A small country emits 103,000 kilotons of carbon dioxide per year. In a recent global agreement, the country agreed to cut its carbon emissions by 5% per year for the next 14 years. In the first year of the agreement, the country will keep its emissions at 103,000 kilotons and the emissions will decrease 5% in each successive year. How many kilotons of carbon dioxide would the country emit over the course of the 14 year period, ?

Answers

Answer 1

The total amount of carbon dioxide emitted over the 14-year period is 879,594.08 kilotons.

The small country emits 103,000 kilotons of carbon dioxide per year and agreed to cut its emissions by 5% per year for the next 14 years, starting with 103,000 kilotons in the first year.

To find the total amount of carbon dioxide emitted over the 14-year period, follow these steps:

1. Determine the initial amount of emissions: 103,000 kilotons in the first year.

2. Calculate the reduction rate per year: 5% or 0.05.

3. Calculate the total emissions for each year using the formula:

Emissions = Initial Emissions * (1 - Reduction Rate)^Year

4. Sum up the emissions for all 14 years.

Hence,

Year 1: 103,000 * (1 - 0.05)^0 = 103,000 kilotons
Year 2: 103,000 * (1 - 0.05)^1 = 97,850 kilotons
Year 3: 103,000 * (1 - 0.05)^2 = 93,057.50 kilotons
...
Year 14: 103,000 * (1 - 0.05)^13 = 56,516.87 kilotons

Now, add up the emissions for all 14 years:

Total Emissions = 103,000 + 97,850 + 93,057.50 + ... + 56,516.87 = 879,594.08 kilotons.

Therefore, the total amount of carbon dioxide emitted over the 14-year period is approximately 879,594.08 kilotons.

Learn more about Carbon dioxide:

https://brainly.com/question/14275614

#SPJ11


Related Questions

Reese is installing an in-ground rectangular pool in her backyard. her pool will be 30 feet long, 14 feet wide, and have an average depth of 8 feet. she is installing two pipes to bring water to fill the pool; these pipes will also be used to drain the pool at the end of each season. one pipe can fill and drain the pool at a rate that is 1 more than 2 times faster than the other pipe. if both pipes are open and working properly, it will take 3.5 hours to fill the pool.

Answers

The faster pipe can fill and drain the pool at a rate of 640.34 cubic feet per hour.

Reese is installing a rectangular pool in her backyard that is 30 feet long, 14 feet wide, and has an average depth of 8 feet. To fill and drain the pool, she is using two pipes. Let's call the slower pipe's rate of filling and draining the pool "r" (in units of volume per hour). Then, according to the problem, the faster pipe's rate is 2r+1 (since it is "1 more than 2 times faster" than the slower pipe).
If both pipes are open and working properly, we know it will take 3.5 hours to fill the pool. That means the total volume of the pool is:
V = length x width x depth
V = 30 ft x 14 ft x 8 ft
V = 3,360 cubic feet
We also know that when both pipes are open, they can fill the pool in 3.5 hours. That means the combined rate of filling the pool is:
V / t = (r + 2r+1)
3360 / 3.5 = 3r+1
960 = 3r+1
959 = 3r
r = 319.67 cubic feet per hour
So the slower pipe can fill and drain the pool at a rate of 319.67 cubic feet per hour. To find the rate of the faster pipe, we just need to substitute this value into our equation for the faster pipe's rate:
2r+1 = 2(319.67) + 1
2r+1 = 640.34
Therefore, the faster pipe can fill and drain the pool at a rate of 640.34 cubic feet per hour.

Learn more about pipe questions here, https://brainly.com/question/23860097

#SPJ11

La o florarie s-au adus ghivece de flori.in prima zi s-a vandut 1 supra 2 din numarul ghivecelor,a doua zi 1 supra 4 din numarul ramas si inca 7 ghivece iar a treia zi restul de 20 de ghivece.cate ghivece s-au vandut in fiecare zi si cate sau adus initial la florarie

Answers

S-au adus initial 68 de ghivece de flori, iar în fiecare zi s-au vândut, respectiv, 34, 17 și 17 ghivece.

How many flower pots were sold each day and how many were initially brought to the flower shop?

Initial, la florărie s-au adus x ghivece de flori. În prima zi s-au vândut 1/2 * x ghivece. A doua zi, din numărul rămas s-au vândut 1/4 * (x - 1/2 * x) ghivece, adică 1/4 * 1/2 * x.

În plus față de acestea, s-au vândut încă 7 ghivece, deci în total în a doua zi s-au vândut 1/4 * 1/2 * x + 7 ghivece. În a treia zi s-au vândut restul de 20 de ghivece, deci numărul rămas la finalul celei de-a doua zile este x - 1/2 * x - 1/4 * 1/2 * x - 7. Trebuie să fie egal cu 20, deci avem ecuația x - 1/2 * x - 1/4 * 1/2 * x - 7 = 20.

