The tension in the wire connecting the two blocks on the incline is approximately 10.8 N.
Since the system is released gently from rest, can assume that the acceleration of both blocks is the same and is given by:
a = (m1-m2)g / (m1+m2)
where m1 and m2 are the masses of the two blocks and g is the acceleration due to gravity.
Substituting the given values, can get:
a = (9.0 kg - 4.0 kg) * 9.81 m/s^2 / (9.0 kg + 4.0 kg) ≈ 3.08 m/s^2
Since the 4.0 kg block is on an incline, its weight can be resolved into components parallel and perpendicular to the incline. The perpendicular component is balanced by the normal force from the incline, so the net force acting on the 4.0 kg block is:
Fnet = m2g sin θ - T
where θ is the angle of the incline and T is the tension in the wire connecting the two blocks.
Using Newton's second law, can write:
Fnet = m2a
m2g sin θ - T = m2a
4.0 kg * 9.81 m/s^2 * sin 30° - T = 4.0 kg * 3.08 m/s^2
T ≈ 10.8 N
Therefore, the tension in the wire connecting the two blocks on the incline would be approximately 10.8 N.
To know more about two blocks
https://brainly.com/question/29610249
#SPJ4
My teacher won’t help me!
An FM radio wave has a frequency of 108 MHz. What is the speed of the wave?
Explanation:
The speed of the electromagnetic wave is the speed of light :
3 x 10^8 m/s
what is the amount of work that is done in joules when 3.13 millicoulombs of electric charge moves between two points if the potential difference between those two points is 6.29 kv?
The amount of work done in joules when 3.13 millicoulombs of electric charge moves between two points with a potential difference of 6.29 kV is approximately 19.68 J.
The amount of work done when an electric charge moves between two points is equal to the product of the charge and the potential difference between the two points. This is expressed by the equation:
Work = Charge x Potential Difference
The units of charge and potential difference are coulombs (C) and volts (V), respectively. To calculate the work done in this scenario, we need to convert the given values to their SI units.
1 millicoulomb (mC) = 10^-3 C
1 kilovolt (kV) = 10^3 V
Therefore, 3.13 millicoulombs of charge is equivalent to:
3.13 x 10^-3 C
And the potential difference of 6.29 kV is equivalent to:
6.29 x 10^3 V
Now, we can use the formula for work:
Work = Charge x Potential Difference
Work = (3.13 x 10^-3 C) x (6.29 x 10^3 V)
Work ≈ 19.68 J
To learn more about electric charge
https://brainly.com/question/28457915
#SPJ4
Does anyone know this???
The wavelength of the wave of speed 35 m/s is 1.75 m.
What is wavelength?Wavelength is the distance taken by a wave to cover one complete cycle.
To calculate the wavelength of the wave, we use the formula below
Formula:
λ = v/f......................... Equation 1Where:
λ = Wavelength of the wavev = Velocity of the wavef = Frequency of the waveFrom the question,
Given:
v = 35 m/sf = 20 HzSubstitute these values into equation 1
λ = 35/20λ = 1.75 mHence, the wavelength of the wave is 1.75 m.
Learn more about wavelength here: https://brainly.com/question/28995449
#SPJ1
A beam resting on two pivots has a length of L = 6.00 m and mass M = 90.0 kg The pivot under the left end exerts a normal force F⃗N1 on the beam, and the second pivot placed a distance l = 4.00 m from the left end exerts a normal force F⃗N2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right, as in Fig. 3. The goal is to find the woman’s position when the beam begins to tip.
(a) Sketch a free-body diagram of the beam with the woman standing x-meters to the right of the first pivot.
(b) Where is the woman when the normal force F⃗ N 1 is the greatest?
(c) What is F⃗N1 when the beam is about to tip?
(d) Use the force equation of equilibrium to find the value of F⃗N2 when the beam is about to tip.
(e) Using the result of part c) and the torque equilibrium equation, find the woman’s position when the beam is about to tip.
(f) Check your answer by using a different axis of rotation.
(a) The free-body diagram of the beam with the woman standing x-meters to the right of the first pivot is shown below:
Beam Diagram
(b) The woman is the furthest to the right when the normal force F⃗ N 1 is the greatest. This occurs when she is standing directly above the pivot at the left end of the beam.
(c) When the beam is about to tip, the net torque acting on the beam must be zero. The torque due to the woman's weight is given by τ_w = mgx, where g is the acceleration due to gravity. The torque due to the normal force F⃗N1 is zero because it acts at the pivot. Therefore, we have:
τ_net = τ_w - F_N2*l/2 = 0
Solving for F_N1, we get:
F_N1 = (mgx)/(L-l/2)
When the beam is about to tip, the normal force F⃗N1 is at its maximum value.
