

Answer 1
The helium gas will occupy approximately 15.6 L at 1.20 atm assuming the temperature stays constant.

Related Questions

If a solid mixture of the three aromatic compounds shown below is placed in 3 m hcl, which is likely to dissolve?.

Answers

Ethyl 4-aminobenzoate is likely to dissolve in 3 M HCl as it is a base and can react with the acid to form a salt, which is soluble in water.

The three aromatic compounds are ethyl 4-aminobenzoate, 2-nitrotoluene, and 1,3,5-trimethylbenzene. When these solids are placed in 3 M HCl, only the compound with basic properties (ethyl 4-aminobenzoate) is likely to dissolve. This is because HCl is a strong acid that dissociates completely in water to produce H+ ions.

When HCl is added to a basic compound like ethyl 4-aminobenzoate, the H+ ions react with the lone pair of electrons on the nitrogen atom of the amine group, neutralizing the basicity of the compound and producing a water-soluble salt. On the other hand, the other two compounds, which are not basic, will not react with HCl and will not dissolve in the acidic solution. Therefore, ethyl 4-aminobenzoate is the most likely compound to dissolve in 3 M HCl.

The complete question is
If a solid mixture of the three aromatic compounds shown below is placed in 3 m hcl, which is likely to dissolve?

To know more about the Mixture, here

https://brainly.com/question/13720811

#SPJ4




If 500. 0 mL of a gas at 1. 99 atm of pressure is increased to 5. 25 atm, what is the new


volume if the temperature is constant?

Answers

Boyle's Law states that the product of the pressure and volume of a gas is constant when the temperature is held constant. Mathematically, this can be expressed as:

PV = k, where P represents pressure, V represents volume, and k is a constant value.

From this equation, it becomes evident that if the temperature remains constant, an increase in pressure will result in a decrease in volume, and vice versa. In simpler terms, when the temperature is constant, the volume of a gas is inversely proportional to its pressure.

To further illustrate this point, consider a gas enclosed in a piston. If the temperature remains constant and you apply more pressure to the piston by compressing it, the volume of the gas will decrease. Conversely, if you decrease the pressure by allowing the piston to expand, the volume of the gas will increase.

In summary, when the temperature of a gas is constant, its volume and pressure share an inverse relationship, as described by Boyle's Law. This means that an increase in pressure will lead to a decrease in volume, while a decrease in pressure will lead to an increase in volume.

To know more about Boyle's Law refer here

https://brainly.com/question/30367067#

#SPJ11

2. These are materials that heat passes slowly or not at all

a. Insulators
b. Fuel
c. Sun
d. Conductors
e. Heat

3. It is substance that is combustible and produces heat when it is burned​

a. Insulators
b. Fuel
c. Sun
d. Conductors
e. Heat

Answers

Materials that slow down or impede the transmission of heat through them are called insulators. So the correct answer is the option: a.

They can be used for a multitude of purposes, from keeping cold drinks icy to keeping buildings warm in the winter, thanks to this ability. Insulators function by either using materials with low thermal conductivity or by creating air pockets between the materials. This slows the rate of heat flow by reducing the transmission of heat energy from one side to the other. Insulators are valuable in electrical applications because they can stop electrical current from passing through them. Option: a is correct.

To know more about insulators, here

brainly.com/question/24909989

#SPJ4

--The complete Question is, These are materials that heat passes slowly or not at all

a. Insulators

b. Fuel

c. Sun

d. Conductors

e. Heat --

true or false variations can be subtle or extreme

Answers

True, variations can be subtle or extreme.

The degree of variation depends on the context and the nature of the subject being examined. Some variations may be slight and difficult to detect, while others may be extreme and easily identifiable. Regardless of the extent of the variation, it is an essential concept that allows for diversity and creativity in various fields.

This is because variations refer to differences or changes in something. For instance, in genetics, variations can range from small changes in the genetic code to large-scale mutations that alter the entire genetic sequence. Similarly, in language, variations can be subtle, such as different pronunciations or word usage, or extreme, such as different languages altogether.

In other areas such as art, variations can also be subtle or extreme. For example, an artist may create variations of a painting by changing the color scheme, brushstrokes, or composition, resulting in subtle differences. Alternatively, an artist may create an extreme variation by creating a completely different piece that only shares a few similarities with the original.

For more such questions on variations

https://brainly.com/question/20126690

#SPJ11

Use the following information to answer the following question

The following is a list of solutions that can be considered acids:

1.CH3COOH(aq)
2.HI(aq)
3.H2O(aq)
4.H₂CO3(aq)
5.HCOOH(aq)
6.NaHSO3(aq)

Match the following conditions to the acids listed above

__Acid with the highest electrical conductivity

__Acid which could also be a base according to the Modified Arrhenius Theory

__Polyprotic acid

__Ionizes at a rate of 2 ppb

Answers

The matchup are:

Acid with the highest electrical conductivity: HCl(aq)Acid which could also be a base according to the Modified Arrhenius Theory: H2O(aq)Polyprotic acid: H2CO3(aq)Ionizes at a rate of 2 ppb: HCOOH(aq)

What are the acids?

Acid with the highest electrical conductivity:

HCl(aq) has the highest electrical conductivity among common acids because it completely dissociates into H+ and Cl- ions in water, making it a strong acid. This means that it can conduct electricity very effectively in solution.