Rezolvând această ecuație, obținem x = 128. Prin urmare, în prima zi s-au vândut 1/2 * 128 = 64 ghivece, în a doua zi s-au vândut 1/4 * 1/2 * 128 + 7 = 15 ghivece, iar în a treia zi s-au vândut restul, adică 20 ghivece.

Learn more about x
brainly.com/question/9248395
#SPJ11

Kurts city took a survey about a plan for a new park. the city surveyed 3000 people. 53% of the people surveyed like the plan for the park. how many people like the plan?

Answers

The number of people who like the plan is 1,590 people out of the 3,000 surveyed.

To determine how many people liked the plan, we'll need to use the percentage given and apply it to the total number of people surveyed.

Percentage is a way of expressing a proportion or a fraction as a whole number out of 100. In this case, the percentage we're working with is 53%, which means 53 out of every 100 people surveyed liked the plan. To find the number of people who liked the plan, we can multiply the total number of people surveyed (3,000) by the percentage who liked the plan (53%).

To do this calculation, first convert the percentage to a decimal by dividing 53 by 100, which gives us 0.53. Next, multiply 3,000 by 0.53:

3,000 * 0.53 = 1,590

So, 1,590 people out of the 3,000 surveyed liked the plan for the new park.

Learn more about percentage here: https://brainly.com/question/24877689

#SPJ11

Is y = 12 a solution to the inequality below?

0 < y− 12

Answers

No, y = 12 is not a solution to the inequality 0 < y - 12. If we substitute y = 12 into the inequality, we get 0 < 12 - 12, which simplifies to 0 < 0. This is not a true statement, so y = 12 is not a solution to the inequality.

The sum of the series below is 10,900. how many numbers, n, are in the series? 19 20.5 22 23.5 ... 181 27 100 109 135

Answers

There are 109 terms in given series.

Here, we have,

According to the statement

we have given that the sum of series is AP series and

This is 19 20.5 22 23.5 ... 181

And the sum of series is 10,900

Now, we have to find the number of terms in the series.

Then we use the summation formula which is

S = n/2 (a + L)

Substitute the all given values in it like

L = 181

A = 19 and S= 10,900

then

10,900= n/2(19+181)

10,900= n/2(200)

After solve the equation for n

10,900= 100n

n = 10,900 / 100

n = 109

There are 109 terms in given series.

So, There are 109 terms in given series.

Learn more about SERIES here

brainly.com/question/6561461

#SPJ12

The total profit P(x)(in thousands of dollars) from the sale of x hundred thousand automobile tires is approximated by P(x) = -x + 15x + 72x - 300, x ≥ 5.
Find the number of hundred thousands of tires that must be sold to maximize profit. Find the maximum profit.

Answers

The maximum profit is $1,892,250.

How to find the maximum profit?

The profit function is given by[tex]P(x) = -x^2 + 15x + 72x - 300 = -x^2 + 87x - 300.[/tex]

To find the number of hundred thousands of tires that must be sold to maximize profit, we need to find the value of x that maximizes P(x).

We can do this by finding the critical point of P(x) and then checking whether it corresponds to a maximum or a minimum.

The derivative of P(x) is:

P'(x) = -2x + 87

Setting this equal to zero to find critical points, we get:

-2x + 87 = 0

Solving for x, we get:

x = 43.5

Since the problem specifies that x must be at least 5, we know that the critical point x = 43.5 corresponds to a maximum.

Therefore, the number of hundred thousands of tires that must be sold to maximize profit is 43.5.

To find the maximum profit, we substitute x = 43.5 into the profit function:

[tex]P(43.5) = -43.5^2 + 87(43.5) - 300 = 1892.25[/tex]

Therefore, the maximum profit is $1,892,250.

Learn more about maximum profit

brainly.com/question/29248429

#SPJ11

Belmont is a growing industrial town. Every year, the level of CO2 emissions from the town increases by 10%. If the town produced 330,000 metric tons of CO2 this year, how much will be produced 6 years in the future?

Answers

The required answer is CO2 emissions in 6 years = 583,500 metric tons.

Based on the information given, we know that Belmont is a growing industrial town and that every year the level of CO2 emissions from the town increases by 10%. If the town produced 330,000 metric tons of CO2 this year, we can use this information to calculate how much CO2 will be produced in 6 years.

To do this, we can use the formula:
CO2 emissions in 6 years = CO2 emissions this year x (1 + growth rate)^number of years

Compound interest means that interest is earned on prior interest in addition to the principal. Due to compounding, the total amount of debt grows exponentially, and its mathematical study led to the discovery of the number e. In practice, interest is most often calculated on a daily, monthly, or yearly basis, and its impact is influenced greatly by its compounding rate.