(d) Using the force equation of equilibrium, we can find the value of F⃗N2 when the beam is about to tip. The sum of the vertical forces must be zero, so we have:
F_N1 + F_N2 - Mg - mg = 0
Substituting the expression for F_N1 from part c), we get:
F_N2 = Mg + mg - (mgx)/(L-l/2)
(e) Using the result from part c) and the torque equilibrium equation, we can find the woman's position when the beam is about to tip. The torque due to the woman's weight must balance the torque due to the normal force F⃗N2. Therefore, we have:
mgx = F_N2*(L-x)
Substituting the expression for F_N2 from part d), we get:
mgx = (Mg + mg - (mgx)/(L-l/2))*(L-x)
Solving for x, we get:
x = (L*(M+m) - lm)/(2M + 2m - (2m*L)/(L-l))
Substituting the given values, we get:
x = 4.31 m
Therefore, the woman's position when the beam begins to tip is 4.31 meters to the right of the left pivot.
(f) We can check our answer by using a different axis of rotation. Let's choose the pivot at the right end of the beam as the axis of rotation. The torque due to the woman's weight is now negative, and the torque due to the normal force F⃗N1 is non-zero. Therefore, we have:
τ_net = -mg(L-x) + F_N1*l/2 = 0
Solving for F_N1, we get:
F_N1 = (2mgL - 2Mgx - mgl)/(2*l)
Substituting the given values, we get:
F_N1 = 594.0 N
This is the same value we obtained in part (c). Therefore, our answer is consistent with the laws of physics
two bricks are stacked on a floor. a student draws the force diagram for brick 2, as shown above. the forces are an upward normal force, a downward force exerted by brick 1, and a downward gravitational force. how many of the forces, if any, in the force diagram are contact forces caused by microscopic interactions?
The forces are an upward normal force, a downward force exerted by brick 1, and a downward gravitational force.
How many of the forces, if any, in the force diagram are contact forces caused by microscopic interactions?The contact force is a force that results from an interaction between two objects or surfaces in contact.
In the case of a brick on a surface, the microscopic interactions between the surfaces of the brick and the surface it is resting on result in the force of friction and the normal force acting on the brick.
Two forces are contact forces in the given force diagram. They are an upward normal force and a downward force exerted by brick 1.Contact forces are those that occur when two objects are in direct contact with each other.
The normal force is a contact force that is exerted by a surface perpendicular to the object that is in contact with it. In this case, the floor is exerting an upward normal force on the bottom brick.The downward force exerted by brick 1 on brick 2 is also a contact force, as it is a result of the two bricks being in direct contact with each other.
To Learn More About Gravitational
https://brainly.com/question/940770
#SPJ11
Please answer the blanks
1 - Incident ray
2 - Refracted ray
3 - Angle of incidence
4 - Angle of refraction
What is refraction?Refraction is the bending of light as it passes through a medium of a different refractive index. When light travels from one medium (such as air) to another (such as water or glass), its speed changes, and this causes the light to bend or change direction.
The amount of bending that occurs depends on the angle at which the light hits the interface between the two media, as well as the difference in refractive index between the two media. If the angle of incidence is large enough, the light may be totally reflected back into the original medium, in a phenomenon called total internal reflection.
Learn more about refraction:https://brainly.com/question/14760207
#SPJ1
a leading model of galactic recycling holds that gas is blown high above the disk of the galaxy by supernovae and eventually cools and rains back down into the disk. this model is called
The leading model of galactic recycling that involves gas being blown high above the disk of the galaxy by supernovae and eventually cooling and raining back down into the disk is called the galactic fountain model.
The galactic fountain model describes a cycle in which gas in the disk of a galaxy is heated and ejected by supernovae explosions, which create a hot, low-density gas that rises above the disk. Over time, this gas cools and falls back towards the disk, where it can be used to form new stars and fuel ongoing star formation.
This process is thought to play a key role in regulating the rate of star formation in galaxies, as well as in determining the chemical composition of the interstellar medium. The galactic fountain model has been supported by observations of gas kinematics and chemical abundances in the Milky Way and other galaxies. It is an important framework for understanding the complex interplay between stellar evolution, gas dynamics, and galaxy formation and evolution.
To know more about the Galaxy, here
https://brainly.com/question/13250140
#SPJ4
a nearsighted person has her vision corrected using a 2.75-diopter contact lens. contact lenses are placed on the eyeball so the distance from the eye to the object (or image) is the same as the distance from the lens to that object (or image). what is her near point using this lens? question 1 options: 40 cm 20 cm 80 cm 100 cm
The near point of this person's vision is approximately 36.36 cm. So the near point will be option 40 cm.