Acid which could also be a base according to the Modified Arrhenius Theory:

The Modified Arrhenius Theory defines an acid as a substance that donates protons (H+) in solution, and a base as a substance that accepts protons. While H2O(aq) is commonly thought of as a neutral substance, it can actually act as an acid or a base in certain

Note:  H2O(aq) is amphoteric, meaning it can act as an acid or a base according to the Modified Arrhenius Theory. H2CO3(aq) is a polyprotic acid, meaning it can donate multiple protons in a stepwise manner. HCOOH(aq) has a very low ionization constant, meaning it ionizes at a very slow rate compared to other acids.

Read more about acids here:

https://brainly.com/question/25148363

#SPJ1

The particles of a gas effuse 2. 76 times faster than particles of CCl4 at the same temperature. What is the unknown gas?

Answers

The rate of effusion of a gas is inversely proportional to the square root of its molar mass. This means that if the rate of effusion of one gas is 2.76 times faster than another gas, then the ratio of their effusion rates is:

Rate of unknown gas / Rate of CCl4 = √(Molar mass of CCl4 / Molar mass of unknown gas)

Since we are trying to find the identity of the unknown gas, we can assign it the variable X. We can then rewrite the equation as:

Rate of X / Rate of CCl4 = √(Molar mass of CCl4 / Molar mass of X)

We know that the rate of X is 2.76 times faster than the rate of CCl4. Therefore:

Rate of X = 2.76 x Rate of CCl4

Substituting this into the equation above, we get:

2.76 x Rate of CCl4 / Rate of CCl4 = √(Molar mass of CCl4 / Molar mass of X)

Simplifying this equation, we get:

2.76 = √(Molar mass of CCl4 / Molar mass of X)

Squaring both sides of the equation, we get:

7.6176 = Molar mass of CCl4 / Molar mass of X

Multiplying both sides by the molar mass of X, we get:

Molar mass of X = Molar mass of CCl4 / 7.6176

The molar mass of CCl4 is 153.82 g/mol, so:

Molar mass of X = 153.82 g/mol / 7.6176 = 20.18 g/mol

Therefore, the unknown gas has a molar mass of 20.18 g/mol. To determine its identity, we would need to compare this value to the molar masses of known gases.

To know more about inversely refer here

https://brainly.com/question/30339780#

#SPJ11

What is correlation coefficient vs coefficient of determination?

Answers

The correlation coefficient and the coefficient of determination are two statistical terms that are often used to measure the relationship between two variables.

The correlation coefficient, also known as Pearson's correlation coefficient (r), is a measure of the strength and direction of the linear relationship between two variables. It ranges from -1 to 1, where -1 indicates a strong negative relationship, 1 indicates a strong positive relationship, and 0 indicates no relationship.

To calculate the correlation coefficient, you will need to find the covariance of the variables, as well as their standard deviations, and then divide the covariance by the product of the standard deviations.

On the other hand, the coefficient of determination (R²) is a measure of how much of the variance in one variable can be explained by the variance in another variable. It is the square of the correlation coefficient and ranges from 0 to 1.

A value of 0 indicates that none of the variance in the dependent variable can be explained by the independent variable, while a value of 1 indicates that 100% of the variance can be explained.

In summary, the correlation coefficient is a measure of the strength and direction of the relationship between two variables, while the coefficient of determination measures the proportion of variance in one variable that can be explained by the other variable.

Both of these coefficients are essential in understanding the relationship between variables and can be used to make predictions in various fields, such as finance, social sciences, and natural sciences.

To know more about correlation coefficient, visit:

https://brainly.com/question/15577278#

#SPJ11

Descibe the stages of magneisum chloride from an acid and a metal

Answers

Magnesium chloride is a compound that is commonly used in a variety of industries, including food, pharmaceuticals, and water treatment.

It is produced by combining magnesium metal with hydrochloric acid. The reaction between magnesium and hydrochloric acid produces hydrogen gas and magnesium chloride.

The first stage of the production of magnesium chloride is the preparation of the magnesium metal. This metal is obtained from its natural ore, which is purified by various processes. Once the magnesium is purified, it is cut into small pieces or shaved into fine strips to increase the surface area.

The next stage involves the preparation of hydrochloric acid. This acid is obtained by reacting hydrogen gas with chlorine gas. The resulting hydrochloric acid is then purified and concentrated to the desired strength.

The third stage is the actual reaction between the magnesium metal and hydrochloric acid. The magnesium metal is added to the hydrochloric acid, and the reaction produces hydrogen gas and magnesium chloride. The hydrogen gas is released into the atmosphere, while the magnesium chloride is collected and purified.

Finally, the magnesium chloride is processed and packaged for use in various industries. It is typically sold in a variety of forms, including flakes, pellets, and powder. Magnesium chloride is widely used for de-icing roads, as a coagulant in water treatment, and as a source of magnesium in food and pharmaceutical products.

In summary, the production of magnesium chloride involves the stages of preparing the magnesium metal, preparing the hydrochloric acid, reacting the two substances, and processing and packaging the resulting magnesium chloride.

To know more about Magnesium chloride, visit:

https://brainly.com/question/15296925#

#SPJ11

A 2.3 l container holds 0.39 moles of nz gas at 315 k. what is the pressure inside the container?

Answers

The pressure inside the container is 4.57a atm.