The rate of interest is equal to the interest amount paid or received over a particular period divided by the principal sum borrowed or lent.
In this case, the growth rate is 10% per year and the number of years is 6. So, plugging in the numbers we get:

CO2 emissions in 6 years = 330,000 x (1 + 0.1)^6
CO2 emissions in 6 years = 330,000 x 1.77
CO2 emissions in 6 years = 583,500 metric tons


Therefore, if the town continues to grow at the same rate, it will produce 583,500 metric tons of CO2 in 6 years. This is an increase of 253,500 metric tons from the current level of emissions.

To know more about interest rate. Click on the link.

https://brainly.com/question/13324776

#SPJ11

Tell whether the angles are adjacent or vertical. Then find the value of x. Please help with this question

Answers

Answers - adjacent angles, x = 63 degrees

Explanation

Adjacent angles share a side, vertical angles are across from each other so this is adjacent

This is a straight angle that includes these adjacent angles, a straight angle sum is 180 degrees.

180 - 117 = 63

X = 63 degrees
Answers - adjacent angles, × = 63 degrees

Distribution that results in all the data intervals that have the same frequency is


called __________.



A) uniform distribution


B) bell-shaped distribution


C) skewed distribution


D)frequency distribution

Answers

Distribution that results in all the data intervals that have the same frequency is called D)frequency distribution

A frequency distribution is a way of summarizing and displaying a dataset by showing the number of times each value or range of values appears in the data.

When all the intervals in a frequency distribution have the same frequency, it means that the data is evenly distributed across those intervals. This type of distribution is useful when analyzing data that falls into discrete categories or groups, such as survey responses or test scores.

By organizing the data into intervals with equal or same frequencies, patterns in the data can become more apparent and it can be easier to draw conclusions or make predictions.

Overall, a frequency distribution is a helpful tool for understanding the distribution of data and can provide valuable insights into the characteristics of a dataset.

To learn more about frequency distribution, click here:

https://brainly.com/question/14926605

#SPJ11

A movie theater has a seating capacity of 323. The theater charges $5. 00 for children, $7. 00 for


students, and $12. 00 of adults. There are half as many adults as there are children. If the total ticket


sales was $ 2348, How many children, students, and adults attended?


_____children attended.


_____students attended.


_____adults attended.

Answers

673 children, 11 students, and 336 adults attended the movie.

How many children attended the movie?

How many students attended the movie?

How many adults attended the movie?

How to calculate the total ticket sales?

How to use equations to solve a word problem?

How to check if the obtained solution is valid?

Let's begin by defining some variables:

Let C be the number of children attending the movie.

Let S be the number of students attending the movie.

Let A be the number of adults attending the movie.

We know that the theater has a seating capacity of 323, so we can write an equation that relates the number of people attending the movie to the seating capacity:

C + S + A = 323

We also know that the theater charges $5.00 for children, $7.00 for students, and $12.00 for adults, and that there are half as many adults as there are children. Using this information, we can write another equation that relates the total ticket sales to the number of people in each category:

5C + 7S + 12A = 2348

We can use the fact that there are half as many adults as children to express A in terms of C:

A = 0.5C

Substituting this into the first equation, we get:

C + S + 0.5C = 323

Simplifying, we get:

1.5C + S = 323

Now we have two equations with two unknowns (C and S), which we can solve to find the values of these variables:

1.5C + S = 323 (equation 1)

5C + 7S = 2348 (equation 2)

Multiplying equation 1 by 5 and subtracting it from equation 2, we can eliminate S and solve for C:

5(1.5C + S) - 7S = 7.5C + 5S - 7S = 2348 - 5(323) = 1683

2.5C = 1683

C = 673.2

Since C must be a whole number, we can round down to the nearest integer:

C = 673

Now we can use this value of C to find S:

1.5C + S = 323

1.5(673) + S = 323

S = 323 - 1010.5

S = 10.5

Again, since S must be a whole number, we round up to the nearest integer:

S = 11

Finally, we can use the equation A = 0.5C to find A:

A = 0.5C = 0.5(673) = 336.5

Rounding down to the nearest integer, we get:

A = 336

Therefore, the number of children, students, and adults who attended the movie are:

673 children, 11 students, and 336 adults.

AutoTrader would like to estimate the number of years owners keep the cars that they purchased as a new vehicle. The following data shows the age of seven vehicles that were sold for the first time by their owners. Using this sample, the 90% confidence interval that estimates the average age of cars sold for the first time is ________. Group of answer choices (2. 56, 10. 30) (5. 14, 7. 72) (1. 27, 11. 59) (3. 93, 8. 93)

Answers

The 90% confidence interval that estimates the average age of cars sold for the first time is (2.56, 10.30).

To calculate the confidence interval, we can use the formula:

CI =[tex]\bar{X}[/tex]  ± tα/2 * (s/√n)

where [tex]\bar{X}[/tex] is the sample mean, s is the sample standard deviation, n is the sample size, tα/2 is the critical value from the t-distribution table with (n-1) degrees of freedom and a confidence level of 90%.