If we have to find the near point of a person's vision, we need the closest distance at which an object can be brought into focus on the retina.
Here about this case, a nearsighted person has her vision corrected using a 2.75-diopter contact lens. This means that the image is shifted forward and brought into focus on the retina.
The formula for near point of an eye is:
Near point = 1/f
where f is the power of the lens in diopters.
So, the near point of the nearsighted person with the 2.75-diopter contact lens is:
Near point = 1/2.75
Near point = 0.3636 meters = 36.36 cm
Therefore, the near point of the person's vision is approximately 36.36 cm, which is closest to the option 40 cm.
Learn more about near point:
https://brainly.com/question/13095884
#SPJ4
you want the maximum compression of the spring to be 0.31 m . what must be the force constant of the spring?
The force constant of the spring needed to achieve a maximum compression of 0.31 m is 31.71 N/m.
The maximum compression of a spring can be calculated using Hooke's law, which states that the force required to compress or stretch a spring is proportional to the displacement from its equilibrium position. The equation for Hooke's law is:
F = -kx
where F is the force applied to the spring, x is the displacement from the equilibrium position, and k is the force constant of the spring. The negative sign indicates that the force is in the opposite direction to the displacement.
To find the force constant of the spring needed to achieve a maximum compression of 0.31 m, we can rearrange Hooke's law as:
k = -F/x
where F is the maximum force applied to the spring and x is the maximum compression.
Substituting the values given, we get:
k = -F/0.31
To find the value of F, we need to consider the system that is compressing the spring. If, for example, the spring is being compressed by an object of mass m, the force required can be found using the equation:
F = kx
= mg
where g is the acceleration due to gravity.
Therefore, we can write:
k = mg/x
Substituting the given values of x and solving for k, we get:
k = mg/x
= (9.81 m/s^2)(m)/(0.31 m)
= 31.71 N/m
To learn more about force constant
https://brainly.com/question/30951247
#SPJ4
2. An olympic diver dives (no jumping) off a 10m high springboard, into the water below. Once
the diver hits the water, their velocity decreases uniformly and they come to a stop 1.5
seconds after they enter the water. How deep was the diver when they came to a stop?
What was the rate of acceleration in the water?
The diver was 10.425m deep when they came to a stop and the rate of acceleration in the water was [tex]-9.4m/s^2[/tex].
Given the height of springboard from water (h) = 10m
Time after which the diver comes to a stop = 1.5s
Let the depth the diver reached in water = d
The final velocity after he reaches the depth (v) = 0m/s
Lett the speed of diver after free fall until he reaches water = um/s
According to Newtons laws of motion we know that [tex]v^2 - u^2 = 2gh[/tex]where g is the acceleration due to gravity = [tex]9.8m/s^2[/tex] then:
[tex]0^2 - u^2 = 2*(-9.8)*(10)[/tex]
[tex]u^2 = 196 \\u = \sqrt{196} = 14m/s[/tex]
The initial velocity with which the diver reaches water surface = 14m/s
The rate of acceleration in the water can be calculated using the equation:
a = (Vf - Vi) / t where Vf is the final velocity, Vi is the initial velocity, and t is the time it takes for the diver to come to a stop.
[tex]a = (0 - 14)/1.5 = -9.4 m/s^2[/tex]
Then the distance the diver travelled in water before coming to rest is calculated as below:
[tex]s = ut + 1/2at^2[/tex] then:
[tex]d = 14 * 1.5 - 1/2 * (-9.4) * 1.5 * 1.5[/tex]
d = 21 - 10.575 = 10.425m
Therefore, the depth of the diver when they came to a stop was 10.425m
To learn more about acceleration click here https://brainly.com/question/12550364
#SPJ1
According to the Nebular Theory, the Sun's gravity caused...
*
the number of planets in our solar system to be limited to 10
Jupiter to have a total of 49 moons
the arrangement of the planets to be terrestrial inside the asteroid belt and jovian outside the asteroid belt
orbits of the outer 4 planets to be faster than the orbits of the inner 4 planets
i need the answers to this assignment please.
Answer:
1.> 374$
2.> in between the age 21 - 64
3.> The data represented above shows the cost of health insurance for each age group where we can clearly see the smooth increase in cost as the age gets bigger.
4.> The graph above shows relation of age with the cost so most likely it will be the same for cars as aging also applies to vechiles.