To solve for the pressure inside the container, we can use the Ideal Gas Law equation, which states:

PV = nRT

Where:
P = pressure (in atm)
V = volume (in liters)
n = moles
R = gas constant (0.08206 L.atm/mol.K)
T = temperature (in Kelvin)

Plugging in the given values, we get:

P(2.3 L) = (0.39 mol)(0.08206 L.atm/mol.K)(315 K)

Simplifying this equation, we get:

P = (0.39 mol)(0.08206 L.atm/mol.K)(315 K) / 2.3 L

P = 4.57 atm

Therefore, the pressure inside the container is 4.57 atm.

Know more about Ideal Gas Law equation here:

https://brainly.com/question/4147359

#SPJ11

Can someone answer please, also please give the steps.

Answers

The volume (in milliliters) of the 2.00 M NaOH solution that can be produced from the reaction is 955 mL

How do i determine the volume of NaOH produced?

First, we shall determine the mole of 44.00 grams of Na that reacted. Details below:

Mass of Na = 44.00 grams Molar mass of Na = 22.99 g/mol Mole of Na =?

Mole = mass / molar mass

Mole of Na = 44 / 22.99

Mole of Na = 1.91 moles

Next, we shall determine the mole of NaOH obtained from the reaction. Details below:

2Na + 2H₂O -> 2NaOH+ H₂

From the balanced equation above,

2 moles of Na reacted to produced 2 moles of NaOH

Therefore,

1.91 moles of Na will also react to produce 1.91 moles of NaOH

Finally, we shall determine the volume of the 2.00 M NaOH produced. Details below:

Molarity of NaOH = 2.00 MMole of NaOH = 1.91 molesVolume of NaOH =?

Volume = mole / molarity

Volume of NaOH = 1.91 / 2

Volume of NaOH = 0.955 L

Multiply by 1000 to express in milliliter

Volume of NaOH = 0.955 × 1000

Volume of NaOH = 955 mL

Learn more about volume:

https://brainly.com/question/29144710

#SPJ1

how many atp molecules are produced by metabolism of an acetyl coa molecule?12 ATP molecules13 ATP molecules14 ATP molecules15 ATP molecules

Answers

The metabolism of an acetyl CoA molecule produces a total of 12 ATP molecules through the process of cellular respiration.

The metabolism of one acetyl  molecule through the Krebs cycle can produce 1 ATP molecule through substrate-level phosphorylation. In addition, the oxidation of NADH and FADH2 produced during the Krebs cycle can generate more ATP through oxidative phosphorylation in the electron transport chain.

However, the exact amount of ATP generated through oxidative phosphorylation depends on various factors, such as the efficiency of the electron transport chain and the availability of oxygen. Overall, the complete metabolism of one molecule of acetyl CoA can generate up to 10 ATP molecules through oxidative phosphorylation.

This occurs through the citric acid cycle and the electron transport chain, which are both part of the metabolic pathway that converts energy from glucose into usable ATP molecules.

To know more about ATP molecules, visit:

https://brainly.com/question/12277357#

#SPJ11

Form a hypothesis You are cleaning out a cabinet beneath the kitchen sink and find an unused steel wool scrub pad has rusted completely. Will the remains of this pad weigh more or less than when it was new?

Answers

My hypothesis is that the remains of the steel wool scrub pad will weigh less than when it was new due to the process of oxidation causing the rusting.

When steel wool comes into contact with oxygen and moisture, it undergoes a chemical reaction known as oxidation. This reaction causes the iron in the steel wool to form iron oxide or rust. Since rust is less dense than iron, the steel wool scrub pad will weigh less when it is completely rusted.

It is important to note that the weight loss may be minimal, as rust is still composed of iron and oxygen, so the difference in weight may not be noticeable. Additionally, other factors such as the amount of time the pad has been rusting and the type of steel wool used may also affect the final weight.

In conclusion, my hypothesis is that the remains of the steel wool scrub pad will weigh less than when it was new due to the process of oxidation causing rusting, but the difference in weight may not be significant.

To know more about oxidation, visit:

https://brainly.com/question/30281969#

#SPJ11

Benzoic acid, ch3cooh, is a weak acid with ka = 6.3 10-5.


ch3co,h(aq) + h2o(1) = h2o+(aq) + ch3co2 (aq)


1. calculate the ph of a 0.150 m benzoic acid solution. show all calculations.

Answers

The ph of a 0.150 m benzoic acid solution is 4.20 .Benzoic acid, ch3cooh, is a weak acid with ka = 6.3 10-5.

What is Benzoic Acid ?

Benzoic acid is a white, crystalline organic compound that occurs naturally in many fruits and vegetables. It is also produced synthetically, and is used as a food preservative and as a component in many other products. Benzoic acid is used to prevent the growth of certain bacteria and fungi in food, and is generally regarded as safe when used in small amounts.

The equation is pH = pKa + log([A-]/[HA]), where [A-] is the concentration of the conjugate base (in this case, CH3CO2-) and [HA] is the concentrWe can calculate the concentration of H+ in the solution by using the expression Ka = [H+][CH3CO2-]/[CH3COOH]

[H+] = Ka × [CH3COOH]/[CH3CO2-]

[H+] = (6.3 × 10-5)× (0.150 M)/(0.150 M)

[H+] = 6.3 × 10-5 M

The pH of the solution can then be calculated using the expression pH = -log[H+]

pH = -log(6.3 × 10-5)

pH = 4.20

To learn more about Benzoic Acid

https://brainly.com/question/28299797

#SPJ4

Which gas, Cl2 (g) or COCl2(g) , will deviate most from the ideal gas law at low temperature?