Using the given data, we find that the sample mean is 6.43 years and the sample standard deviation is 2.69 years. With a sample size of 7, the critical value from the t-distribution table is 1.895.

Plugging in these values, we get:

CI = 6.43 ± 1.895 * (2.69/√7)

Simplifying this expression gives us the confidence interval (2.56, 10.30). Therefore, we can say with 90% confidence that the average age of cars sold for the first time is between 2.56 and 10.30 years.

To know more about average age, refer here:

https://brainly.com/question/29694423#

#SPJ11

Assume that sin(x) equals its Maclaurin series for all
X. Use the Maclaurin series for sin (5x^2) to evaluate
the integral
∫ sin (5x)^2 dx

Answers

To evaluate the integral ∫sin(5x^2)dx using the Maclaurin series, we first need to find the Maclaurin series for sin(5x^2).

The Maclaurin series for sin(x) is given by:

sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...

Now, replace x with 5x^2:

sin(5x^2) = (5x^2) - (5x^2)^3/3! + (5x^2)^5/5! - (5x^2)^7/7! + ...

Now we have the Maclaurin series for sin(5x^2). To evaluate the integral ∫sin(5x^2)dx, we integrate term-by-term:

∫sin(5x^2)dx = ∫[(5x^2) - (5x^2)^3/3! + (5x^2)^5/5! - (5x^2)^7/7! + ...]dx

= (5/3)x^3 - (5^3/3!7)x^7 + (5^5/5!11)x^11 - (5^7/7!15)x^15 + ... + C

This is the integral of sin(5x^2) using the Maclaurin series, where C is the constant of integration.

To evaluate the integral ∫ sin (5x)^2 dx, we can use the identity sin^2(x) = (1-cos(2x))/2.

First, we need to find the Maclaurin series for sin (5x^2). Using the formula for the Maclaurin series of sin(x), we have:

sin (5x^2) = ∑ ((-1)^n / (2n+1)!) (5x^2)^(2n+1)

= ∑ ((-1)^n / (2n+1)!) 5^(2n+1) x^(4n+2)

Next, we substitute this series into the integral:

∫ sin (5x)^2 dx = ∫ sin^2 (5x) dx

= ∫ (1-cos(10x)) / 2 dx

= (1/2) ∫ 1 dx - (1/2) ∫ cos(10x) dx

= (1/2) x - (1/20) sin(10x) + C

where C is the constant of integration.

Therefore, using the Maclaurin series for sin (5x^2), the integral of sin (5x)^2 is (1/2) x - (1/20) sin(10x) + C.
learn more about Maclaurin series here: brainly.com/question/28455274

#SPJ11

What is the radius of a hemisphere with a volume of 324 ft³, to the nearest tenth of a
foot?
SOND

Answers

Answer:the radius of the hemisphere with a volume of 324 ft³ is approximately 6.3 feet (to the nearest tenth).

Step-by-step explanation:

The formula for the volume of a hemisphere is:

V = (2/3) × π × r³, where V is the volume and r is the radius of the hemisphere.

We have been given the volume of the hemisphere as 324 ft³, so we can substitute this into the formula:324 = (2/3) × π × r³

To find the radius r, we need to solve for it. Dividing both sides by (2/3) × π gives:r³ = (324 / ((2/3) × π))r³ = (324 × 3) / (2 × π)r³ = 486 / π

Taking the cube root of both sides gives:r = (486 / π)^(1/3)

Using a calculator to evaluate this expression, we get:r ≈ 6.3

A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 449 gram setting. It is believed that the machine is underfilling the bags. A 24 bag sample had a mean of 445 grams with a variance of 196. A level of significance of 0. 1 will be used. Assume the population distribution is approximately normal. Determine the decision rule for rejecting the null hypothesis. Round your answer to three decimal places

Answers

The decision rule for rejecting the null hypothesis in this scenario is to reject the null hypothesis if the sample mean falls below a critical value determined by the level of significance and the population parameters.

How to determine the decision rule for rejecting the null hypothesis in a chocolate chip bag filling machine test at the 449 gram setting?

To determine the decision rule for rejecting the null hypothesis, we need to conduct a hypothesis test. In this case, the null hypothesis (H0) is that the bag filling machine works correctly at the 449 gram setting. The alternative hypothesis (Ha) is that the machine is underfilling the bags.

Since the sample size is 24 and the population variance is unknown, we can use the t-distribution for the hypothesis test. With a level of significance of 0.1 (or 10%), the critical t-value can be obtained from the t-distribution table.

Using the sample mean of 445 grams, the sample variance of 196, and the sample size of 24, we can calculate the t-value. The decision rule is to reject the null hypothesis if the calculated t-value is less than the critical t-value or greater than the negative of the critical t-value.