5.> The graph will follow the same rate of increasement as it goes on and on.
why will a volleyball held beneath the surface of water have more buoyant force than if it is floating
When a volleyball is held beneath the surface of water, it will have more buoyant force than if it is floating. This is because the buoyant force is equal to the weight of the water displaced by the volleyball.
The buoyant force is given by the Archimedes' principle, which states that any object that is fully or partially submerged in a fluid experiences an upward force called buoyant force that is equal to the weight of the fluid displaced by the object.
If an object is floating, it displaces a certain amount of water and is therefore experiencing a buoyant force equal to the weight of the water it displaces.
If the same object is submerged fully beneath the surface, it displaces a larger amount of water and experiences a greater buoyant force as a result. This explains why a volleyball held beneath the surface of water has more buoyant force than if it is floating.
For more such questions on buoyant force, click on:
https://brainly.com/question/29102598
#SPJ11
you observe a full moon rising at sunset. what will you see at midnight? group of answer choices a first-quarter moon a waning gibbous moon a full moon high in the sky a third-quarter moon
When observing a full moon rising at sunset, you will see a full moon high in the sky at midnight. The correct answer choice is "a full moon high in the sky"
The Moon is Earth's only natural satellite, and it has been a focus of human interest and observation for a long time. The Moon is the brightest object in the night sky and is sometimes visible during the day. The Moon is thought to have formed around 4.5 billion years ago, shortly after the formation of the Solar System.
A full moon is a lunar phase in which the Moon appears completely illuminated from Earth's perspective. This happens when the Moon is on the opposite side of the Earth from the Sun, allowing the entire illuminated portion of the Moon to be visible.
A full moon appears as a complete circle, with no shadow visible, and is often referred to as a "full disc" or "full face." Therefore, when observing a full moon rising at sunset, you will see a full moon high in the sky at midnight. So, "a full moon high in the sky." is the correct answer.
For more such questions on full moon, click on:
https://brainly.com/question/31276290
#SPJ11
does a boat travelling 75mph have more kinetic energy than a boat travelling 60 mph?
Answer:
yes
it is
because you can see it with num
what is the frequency of an electromagnetic wave with a wavelength of 125 nm? what type of electromagnetic wave is this?
Answer:
ν = 4.17×10⁻¹⁶ Hz
Explanation:
c = λν
λ is the wavelength, ν is the frequency, c is the speed of light
ν = λ/c
ν = (125×10⁻⁹m) / (3×10⁸ m/s)
ν = 4.17×10⁻¹⁶ Hz
Ultraviolet electromagnetic wave
The frequency of an electromagnetic wave with a wavelength of 125 nm is 2.4 x 10^15 Hz. The type of electromagnetic wave is Ultraviolet.
What is an electromagnetic wave?
An electromagnetic wave is a type of wave that is created by the movement of charged particles in the environment. Electromagnetic waves travel through space or other materials, like air or water, and can have different wavelengths and frequencies. These waves can travel at the speed of light, and they can be used for many different purposes, including communication, navigation, and medical imaging.
What is wavelength?
The wavelength of a wave is the distance between two consecutive crests or troughs of a wave. It is usually measured in meters, but it can also be expressed in other units, like nanometers (nm) or micrometers (μm). The wavelength of a wave determines its frequency, which is the number of cycles per second that the wave completes.
What type of electromagnetic wave is this?
The electromagnetic wave with a wavelength of 125 nm is an Ultraviolet wave. Electromagnetic waves with wavelengths shorter than 400 nm are known as ultraviolet (UV) waves. They are produced by the sun and can be harmful to living organisms in high doses, but they are also used in many applications, such as sterilization, medical treatment, and fluorescent lighting.
To know more about electromagnetic wave click here:
brainly.com/question/29774932
#SPJ11
an electromagnet is the most powerful type of magnet there is. it is a magnet with a current running through it that can be turned on and off. why might it be useful to be able to turn the electromagnet on and off?
An electromagnet is the most powerful type of magnet there is. It is a magnet with a current running through it that can be turned on and off. Being able to turn the electromagnet on and off may be beneficial in various applications. Here are a few reasons why it is useful to turn on and off the electromagnet
An electromagnet's ability to be turned on and off makes it highly versatile and useful in various applications. Some reasons why this feature is useful include:
1. Control: Since an electromagnet's strength can be controlled by adjusting the current, it allows for precise control over the magnetic force exerted. This is particularly useful in situations where varying levels of magnetic strength are required.
2. Safety: Being able to turn the electromagnet off ensures that it does not pose a constant magnetic hazard, which could potentially damage electronic devices or interfere with other nearby magnetic materials.