Justify your choice

Answers

COCl2(g) will deviate most from the ideal gas law at low temperature. The other name for COCl2(g) is Phosgene. This is because COCl2(g) is a larger molecule with stronger intermolecular forces than Cl2(g). At low temperatures, these intermolecular forces become significant and cause the molecules to be closer together, resulting in a smaller molar volume than predicted by the ideal gas law.

Additionally, COCl2(g) is a polar molecule, which also contributes to the deviation from the ideal gas law as the polar interactions between molecules become stronger at low temperatures. Thus COCl2(g) will be the one deviating from the ideal gas law at low temperature.

Learn more: brainly.com/question/1946554

#SPJ11

Compare the mile traveled by light in one year to the distance across the United States (3 000 miles or


the circumference of Earth 25 000 miles).

Answers

The distance traveled by light in one year, also known as a light-year, is approximately 5.88 trillion miles (9.46 trillion kilometers).

To put the distance of a light-year into perspective, it is equivalent to traveling around the Earth's equator more than 236 times. In astronomical terms, a light-year is used to measure the distance between stars and galaxies. For example, the nearest star to our solar system, Proxima Centauri, is about 4.24 light-years away from Earth.

In comparison, the distance across the United States is much smaller. It would take around 50 million trips from one coast to the other to cover the same distance as a light-year. Similarly, the circumference of the Earth is significantly smaller, with light traveling around the planet's equator approximately 7.5 times in a single second.

To learn more about light follow the link:

brainly.com/question/1851642

#SPJ4

estimate the reaction rate of each compound analyzed with respect to benzene. separate into groups based on reaction rate relative to benzene: a. very fast (less than one minute) b. fast (slightly more than 1-5 minutes) c. same as benzene d. slow (somewhat after benzene) e. very slow (does not significantly change during allotted time)

Answers

The reaction rate of Compound A with respect to benzene refers to the speed at which Compound A reacts with benzene in a chemical reaction.

It is typically measured by monitoring the rate of formation of a product or the disappearance of a reactant over time. The reaction rate can be influenced by various factors, such as temperature, concentration, pressure, and the presence of catalysts or inhibitors. Understanding the reaction rate of each compound analyzed with respect to benzene is important in determining the efficiency and effectiveness of the reaction, as well as in optimizing reaction conditions for maximum yield and purity of the desired product.

To know more about benzene, here

brainly.com/question/14525517

#SPJ4

--The complete question is, What is the reaction rate of Compound A with respect to benzene? --

Sketchpad
a chemist dilutes 2.0 l of a 1.5 m solution with water until the final volume is 6.0 l. what is
the new molarity of the solution?
show your work

Answers

The new molarity of the solution after dilution is 0.5 M.

To solve this problem, we can use the formula:

[tex]M_2 = M_1V_1 / V_2[/tex]

where [tex]M_1[/tex] and [tex]V_1[/tex] are the initial molarity and volume of the solution, and [tex]M_2[/tex] and [tex]V_2[/tex] are the final molarity and volume of the diluted solution.

In this case, we have:

[tex]M_1[/tex] = 1.5 M

[tex]V_1[/tex] = 2.0 L

[tex]V_2[/tex] = 6.0 L

We want to find the final molarity, [tex]M_2[/tex].

Using the formula, we can solve for [tex]M_2[/tex]:

[tex]M_2 = M_1V_1 / V_2[/tex]

Substituting the given values, we get:

[tex]M_2[/tex] = (1.5 M) × (2.0 L) / (6.0 L) = 0.5 M

Therefore, the new molarity of the solution is 0.5 M.

To know more about initial molarity, here

brainly.com/question/18084320

#SPJ1

Part A
Predict the sign of the entropy change, ΔS∘, for each of the reaction displayed.
Drag the appropriate items to their respective bins.
Help
Reset
Ag+(aq)+Cl−(aq)→AgCl(s)
2KClO3(s)→2KCl(s)+3O2(g)
2N2O(g)→2N2(g)+O2(g)
2Mg(s)+O2(g)→2MgO(s)
C7H16(g)+11O2(g)→7CO2(g)+8H2O(g)
H2O(l)→H2O(g)
Positive
Negative
SubmitHintsMy AnswersGive UpReview Part
Part B
Calculate the standard entropy change for the reaction
2Mg(s)+O2(g)→2MgO(s)
using the data from the following table:
Substance ΔH∘f (kJ/mol) ΔG∘f (kJ/mol) S∘ [J/(K⋅mol)]
Mg(s) 0.00 0.00 32.70
O2(g) 0.00 0.00 205.0
MgO(s) -602.0 -569.6 27.00
Express your answer to four significant figures and include the appropriate units.
ΔS∘ =

Answers

The standard entropy change for the reaction [tex]2Mg(s)+O_2(g) \rightarrow 2MgO(s)[/tex] is -326.3 J/(K⋅mol).

What is entropy?

Entropy is a measure of the energy available to do work that is contained within a system. It is a measure of the randomness or disorder within a system. In thermodynamics, entropy is an important concept because it measures the amount of energy that is not available to do work. Entropy is often associated with the amount of energy that is released when a system undergoes a change.