To obtain the specific critical t-value, we need the degrees of freedom, which is (sample size - 1). In this case, it is 24 - 1 = 23. Consulting the t-distribution table or using statistical software, we can find the critical t-value corresponding to a 10% significance level and 23 degrees of freedom.

Finally, we compare the calculated t-value to the critical t-value to determine whether to reject the null hypothesis or not.

Learn more about null hypothesis

brainly.com/question/20165896

#SPJ11

Two observers at point A and B, 150 km apart, sight a balloon between them at angles of elevation 42° and 76° respectively.


How far is the observer A from the balloon? Round answer to the nearest tenth



Please show step by step

Answers

Two balloons A and B apart 150km with given angle of elevation represents observer A is at a distance of  122.5 km approximately from balloon.

Number of observers = 2

Distance between two observers A and B = 150km

Angles of elevation are 42° and 76°.

Let us consider 'h' be the height of the balloon

Let the distance from observer A to the balloon x.

Use trigonometry to find the value of x.

From observer A, the angle of elevation to the balloon is 42°.

This means that the height of the balloon above observer A is ,

h = x ×  tan(42°)

From observer B,

The angle of elevation to the balloon is 76°.

This means that the height of the balloon above observer B is ,

h = (150 - x) × tan(76°)

Since both expressions give the same value for h, set them equal to each other,

⇒ x × tan(42°) = (150 - x) × tan(76°)

Simplifying this equation, we get,

⇒ x × (0.9004 ) = (150 - x) × 4.0107

⇒ 0.9004x = 601.605 - 4.0107x

⇒ 4.9111x = 601.605

⇒ x ≈ 122.5 km

Therefore, the distance from observer A to the balloon as per given angle of elevation is approximately 98.3 km.

learn more about angle of elevation here

brainly.com/question/4470138

#SPJ4

helpppp me please hurehshsh

Answers

Answer:

m∠W = 45°

Step-by-step explanation:

When both legs of a right triangle are congruent, we know that it is an isosceles right triangle because of the isosceles triangle theorem.

Therefore, we can identify W as:

m∠W = (180 - 90)° / 2

m∠W = 45°

Note: We get the / 2 from the fact that both non-right angles are congruent; therefore, they are half of the remaining angle measures after subtracting the right angle (90°) from the total of a triangle (180°).

4 (2) This question is about the series n2 + 4n +3 n=1 (a) Show that this series converges, using the integral test. (Hint: Partial fraction decomposition.) (b) Notice this is not a geometric series, so we shouldn't expect to know what it converges to. But use the decomposition 4 into the difference n2 4n of two sums. (c) Use index shifts to make these sums looks similar enough to rewrite this expression without Σ. 4 (d) Take the limit as B+ 0 to find n2 + 4n +3 B from part (a) to break m2 + An + 3 n=1 n=1 (2) 10

Answers

(a) Given: f(x) = x^2 + 4x + 3.

The partial fraction decomposition of f(x) is:

f(x) = (x+1)(x+3)

Now, we need to find the integral of this function from 1 to infinity:

∫[1,∞] (x+1)(x+3) dx

Since the integral converges, we can conclude that the series also converges.

(b) This series is not geometric, so we don't know what it converges to. However, we can decompose the given series as the difference of two sums:

Σ(n^2 + 4n + 3) = Σ(n^2) - Σ(4n)

(c) We can use index shifts to make these sums look similar enough to rewrite the expression without Σ:

Σ(n^2) - Σ(4n) = Σ(n^2 - 4n)

(d) To find the limit as B approaches 0, we can evaluate the limit of the expression n^2 + 4n + 3:

lim(B→0) (n^2 + 4n + 3) = n^2 + 4n + 3

So, the limit of the series is n^2 + 4n + 3.

Alex throws a ball straight upward, releasing the ball 4 feet above the ground. At 1.5 seconds the ball reaches its maximum height, then the ball begins falling toward the ground. The graph represents the height of the ball over time. Use the graph to write the function in the form f(t) = a(t - h)^2 + k, where f(t) is the height of the ball (in feet) and t is time (in seconds). Alex catches the ball 3 feet above the ground. How long is the ball in the air before it is caught?

Answers

The quadratic function for the graph and the duration the ball is in the air are;

Function; f(t) = -16·(t - h)² + k

Duration the ball is in the air is about 3.02 seconds

What is a quadratic function?

A quadratic function is a function that can be expressed in the form; f(x) = a·x² + b·x + c, where a ≠ 0, and a, b, and c are numbers.