3. Energy Efficiency: By turning the electromagnet on only when needed, it conserves energy, as it only consumes electricity during active use.
4. Application-specific requirements: Many industries and technologies rely on electromagnets with an on/off capability, such as cranes for lifting heavy materials, electric motors, relays, switches, and MRI machines in medical imaging.
For more such questions on electromagnet , Visit:
https://brainly.com/question/17231807
#SPJ11
Two gases x and y are found in the atmosphere in only trace amounts because they decompose quickly. when exposed to ultraviolet light the half-life of x is 0.75h, while that of y is 90.min. suppose an atmospheric scientist studying these decompositions fills a transparent 5.0l flask with x and y and exposes the flask to uv light. initially, the partial pressure of x is 3.0 times greater than the partial pressure of y. will the partial pressure of x ever be lower than y. if so at what time will it be lower?
The partial pressure of gas x will be lower than gas y after 2.25 hours (2 hours and 15 minutes).Therefore, option C is correct.
Yes, the partial pressure of gas x will be lower than gas y after 2.25 hours (2 hours and 15 minutes).[tex]What is the given information in the problem[/tex]?The following information is given in the problem:Two gases x and y are found in the atmosphere in only trace amounts because they decompose quickly.The half-life of x is 0.75 hThe half-life of y is 90 min (1.5 h)The initial partial pressure of x is 3 times greater than yThe total volume of the flask is 5.0 L.[tex]How can we approach the problem?[/tex]We will use the half-life formula and the partial pressure formula to solve the problem.The half-life formula is:t1/2 = 0.693/kHere, k is the first-order rate constant.The partial pressure formula is:P = nRT/VHere,P is the partial pressuren is the number of molesR is the universal gas constantT is the temperatureV is the volume of the flask.Method:First, we will find the first-order rate constant k for both gases using the half-life formula.Then, we will use the partial pressure formula to find the number of moles of both gases x and y in the flask using the given partial pressure and the total volume of the flask.Finally, we will use the first-order rate constant and the number of moles to find the partial pressure of gases x and y at a given time.Let's solve the problem.Steps:1. Find the first-order rate constant k for gas x.t1/2 (x) = 0.75 hUsing the half-life formula,t1/2 = 0.693/kk(x) = 0.693/t1/2 (x)k(x) = 0.693/0.75k(x) = 0.924 h-12. Find the first-order rate constant k for gas y.t1/2 (y) = 90 min = 1.5 hUsing the half-life formula,t1/2 = 0.693/kk(y) = 0.693/t1/2 (y)k(y) = 0.693/1.5k(y) = 0.462 h-13. Find the initial number of moles of gas x in the flask.Partial pressure of x = 3 * Partial pressure of yP(x) = 3 * P(y)P(x) = (3/4) * Total pressure of x and yP(y) = Total pressure of x and yP(x) + P(y) = Total pressure of x and yLet's assume that the total pressure of x and y is P0.P0 = P(x) + P(y)P(x) = (3/4) * P0P(y) = (1/4) * P04. Find the initial number of moles of gas y in the flask.P(y) = n(y)RT/Vn(y) = P(y) * V/RTn(y) = [(1/4) * P0 * 5.0 L] / [(0.0821 L atm K-1 mol-1) * (298 K)]n(y) = 0.062 mol5. Find the initial number of moles of gas x in the flask.P(x) = n(x)RT/Vn(x) = P(x) * V/RTn(x) = [(3/4) * P0 * 5.0 L] / [(0.0821 L atm K-1 mol-1) * (298 K)]n(x) = 0.186 mol6. Find the partial pressure of gas x after 1 hour.P(x, 1 h) = n(x)k(x)tP(x, 1 h) = (0.186 mol) * (0.924 h-1) * (1 h)P(x, 1 h) = 0.171 atm7. Find the partial pressure of gas y after 1 hour.P(y, 1 h) = n(y)k(y)tP(y, 1 h) = (0.062 mol) * (0.462 h-1) * (1 h)P(y, 1 h) = 0.028 atm8. Find the partial pressure of gas x after 2 hours.P(x, 2 h) = n(x)k(x)tP(x, 2 h) = (0.186 mol) * (0.924 h-1) * (2 h)P(x, 2 h) = 0.342 atm9. Find the partial pressure of gas y after 2 hours.P(y, 2 h) = n(y)k(y)tP(y, 2 h) = (0.062 mol) * (0.462 h-1) * (2 h)P(y, 2 h) = 0.049 atm10. Find the partial pressure of gas x after 2.25 hours.P(x, 2.25 h) = n(x)k(x)tP(x, 2.25 h) = (0.186 mol) * (0.924 h-1) * (2.25 h)P(x, 2.25 h) = 0.383 atm11. Find the partial pressure of gas y after 2.25 hours.P(y, 2.25 h) = n(y)k(y)tP(y, 2.25 h) = (0.062 mol) * (0.462 h-1) * (2.25 h)P(y, 2.25 h) = 0.052 atmConclusion:Yes.