The standard entropy change for the reaction [tex]2Mg(s)+O_2(g) \rightarrow 2MgO(s)[/tex] can be calculated using the equation given below:

ΔS° =ΣS°products−ΣS∘reactants

Substituting the given values in the equation,

ΔS° = [2(27.00 J/(K⋅mol))]−[(32.70 J/(K⋅mol))+(205.0 J/(K⋅mol))]

ΔS° = -326.3 J/(K⋅mol)

Therefore, the standard entropy change for the reaction [tex]2Mg(s)+O_2(g) \rightarrow 2MgO(s)[/tex] is -326.3 J/(K⋅mol).

To learn more about entropy

https://brainly.com/question/419265

#SPJ4

2. write out the balanced chemical equation for the reaction of 2 moles of naoh with 1 mole of h3po4

Answers

2NaOH + H₃PO₄ → Na₂HPO₄ + 2H2O is the balanced chemical equation for the reaction between 2 moles of NaOH and 1 mole of H3PO4.

It is clear from the balanced chemical equation that the reaction between 2 moles of NaOH and 1 mole of H₃PO₄ is an acid-base reaction, commonly referred to as a neutralization reaction.

In this reaction, phosphoric acid (H₃PO₄) acts as the acid and sodium hydroxide (NaOH) as the base. Na₂HPO₄ and H2O are created when the base (NaOH) and acid (H₃PO₄) react. Since all the reactants are completely consumed in the reaction and no excess of either reactant is left over, the stoichiometric balance of the number of moles of the acid and base is demonstrated by the balanced chemical equation.

To know more about neutralization reaction, visit,

https://brainly.com/question/23008798

#SPJ4

A student is collecting data for the reaction of baking soda and vinegar. The initial temperature of the vinegar is 25˚ C and the final temperature of the reaction is 19˚ C. Identify the reaction as endothermic or exothermic and explain what is happening in terms of energy of the systems and the surroundings.

Answers

Answer:

According to the data supplied, the reaction of baking soda and vinegar is exothermic. Exothermic reactions transfer energy from the system to the environment, often in the form of heat. The beginning temperature of the vinegar was 25 degrees Celsius, and the ultimate temperature of the reaction was 19 degrees Celsius, indicating that heat was released into the environment. This is consistent with an exothermic process, in which energy is released and transmitted to the surroundings. As a result of the chemical interaction between baking soda and vinegar, carbon dioxide gas is created, and heat is emitted.

In terms of both physicality and perspective, what influences support the existence of singular geologic features (e. G. Mauna Kea, Challenger Deep, etc. ) within the Earth’s ocean versus a continental setting?

Answers

There are several factors that influence the existence of singular geologic features in the Earth's ocean versus a continental setting, both in terms of physicality and perspective.

Firstly, the physical processes involved in the formation of these features are different in each setting. In the ocean, singular features such as seamounts and oceanic ridges are created through volcanic activity, where magma rises up through the oceanic crust and solidifies to form new rock.

These processes are largely absent in continental settings, where geological features are more commonly formed through tectonic activity such as mountain building, erosion, and sediment deposition.

Another important factor is the perspective from which we view these features. Due to the vast size and depth of the ocean, many singular features can go unnoticed for years or even decades.

This is particularly true for deep ocean features such as the Challenger Deep, which is located in the Mariana Trench and is the deepest known point in the Earth's oceans.

Conversely, singular features in continental settings such as Mauna Kea in Hawaii are often more visible and easily accessible, making them easier to study and understand.

Overall, while there are some similarities in the physical and geological processes that contribute to the formation of singular geologic features in both oceanic and continental settings, there are also significant differences in terms of the specific factors that influence their existence and the perspectives from which they are viewed.

To learn more about ridges, refer below:

https://brainly.com/question/31411869

#SPJ11

Select the best answer for the most reasonable synthesis of the target molecule below from ethyl acetate and any other reagents and starting materials needed

Answers

The best answer for the most reasonable synthesis of the target molecule below from ethyl acetate and any other reagents and starting materials needed is d.) Both a.) and b.)

The best approach for the synthesis of the target molecule from ethyl acetate involves a two-step reaction. First, ethyl acetate reacts with NaOEt (sodium ethoxide) in ethanol to form an intermediate compound. Then, this intermediate compound is further reacted with CHBr3 (bromoform) to form the target molecule. This synthesis is represented in answer choice a.).

Alternatively, the synthesis can be achieved by a three-step reaction sequence. In the first step, ethyl acetate is reacted with LDA (lithium diisopropylamide) to form an enolate intermediate. This intermediate is then reacted with CHBr3 to form a bromoalkene. Finally, the bromoalkene is oxidized using PCC (pyridinium chlorochromate) to form the target molecule. This synthesis is represented in answer choice b.).

Therefore, both answer choices a.) and b.) are reasonable approaches for the synthesis of the target molecule from ethyl acetate.

To learn more about synthesis, here

https://brainly.com/question/30575627

#SPJ4

The complete question is:

Select the best answer for the most reasonable synthesis of the target molecule below from ethyl acetate and any other reagents and starting materials needed. (Image attached)

1. From the chemicals listed on your lab handout, write down the weak acid (with its pKa) and its conjugate base that would create a buffer that best fits your protein. Would you expect for your buffer to have more acid or more base?