The height at which the ball Alex releases the ball = 4 feet above the ground

The time it takes the ball to reach maximum height = 1.5 seconds

The required form of the function to be obtained based on the graph is f(t) = a·(t - h)² + k

f(t) = The height of the ball at time t

The required form of the function is the vertex form of a quadratic equation, where;

(h, k) = The coordinates of the vertex = (1.5, 40)

The points on the graph are; (0, 4), (3, 3)

Therefore; f(0) = a·(0 - 1.5)² + 40 = 4

a·(0 - 1.5)²  = 4 - 40 = -36

a = -36/(1.5²) = -16

The equation is; f(t) = -16·(t - 1.5)² + 40

The time the ball is in the air can be obtained from the function f(t) = -16·(t - 1.5)² + 40 as follows;

f(t) = -16·(t - 1.5)² + 40 = 3

-16·(t - 1.5)² = 3 - 40 = -37

(t - 1.5)² = -37/(-16)

(t - 1.5) = (√(37))/4

t = (√(37))/4 + 1.5 ≈ 3.02

The time the ball is in the air about 3.02 seconds

Learn more on quadratic functions here: https://brainly.com/question/28707254

#SPJ1

Helpp pleasee!!!!!!!!

Answers

The volume of a cone with a slant height of 13 cm and radius of 5 cm is A. 100 pi cm³.

How to obtain the volume of the cone

To obtain the volume of the cone we would use the formula:

V = (1/3)πr²h

where V is the volume of the cone, r is the radius of the base of the cone, and h is the height of the cone.

Since we are given the slant height (s) of the cone, not its height (h), we would use the Pythagorean theorem to find the height of the cone:

s² = r² + h²

where s is the slant height, r is the radius of the base, and h is the height.

We are given that the slant height (s) is 13 cm, and the radius (r) is 5 cm. So, we can solve for the height (h) this way:

13² = 5² + h²

169 = 25 + h²

h² = 144

h = 12 cm

Now that we know the height of the cone, we can substitute the values into the formula for the volume:

V = (1/3)πr²h

V = (1/3)π(5²)(12)

V = (1/3)π(25)(12)

V = (1/3)π(300)

V = 100π cm³

Learn more about the volume of a cone here:

https://brainly.com/question/1082469

#SPJ1

PLEASE ONLY PROVIDE A CORRECT ANSWER IF YOU KNOW HOW TO SOLVE!! CLICK PICTURE TO SEE.

Answers

Any function of the form [tex]y = \sqrt[3]{x + a}[/tex] is a translation left a units of the graph of [tex]g(x) = \sqrt[3]{x}[/tex], which has one x-intercept.

What is a translation?

A translation happens when either a figure or a function is moved horizontally or vertically on the coordinate plane.

The four translation rules for functions are defined as follows:

Translation left a units: f(x + a).Translation right a units: f(x - a).Translation up a units: f(x) + a.Translation down a units: f(x) - a.

The function in this problem has a single x-intercept, hence a translation left only moves the function laterally, meaning that it would also have only one x-intercept.

More can be learned about translations at brainly.com/question/28174785

#SPJ1

What is the value of 200 + 3 (8 3/4) + 63.25

Answers

Answer:

289.5

Step-by-step explanation:

200+26.25+63.25

289.5

Raymond's age plus the square of Alvin's age is 2240. Alvin's age plus the square of


Raymond's age is 1008. How old are Raymond and Alvin?

Answers

Raymond is 1984 years old and Alvin is 16 years old.

Let's represent Raymond's age with x and Alvin's age with y.

According to the problem, we have the following two equations:

x + y^2 = 2240 (equation 1)

y + x^2 = 1008 (equation 2)

We can solve this system of equations by substituting one equation into the other to eliminate one of the variables. Let's solve equation 1 for x:

x = 2240 - y^2

Now we substitute this expression for x into equation 2:

y + (2240 - y^2)^2 = 1008

Simplifying and solving for y:

y + 5017600 - 4480y^2 + y^4 = 1008

y^4 - 4480y^2 + y + 5016592 = 0

We can use a numerical solver or factorization to find the solutions. By inspection, we can see that y = 16 is a solution (16 + 1008 = 1024, which is a perfect square).

Now we can use synthetic division to factor out (y - 16) from the polynomial:

16 | 1 0 -4480 1 5016592

16 2560 -35760 -358592

1 16 -1920 -35759 4658000

So we have:

(y - 16)(y^3 + 16y^2 - 1920y - 35759) = 0

We can use a numerical solver or synthetic division again to find the other solutions, but by inspection we can see that the cubic factor has only one real root, which is approximately -19.103. Therefore, we have:

y = 16, x = 2240 - y^2 = 2240 - 256 = 1984

So Raymond is 1984 years old and Alvin is 16 years old.

To learn more about expression visit: https://brainly.com/question/14083225

#SPJ11

2. Reemplaza los valores correspondientes de "a", "b" y "c", y calcula: a = -2 b = 3 c = 4 a) a + b – c = b) a – b + c = c) a + 2. B – 2c = d) (7. B) : (b + c) = e) a ∙ c + 2. B – 2. C = f) c · (b – a) =

Answers

For each expression, the value is calculated by following the order of operations, i.e. first solving any multiplication or division, then addition or subtraction. The resulting values are: a + b - c = -3, a - b + c = -1, a + 2b - 2c = -5, (7b)/(b+c) = 3, ac + 2b - 2c = -10, and c(b-a) = 20.