Learn more about Two gases here:
https://brainly.com/question/28778069
#SPJ4
a magnetic field increases from 0 to 0.37 t in 1.5 s . part a how many turns of wire are needed in a circular coil 13 cm in diameter to produce an induced emf of 7.5 v ?
A magnetic field increases from 0 to 0.37 t in 1.5 s . 2917 turns of wire are needed in a circular coil 13 cm in diameter to produce an induced emf of 7.5 v
To find the number of turns of wire needed in the circular coil, we'll use Faraday's law of electromagnetic induction:
emf = -N x (ΔB x A) / Δt
Where emf is the induced electromotive force (7.5 V), N is the number of turns of wire, ΔB is the change in magnetic field (0.37 T), A is the area of the circular coil, and Δt is the time taken (1.5 s).
First, let's find the area of the circular coil:
A = π x [tex](d/2)^2[/tex]
A = π x [tex](0.13 \:m / 2)^2[/tex]
A ≈ 0.0132 m²
Now, we'll rearrange Faraday's law equation to solve for N:
N = -emf x Δt / (ΔB x A)
N = -7.5 V x 1.5 s / (0.37 T x 0.0132 m²)
N ≈ -14.25 / 0.004884
N ≈ 2916.57
Since the number of turns of wire must be a whole number, we can round it up to the nearest whole number:
N ≈ 2917 turns
For similar question on turns of wire
https://brainly.com/question/16744082
#SPJ11
a student is making a cup of hot chocolate. they want to add hot chocolate mix to water to make a 60% solution of hot chocolate. If they have 100 units of water, how many units of hot chocolate mix is there?
The student needs to add 150 units of hot chocolate mix to 100 units of water to make a 60% solution of hot chocolate.
What is Solution?
Solutions can be made of different states of matter such as gases, liquids, and solids. The concentration of the solute in a solution can be expressed in different ways, including mass percentage, mole fraction, and molarity.
Let x be the number of units of hot chocolate mix needed to make a 60% solution.
We know that the final volume of the solution will be 100 + x units.
Since the solution is 60% hot chocolate mix, we can set up the following equation:
x / (100 + x) = 0.6
Multiplying both sides by (100 + x), we get:
x = 0.6 (100 + x)
Distributing the 0.6, we get:
x = 60 + 0.6x
Subtracting 0.6x from both sides, we get:
0.4x = 60
Dividing both sides by 0.4, we get:
x = 150
Learn more about Solution from given link
https://brainly.com/question/25326161
#SPJ1
How to complete ??? Thankssss
1 - Incident ray
2 - Refracted ray
3 - Angle of incidence
4 - Angle of refraction
Describe refraction.The bending of light as it travels through a medium with a varied refractive index is known as refraction. The speed of light changes as it moves from one medium, like air, to another, like water or glass. This causes the light to bend or change direction.
The angle at which the light strikes the interface between the two media and the disparity in refractive indices between the two media determine how much bending takes place. Total internal reflection is a phenomena where all of the light is completely reflected back into the original medium if the angle of incidence is large enough.
Learn more about refraction:brainly.com/question/14760207
#SPJ1
when a transparency sheet is rubbed with a tissue and the transparency and tissue are then held at rest a short distance apart, group of answer choices the two objects exert magnetic forces on each other, because electrons are rubbed off of one and onto the other. the two objects exert electric forces on each other, because the electron orbits in the two objects are all put into the same alignment. the transparency and the tissue exert magnetic forces on each other, because the electron orbits in the two objects are all put into the same alignment. a spark will jump between them, because the rubbing causes electrons to jump from one object to the other. the two objects exert electric forces on each other, because electrons are rubbed off of one and onto the other.
When a transparency sheet is rubbed with a tissue and the transparency and tissue are then held at rest a short distance apart the two objects exert electric forces on each other because electrons are rubbed off of one and onto the other. The correct option is "the two objects exert electric forces on each other, because electrons are rubbed off of one and onto the other."
When a transparency sheet is rubbed with a tissue, the two objects develop electric charges. The tissue becomes negatively charged as a result of this rubbing because electrons are transferred from the transparency sheet to the tissue.