My assigned protein is Xylanase and has an optimum pH of 5. 5.


2. Buffers are used to the inhibit the change of pH upon the addition of strong acids and bases. If you were to add 0. 1 M HCl to your buffer, would you expect the pH to change? If so, would the pH increase or decrease? What would happen if 0. 1M NaOH were to be added instead?





3. Keeping your buffer composition from question 1 in mind, would you expect to use a larger volume of HCl or NaOH to change the pH of the buffer solution by one unit? Explain

Answers

1. Based on the information provided, a weak acid with a pKa close to the ideal pH of 5.5 would be the best buffer for Xylanase. Acetic acid (CH3COOH) can be utilised as the weak acid component of the buffer since it has a pKa of 4.76, which is close to the ideal pH.

Acetate ion (CH3COO-), its conjugate base, can also be utilised as a buffering agent. Since Xylanase prefers an acidic pH (below 7), we would anticipate the buffer to contain more acid than base.

2. The pH of the buffer would drop if 0.1 M HCl was introduced because the weak acid would arise when the H+ ions from the HCl react with the conjugate base in the buffer.

Instead, if 0.1 M NaOH was added, the pH would rise as the weak acid in the buffer reacts with the NaOH's OH- ions to form the conjugate base. The capacity of the buffer and the quantity of HCl or NaOH injected, however, would determine how much the pH changed.

3. It would take more HCl to raise the pH by one unit in the buffer in question 1 since it contains a weak acid and its conjugate base. This is due to the fact that the conjugate acid might be created when the weak acid component of the buffer reacts with extra H+ ions to limit significant pH shifts.

On the other hand, if NaOH were to be added to the buffer, the buffer's acid component would be consumed, causing a greater pH change.

Learn more about Buffer here:

https://brainly.com/question/9458699

#SPJ4

You perform a titration where you add 0.35 m hcl to a flask containing 50 ml of 0.75 m naoh. what is the ph after you add 50 ml of 0.35 m hcl

Answers

The pH after adding 50 mL of 0.35 M HCl to a flask containing 50 mL of 0.75 M NaOH is approximately 12.68.

1. Calculate moles of NaOH: moles = M x V = 0.75 M x 0.05 L = 0.0375 moles


2. Calculate moles of HCl: moles = M x V = 0.35 M x 0.05 L = 0.0175 moles


3. Determine moles of excess OH-: moles = moles of NaOH - moles of HCl = 0.0375 - 0.0175 = 0.02 moles


4. Calculate the concentration of excess OH-: [OH-] = moles / total volume = 0.02 moles / 0.1 L = 0.2 M


5. Determine the pOH: pOH = -log10[OH-] = -log10(0.2) = 0.699


6. Calculate the pH: pH = 14 - pOH = 14 - 0.699 ≈ 12.68

To know more about pH click on below link:

https://brainly.com/question/2288405#

#SPJ11

675.0 mL of air is at 32.0 °C. What is the volume at 75.0 °C?

Answers

Answer: 770 mL

Explanation:

Charles' law states that [tex]\frac{V_{1} }{T_{1} } =\frac{V_{2} }{T_{2} }[/tex], so as temperature increases, volume does as well. We can plug in our values for V₁,T₁,and T₂ to this equation and solve for V₂, using L for volume and, importantly, kelvin for temperature. (kelvin is 273 + celsius).

[tex]\frac{0.675}{305} =\frac{V_{2} }{348} \\V_{2}=0.770 L[/tex]

A 31. 4 gg wafer of pure gold initially at 69. 7 ∘C∘C is submerged into 64. 1 gg of water at 26. 8 ∘C∘C in an insulated container. The specific heat capacity for gold is 0. 128 J/(g⋅∘C)J/(g⋅∘C) and the specific heat capacity for water is 4. 18 J/(g⋅∘C)J/(g⋅∘C)? Part A What is the final temperature of both substances at thermal equilibrium?

Answers

A 31.4 g gold wafer initially at 69.7°C is submerged into 64.1 g of water at 26.8°C. The final temperature at which both substances reach thermal equilibrium is 31.9°C.

The final temperature of both substances at thermal equilibrium needs to be determined.

We can use the principle of conservation of energy. Since the system is insulated, the heat lost by the gold will be equal to the heat gained by the water.

The heat lost by the gold can be calculated using:

Q = mcΔT

where Q is the heat lost, m is the mass of the gold, c is its specific heat capacity, and ΔT is the change in temperature.

Similarly, the heat gained by the water can be calculated using:

Q = mcΔT

where Q is the heat gained, m is the mass of the water, c is its specific heat capacity, and ΔT is the change in temperature.

Setting these two equations equal to each other and solving for the final temperature, we get:

[tex]m_{\text{gold}} \cdot c_{\text{gold}} \cdot (T_{\text{final}} - T_{\text{initial\_gold}}) = m_{\text{water}} \cdot c_{\text{water}} \cdot (T_{\text{final}} - T_{\text{initial\_water}})[/tex]

where [tex]$m_{\text{gold}}$[/tex] is the mass of the gold, [tex]c_{\text{gold}}[/tex] is its specific heat capacity, [tex]T_{\text{initial\_gold}}[/tex] is its initial temperature, [tex]m_{\text{water}}[/tex] is the mass of the water, [tex]$c_{\text{water}}$[/tex] is its specific heat capacity, and [tex]T_{\text{initial\_water}}[/tex] is its initial temperature.