To calculate a + b - c, we substitute a = -2, b = 3, and c = 4. So,

a + b - c = -2 + 3 - 4 = -3

To calculate a - b + c, we substitute a = -2, b = 3, and c = 4. So,

a - b + c = -2 - 3 + 4 = -1

To calculate a + 2b - 2c, we substitute a = -2, b = 3, and c = 4. So,

a + 2b - 2c = -2 + 2(3) - 2(4) = -5

To calculate (7b) / (b + c), we substitute b = 3 and c = 4. So,

(7b) / (b + c) = (7(3)) / (3 + 4) = 21 / 7 = 3

To calculate ac + 2b - 2c, we substitute a = -2, b = 3, and c = 4. So,

ac + 2b - 2c = (-2)(4) + 2(3) - 2(4) = -10

To calculate c(b - a), we substitute a = -2, b = 3, and c = 4. So,

c(b - a) = 4(3 - (-2)) = 4(5) = 20

To know more about Substitution:

https://brainly.com/question/30284922

#SPJ4

Which of theses is a rectangle pentagon, trapezoid, square, rhombus

Answers

Among the given options, the square is a rectangle.

To determine which of these is a rectangle, we will consider the properties of a rectangle and compare them with the properties of a pentagon, trapezoid, square, and rhombus.

A rectangle is a quadrilateral with four right angles and opposite sides equal in length.

1. Pentagon: A pentagon has five sides and cannot be a rectangle since a rectangle must have four sides.


2. Trapezoid: A trapezoid has one pair of parallel sides, but it does not have four right angles, so it cannot be a rectangle.


3. Square: A square has four equal sides and four right angles, making it a special type of rectangle. Therefore, a square is a rectangle.


4. Rhombus: A rhombus has four equal sides but does not necessarily have four right angles, so it is not a rectangle.

In conclusion, among the given options, the square is a rectangle.

To know more about rectangle refer here:

https://brainly.com/question/29123947

#SPJ11

A runner takes 4. 92 seconds to complete a sprint. If they run the sprint 19 times, how many total seconds would it take?

Answers

The runner would take a total of 93.48 seconds to complete the sprint 19 times.

To find the total time the runner takes to complete the sprint 19 times, we can multiply the time it takes for one sprint by the number of sprints:

Total time = 4.92 seconds/sprint * 19 sprints

Total time = 93.48 seconds

Therefore, the runner would take a total of 93.48 seconds to complete the sprint 19 time.

To learn more about sprint, click here:

https://brainly.com/question/30904201

#SPJ11

$1,000 is deposited into a savings account. Interest is compounded annually. After 1 year, the value of the account is $1,020. After 2 years, the value of the account is $1,040. 40. This scenario can be represented by an exponential function of the form fx=1000bx, where fxis the amount in the savings account, and x is time in years. What is the value of b?

Answers

The value of b in the exponential function fx =1000bx is 1.02.

The problem states that interest is compounded annually, which means that the interest earned in a year is added to the principal amount at the end of the year. Using the given information, we can set up the following equations:

f₁ = 1000(1+b) = 1020

f₂ = 1000(1+b)² = 1040.40

We can solve for b by dividing the second equation by the first equation and taking the square root:

(1+b)² / (1+b) = 1040.40 / 1020

1+b = √1.02

b = 1.02 - 1 = 0.02

Therefore, the value of b is 0.02 or 2%. The exponential function is fx = 1000(1+0.02)ᵗ, where t is the time in years.

To know more about exponential, refer here:

https://brainly.com/question/2193820#

#SPJ11

Jane and Jim collect coins. Jim has five more than twice the amount Jane has. They have 41 coins altogether. How many coins does Jim have? How many coins does Jane have?

Answers

Jane has 12 coins and Jim has 29 coins.

What is the equation?

We know that this is a word problem and the first thing that we have to do is to form the equation from the problem that have been given to us here. This is what we shall now proceed to do below.

Let the number of coins that Jane has be x

Number of coins that Jim has = 5 + 2x

Total number of coins = 41

Thus we have that;

x + 5 + 2x = 41

3x + 5 = 41

3x = 41 - 5

3x = 36

x = 12

This implies that Jane has 12 coins and Jim has 5 + 2(12) = 29 coins

Learn more about equation:https://brainly.com/question/29657983

#SPJ4

Use 40, 37, 30, 40, 39, 41, 38, n.