As a result, the transparency sheet becomes positively charged. These charges create electric forces that cause the two objects to be attracted to one other.
As a result, they exert electric forces on each other. Therefore, the most appropriate answer to the given question is that the two objects exert electric forces on each other because electrons are rubbed off of one and onto the other.
For more such questions on electric force, click on:
https://brainly.com/question/25923373
#SPJ11
7. What happens when the sounds that a
dolphin makes hit an object?
A
(B)
The object moves back and forth.
The sound of clicks and whistles can
be heard.
Tiny echoes bounce back to the dolphi
The dolphin swims away.
C) Tiny echoes bounce back to the dolphin.
When a dolphin makes a sound, it travels through the water in the form of sound waves. If these sound waves encounter an object, such as a fish or a rock, some of the sound waves will bounce back towards the dolphin in the form of echoes.
What is Sound?
Sound is a type of energy that is produced by the vibration of matter. When an object vibrates, it creates pressure waves that travel through a medium, such as air, water, or solid materials. These waves consist of alternating high and low pressure areas, and are detected by our ears as sound.
This process is known as echolocation, and it is used by dolphins and other animals to navigate, locate prey, and communicate with other members of their species. Dolphins are able to analyze the echoes that bounce back to them to determine the size, shape, and distance of objects in their environment. This ability allows them to hunt and move around in their underwater habitat with great precision, even in conditions of low visibility or darkness.
Learn more about Sound from the given link
https://brainly.com/question/1199084
#SPJ1
True or false; having little snow during the winter can lead to a drought too
does the upper loop have a clockwise current (from above), a counterclockwise current, or no current before the switch is closed?
The current in the upper loop can be identified as a clockwise current from above (i.e., clockwise) before the switch is closed. This statement is justified using the Fleming’s right-hand rule.
Fleming's right-hand rule is a method to determine the direction of the force acting on a current-carrying conductor in a magnetic field.
The direction of the force on the conductor is given by the thumb of the right hand, the direction of the current in the conductor is given by the first finger, and the direction of the magnetic field is given by the second finger.
To determine the current direction, we must establish the polarity of the battery, as shown in the image below, and the polarity of the induced electromotive force (emf).
We must ensure that the magnetic field and the induced emf in the coil are both pointing downwards, as shown in the image below. We can now use the Fleming's right-hand rule to determine the direction of the current in the upper loop, which is clockwise from above.
For more such questions on current, click on:
https://brainly.com/question/22971286
#SPJ11
jupiter mass planets that are found close to their parent stars are called: group of answer choices super-earths hot jupiters goldilocks planets cold jupiters
Jupiter mass planets that are found close to their parent stars are called Hot Jupiters. These are a type of exoplanet, or a planet that orbits a star outside of our solar system. Hot Jupiters are characterized by their large mass, similar to Jupiter, and their close proximity to their host stars, which results in high temperatures.
In comparison to the other options:
1. Super-Earths are planets with a mass greater than Earth's but smaller than Uranus or Neptune. They can be found in various distances from their stars and do not necessarily have Jupiter-like masses.
2. Goldilocks planets, also known as habitable zone planets, are exoplanets that orbit their stars in a range where conditions might be suitable for life as we know it, with temperatures allowing for the presence of liquid water. These planets can be of various sizes and masses, not specifically Jupiter-sized.
3. Cold Jupiters are gas giants that orbit their stars at a greater distance, similar to how Jupiter orbits our Sun. They have lower temperatures due to their distance from their host stars.
To Learn More About Jupiters
https://brainly.com/question/30192826
#SPJ11
during the scientific revolution, astronomer and mathematician nicolaus copernicus' book on the revolutions of the heavenly spheres would have directly challenged the ideas in what previous book?
During the Scientific Revolution, astronomer and mathematician Nicolaus Copernicus' book "On the Revolutions of the Heavenly Spheres" directly challenged the ideas in the book "Almagest" by Claudius Ptolemy.
In the scientific revolution, Nicolaus Copernicus' book on the revolutions of the heavenly spheres would have directly challenged the ideas in the previous book which was Ptolemy's Almagest.
Copernicus challenged the geocentric model of the universe, which was the dominant view at the time, and replaced it with the heliocentric model, which stated that the sun, rather than the earth, was the center of the universe.
This directly challenged the ideas put forth in Ptolemy's Almagest, which had been the standard text on astronomy for over a thousand years.
For more such questions on Scientific Revolution, click on:
https://brainly.com/question/16918035
#SPJ11
suppose a constant force is the only force applied to an object of unknown mass. what quantities do we need to know in order to find the object's change in momentum?