Plugging in the values we get:

[tex]31.4 \, \text{g} \times 0.128 \, \text{J/(g} \cdot \text{°C)} \times (T_{\text{final}} - 69.7^\circ\text{C}) = 64.1 \, \text{g} \times 4.18 \, \text{J/(g} \cdot \text{°C)} \times (T_{\text{final}} - 26.8^\circ\text{C})[/tex]

Solving for [tex]$T_{\text{final}}$[/tex], we get:

[tex]T_{\text{final}} = \frac{(31.4 \, \text{g} \times 0.128 \, \text{J/(g} \cdot \text{°C)} \times 69.7^\circ\text{C}) + (64.1 \, \text{g} \times 4.18 \, \text{J/(g} \cdot \text{°C)} \times 26.8^\circ\text{C})}{(31.4 \, \text{g} \times 0.128 \, \text{J/(g} \cdot \text{°C)}) + (64.1 \, \text{g} \times 4.18 \, \text{J/(g} \cdot \text{°C)})}[/tex]

[tex]$T_{\text{final}}$[/tex] = 31.9°C

Therefore, the final temperature of both substances at thermal equilibrium is 31.9°C.

To know more about the thermal equilibrium refer here :

https://brainly.com/question/29419074#

#SPJ11

5.Which of the following elements was present in Mendeleev’s periodic table?
(a)Sc
(b) Tc
(c) Ge
(d) None of these

Answers

The element Sc (Scandium) was present in Mendeleev's periodic table. Therefore, the correct answer is (a) Sc.

Mendeleev's periodic table:

Mendeleev's periodic table is a chart that organizes all known elements based on their atomic number, chemical properties, and recurring patterns in their physical and chemical properties.

The periodic table consists of rows (called periods) and columns (called groups). Elements in the same group have similar chemical properties, while elements in the same period have the same number of electron shells.

Mendeleev published the first version of his periodic table in 1869, which included 63 elements known at that time. Scandium (Sc) was discovered in 1879 by Lars Fredrik Nilson and was later added to the periodic table in its proper position based on its atomic number and chemical properties.

On the other hand, Technetium (Tc) was not present in Mendeleev's periodic table because it was not discovered until 1937, long after Mendeleev's death. Similarly, Germanium (Ge) was not discovered until 1886, after the publication of Mendeleev's periodic table, but it was added to the periodic table in its proper position based on its properties.

To know more about electron shells, visit:

https://brainly.com/question/30464976

#SPJ9

If 7.34 mol of o2 react completely calculate the grams of co2 produced​

Answers

If 7.34 mol of O₂ reacts completely, the grams of CO₂ produced is  161.44 grams.

To calculate the grams of CO₂ produced when 7.34 mol of O₂ reacts completely, you'll need to use stoichiometry.

Step 1: Write the balanced chemical equation for the reaction. For the combustion of a hydrocarbon, the general equation is:

C_xH_y + O₂ -> CO₂ + H₂O

However, you need to know the specific hydrocarbon in order to balance the equation and proceed. Assuming the hydrocarbon is methane (CH4) for the sake of demonstration, the balanced equation is:

CH₄ + 2O₂ -> CO₂ + 2H₂O

Step 2: Identify the mole-to-mole ratio between O₂ and CO₂ in the balanced equation. In this case, the ratio is 2:1.

Step 3: Use the mole-to-mole ratio to find the moles of CO₂ produced when 7.34 mol of O₂ reacts completely:

(1 mol CO₂ / 2 mol O₂) × 7.34 mol O₂ = 3.67 mol CO₂

Step 4: Convert moles of CO₂ to grams by using the molar mass of CO₂ (12.01 g/mol for C and 16.00 g/mol for O):

3.67 mol CO₂ × (12.01 g/mol C + 2 × 16.00 g/mol O) = 3.67 mol CO₂ × 44.01 g/mol CO₂ = 161.44 g CO₂

So, when 7.34 mol of O₂ reacts completely, 161.44 grams of CO₂ are produced.

Learn more about O₂ https://brainly.com/question/30429142

#SPJ11

Why porphyry copper is not generally found near areas where volcanic activity, often associated with plate collisions, has occurred in the past

Answers

Typically, the hydrothermal activity connected to magmatic intrusions in the Earth's crust produces porphyry copper deposits.

Although plate collisions and volcanic activity can supply the heat and fluid sources required for such hydrothermal activity, porphyry copper deposits are typically not found in regions where these processes have previously taken place because of the intense deformation and alteration associated with these occurrences that can destroy or displace the deposits. Furthermore, rather than porphyry copper deposits, the intense volcanic activity may lead to the formation of other types of the mineral deposits, such as epithermal or massive sulfide deposits hosted by the volcano.

To know more about porphyry copper deposits, here

brainly.com/question/25633332

#SPJ1

A0.205g sample of caco3(mr=100.1g/mol) is added to a flask a long with7.50 mlof2.00mhcl. caco3(aq)+2hcl(aq)→ cacl2(aq)+h2o(l)+co2(g) enough water is then added to make a 125.0ml solution. a10.00ml aliquot of this solution is taken and titrated with 0.058m naoh. naoh(aq)+hcl(aq)→ h2o(l)+nacl(aq) how many ml of naoh are used?​

Answers

129.3 mL of NaOH are required to react with all the HCl in the 10.00 mL aliquot.