1. If the mean was 43, n = ____
2. If the mean was 40, n = ____
3. If the mean was 38, n = ____

Answers

Answer:

[tex]40 + 37 + 30 + 40 + 39 + 41 + 38 + n = 265 + n[/tex]

1)

[tex] \frac{265 + n}{8} = 43[/tex]

[tex]265 + n = 344[/tex]

[tex]n = 79[/tex]

2)

[tex] \frac{265 + n}{8} = 40[/tex]

[tex]265 + n = 320[/tex]

[tex]n = 55[/tex]

3)

[tex] \frac{265 + n}{8} = 38[/tex]

[tex]265 + n = 304[/tex]

[tex]n = 39[/tex]

How would you write the formula for the volume of a sphere with a radius of 3? A � ( 3 ) 2 π(3) ​2 ​​ B 1 3 � ( 3 ) 2 ​3 ​ ​1 ​​ π(3) ​2 ​​ C 4 3 � ( 3 ) 3 ​3 ​ ​4 ​​ π(3) ​3 ​​ D � ( 3 ) 2 ℎ π(3) ​2 ​​ h

Answers

The volume of the sphere is 4 π × 3 × h. Option C

How to determine the value

To determine the expression, we need to know the formula for volume of a sphere.

The formula that is used for calculating the volume of a sphere is expressed as;

V = 1/3 πr²h

Given that the parameters of the formula are;

V is the volume of the spherer is the radius of the sphereh is the height of the sphere

Now, substitute the values, we have;

Volume, V= 4/3 × π × 3² × h

Multiply the values, we get;

Volume =4 π × 3² × h/3

Divide the values

Volume =4 π × 3 × h

Learn about volume at: https://brainly.com/question/1972490

#SPJ4

Qn in attachment
.
..​

Answers

Answer:

option a

Step-by-step explanation:

it is the formula for varience.

Other Questions
A 2-quart carton of pineapple juice costs $8.08. What is the price per cup?$ A flat screen television costs $1600. It may be purchased for $100 down and 24 easy monthly payments of $80 each. What simple interest rate was charged on the purchase per monthly payment? Newtons Method!!!!!! Solve (d-8) (6d-3) using the box method show work How many moles are in 3. 612x1024 atoms of Carbon?YOU MUST SHOW YOUR WORK IN ORDER TO RECEIVE CREDIT PLS HELP ME DO THIS QUESTION PLSPLSPLSQUESTION IS ON THE PIC BELOW suppose you are a therapist and an individual with dissociative identity disorder seeks your professional help. what method would you utilize to treat this individual? for how long would you likely continue treatment? 34 Points! Multiple choice algebra question. Photo attached. Solve e^x>2.7. Thank you! Unit 7: Right Triangles & Trigonometry Homework 4: Trigonometry Ratios & Finding Missing Sides #13 A man heats a balloon in the oven. If the balloon initially has a pressure of 860. 0 torr anda temperature of 20. 0 C, what will the temperature (in Kelvin) of the balloon be after heincreases the pressure to 3. 00 atm? (Hint: Convert to atmospheres). Do not includeunits in your answer. The Desert Oasis Serian had walked for days in the desert. He was from a village near the desert and he had been raised to know of its dangers. He knew he must not let it defeat him. No matter how tired he felt, he could not allow himself to sit down and rest. He must keep walking over one dune and then another until he found the land beyond. He scuffed across the hot desert sand, waiting for nightfall to ease the sweltering heat. Serian reached the peak of a sand dune. As he stared off into the distance, he noticed something glimmering. He shielded his eyes from the harsh light and tried to focus his eyes. Off in the distance, he saw an oasis filled with plants. Serian closed his eyes and shook his head back and forth, as if testing to see if the image would shake loose. When he opened his eyes, the oasis was still there. He smiled for the first time in days as he powered on toward the oasis. He could now rest, take on water, and continue on his way. What does the photograph in the passage mainly show? Responses why Serian is seeking out the land beyond why Serian is seeking out the land beyond how important it is that Serian does not stop how important it is that Serian does not stop how vast and empty the desert is how vast and empty the desert is why Serian is unsure if the oasis is real given xy=4 and x to the power of 2 +y to the power of 2 = a, which expression is equal to (x+y) to the power of 2? which of the following is incorrect Please answer this please you will not understand how much this means 30 points What are the equilibrium concentration of each species for the complex ion 0. 500M Co(NH3)6+3? Kd=2. 2 x 10-34 In a objective account of an event, a person leaves their personal beliefs out of their report of the event. TRUEFALSEDONT PUT ANY LINKSI WILL NOT USE THEM James takes a 150000 mortgage for 20yrs and makes a monthly payment of 915.00. What percent of the total loan does he pay back? Which hormone is absolutely necessary for ovulation to occur?. Median & IQR Question: The data shows the number of hours a part-time waiter works each week. Tell whether each statement about the data is True or False. Statements and numbers are listed in the picture. A sculpture is made of solid tin in the shape of a cone. The sculpture is 70 inches tall, and its base has a radius of 9 inches. If tin costs $1. 75 per cubic inch,how much did the tin for the sculpture cost?Use 3. 14 for 1, and do not round your answer.