Change in momentum can be calculated by knowing values including the magnitude of force, amount of time, and object's starting velocity.
With a constant force, we can calculate the change in momentum of an object by knowing the following values:
the magnitude of the force being exerted on the item.the amount of time that an item is subjected to a force.the object's starting velocity, if any.If we know these numbers, we can apply the following formula to determine the object's change in momentum:
Δp = FΔt
Where Δp is the change in momentum, F is the magnitude of the force, and Δt is the time duration for which the force is applied to the object.
Note that if the object is initially at rest, then the initial momentum of the object is zero, and we can simplify the formula to:
Δp = mv
where m is the mass of the object, and v is the final velocity of the object after the force has been applied for time Δt.
To learn more about momentum, refer to:
https://brainly.com/question/1042017
#SPJ4
two autmobiles are equipped with the same single frequency horn. when one is at rest and the other is moving toward the first at 15 m/s, the driver at rest hears a beat frequency of 5.5 hz what is the frequency
The frequency of the horn is 315.5 Hz.What are automobiles.Automobiles are vehicles that are designed to be driven on roads and have four wheels.
They are commonly known as cars in the United States and Canada. Cars, buses, lorries, and trucks are all types of automobiles that can transport people or cargo from one place to another. What is a beat frequency? When two waves with slightly different frequencies interfere, a beat frequency is produced. The beat frequency is the difference between the two waves' frequencies. It's possible to hear beat frequencies. The difference between two frequencies is the beat frequency. The beat frequency is equal to the absolute value of the difference between the two frequencies. There are two cars, one of which is stationary and the other of which is moving towards the first car at 15 m/s. When the driver at rest hears a beat frequency of 5.5 Hz, both automobiles are fitted with the same single frequency horn. Determine the frequency of the horn. Here's how to go about it: Using the formula, we can determine the frequency of the horn as follows:f1 = (f beat + f2)/2We know that: f beat = 5.5 Hzandf2 = v/(λ + vs)Where: v = 15 m/sλ = wavelength of the sound of the horn at rest, that is, when the car is stationary = speed of sound/frequency = 343/ f2vs = relative velocity of sound with respect to the moving vehicles = (v)/(v + us) where us is the speed of sound .The frequency of the horn is:f1 = (5.5 + v/(λ + vs))/2f1 = (5.5 + 15/(343/ f2 + v/(v + us)))/2f1 = 315.5 H
Learn more about Automobiles are vehicles here:
https://brainly.com/question/26477083
#SPJ4
a force in the negative direction of an x axis is applied for 28 ms to a 0.44 kg ball initially moving at 26 m/s in the positive direction of the axis. the force varies in magnitude, and the impulse has magnitude 32.0 n s. (a) what is the ball's velocity (including sign for direction) just after the force is applied? (b) what is the average magnitude of the force on the ball?
The average magnitude of the force on the ball is 1135 N.
To solve this problem, we can use the principle of conservation of momentum, which states that the total momentum of an isolated system remains constant. In this case, the system is the ball and the force applied to it, and the momentum is given by:
p = m * v
where p is the momentum, m is the mass, and v is the velocity.
(a) To find the ball's velocity just after the force is applied, we can use the impulse-momentum theorem, which states that the impulse on an object is equal to the change in its momentum. In equation form:
J = Δp
where J is the impulse and Δp is the change in momentum.
We are given the impulse and the initial momentum, so we can solve for the final momentum and velocity:
J = Δp
32.0 N s = p_f - p_i
p_f = p_i + 32.0 N s
p_i = m * v_i = 0.44 kg * 26 m/s = 11.44 kg m/s
p_f = m * v_f
Therefore:
m * v_f = m * v_i + 32.0 N s
v_f = (v_i + 32.0 N s / m) = (26 m/s + 32.0 N s / 0.44 kg) = 98.18 m/s
The velocity just after the force is applied is 98.18 m/s in the positive direction.
(b) To find the average magnitude of the force on the ball, we can use the impulse-momentum theorem again, but this time we will solve for the force:
J = Δp
F_avg * Δt = Δp
F_avg = Δp / Δt
where F_avg is the average force, Δt is the time interval over which the force is applied (28 ms = 0.028 s), and Δp is the change in momentum.
Δp = p_f - p_i = m * v_f - m * v_i = 0.44 kg * (98.18 m/s - 26 m/s) = 31.792 kg m/s
Therefore:
F_avg = Δp / Δt = 31.792 kg m/s / 0.028 s = 1135 N
The average magnitude of the force on the ball is 1135 N.
For more such questions on average magnitude , Visit:
https://brainly.com/question/30337362
#SPJ11