To solve this problem, we need to use stoichiometry and the concept of limiting reagents.

First, let's calculate the number of moles of HCl used in the reaction:
7.50 mL of 2.00 M HCl = 0.015 mol HCl

Next, let's use stoichiometry to determine the number of moles of CaCO₃ that reacted with the HCl:
1 mol CaCO₃ reacts with 2 mol HCl
0.015 mol HCl x (1 mol CaCO₃ / 2 mol HCl) = 0.0075 mol CaCO₃

Now we can use the mass and molar mass of CaCO₃ to determine the mass of CaCO₃ used:
mass CaCO₃ = number of moles x molar mass
mass CaCO₃ = 0.0075 mol x 100.1 g/mol = 0.751 g

However, this mass was used to make a 125.0 mL solution, so we need to calculate the concentration (in M) of this solution:
0.751 g / 125.0 mL = 0.006008 M

Now we can use the volume and concentration of the NaOH solution to determine the number of moles of NaOH used:
10.00 mL of 0.058 M NaOH = 0.00058 mol NaOH

Finally, we can use stoichiometry to determine the volume of NaOH required to react with all the HCl in the 10.00 mL aliquot:
1 mol HCl reacts with 1 mol NaOH
0.0075 mol HCl x (1 mol NaOH / 1 mol HCl) = 0.0075 mol NaOH
volume of NaOH = number of moles / concentration
volume of NaOH = 0.0075 mol / 0.058 M = 0.1293 L = 129.3 mL

Therefore, 129.3 mL of NaOH are required to react with all the HCl in the 10.00 mL aliquot.

To know more about stoichiometry :

https://brainly.com/question/28780091

#SPJ11

Other Questions
What is methodology in research paper Consider the function F(x,y)= e - x2 16-y2 76 and the point P(2.2) a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P. b. Find a vector that points in a direction of no change in the function at P. An animal shelter has 96 animals if 5/8 of the animals are dogs and 1/4 of the animals are cats how many animals are neither dogs nor cats? A newspaper for a large city launches a new advertising campaign focusing on the number of digital subscriptions. The equation S(t)=31,500(1. 034)t approximates the number of digital subscriptions S as a function of t months after the launch of the advertising campaign. Determine the statements that interpret the parameters of the function S(t) In the redox reaction: Fe(s) + CuSO4(aq)-FeSO4(aq) + Cu(s), there is a conservation of1. mass, only2. charge, only3. both mass and charge4. neither mass nor chargeSubmit AnswerEXZoom: StandardNoteBookmarkEliminatorHighlighterLine ReaderReferenceYeah What are some financial stressors in your life? How many grams of air are in a 2.35 L balloon when its density is 1.4 g/L? Line x is parallel to line y. Line z intersect lines x and y. Determine whether each statement is Always True 15 moles of NaOH are dissolved in 2. 0 L of solution. What is the molarity of the solution? [tex]CD= \left[\begin{array}{ccc}e1&e2\\e3&e4\\\end{array}\right][/tex] flare co. manufactures textiles. among flare's 2020 manufacturing costs were the following salaries and wages: loom operators$120,000 factory foremen 45,000 machine mechanics 30,000 what was the amount of flare's 2020 indirect labor? (cpa adapted) Select the correct answer from the drop-down menu. Complete the sentence about voice in "Grey Rocks and Greyer Sea" by Charles G. D. Roberts. The speakers voice can be described as that of someone who[ ]. 1. Has experienced success 2. Has missed an opportunity3. Has lost a loved one Please help with this math problem! Discuss the importance of figurative language in literature. How do you leave 6.92820323 in three significant numbers In 2012, gallup asked participants if they had exercised more than 30 minutes a day for three days out of the week. Suppose that random samples of 100 respondents were selected from both vermont and hawaii. From the survey, vermont had 65. 3% who said yes and hawaii had 62. 2% who said yes. What is the value of the population proportion of people from hawaii who exercised for at least 30 minutes a day 3 days a week? Using the PhET Balancing Act, discuss the possibilities of balancing two forces acting on one side of a pivot point with a single force of the other. Select the best answer: i. This is possible with a single force at the same distance from the pivot point but on the opposite side of the pivot point as one of the forces. Ii. This is possible with a single force at the same distance as the point half way between the two forces from the pivot point but on the opposite side of the pivot point. Iii. This requires two forces. A Comment on what is implied by the words 'little rock was now an territory 'in the context of central high school PROBLEM SOLVING1. An electron is traveling to the north with a speed of 3. 5 x 106 m/s when a magnetic field is turned on. The strength of the magnetic field is 0. 030 T, and it is directed to the left. What will be the direction and magnitude of the magnetic force?2. The Earth's magnetic field is approximately 5. 9 10-5 T. If an electron is travelling perpendicular to the field at 2. 0 105 m/s, what is the magnetic force on the electron?3. A charged particle of q=4C moves through a uniform magnetic field of B=100 F with velocity 2 x 103 m/s. The angle between 30o. Find the magnitude of the force acting on the charge. 4. A circular loop of area 5 x 10-2m2 rotates in a uniform magnetic field of 0. 2 T. If the loop rotates about its diameter which is perpendicular to the magnetic field, what will be the magnetic flux? Who are the three people that went to Gatsbys funeral?1. _____________2. _____________3. _______________No cheating. It will not be tolerated