a) What is the thinnest film of MgF2 (n=1.38) on glass (n=1.5) that produces a strong reflection for 600 nm orange light? b) What is the thinnest film that produces a minimum reflection, like an anti-reflection coating?

Answers

Answer 1

Answer:

a) Strong reflection for 600 nm orange light is approximately 217.39 nm.

b) Anti-reflection coating, is approximately 434.78 nm.

a) To determine the thinnest film of MgF2 on glass that produces a strong reflection for 600 nm orange light, we can use the concept of thin film interference.

The condition for strong reflection is when the phase change upon reflection is 180 degrees.

The phase change due to reflection from the top surface of the film is given by:

Δφ = 2πnt/λ

Where Δφ is the phase change,

n is the refractive index of the film (MgF2),

t is the thickness of the film, and

λ is the wavelength of the light.

For strong reflection, the phase change should be 180 degrees. Therefore, we can set up the equation:

2πnt/λ = π

Simplifying the equation:

nt/λ = 1/2

Rearranging the equation to solve for the thickness of the film:

t = (λ/2n)

Wavelength of orange light, λ = 600 nm = 600 x 10^(-9) m

Refractive index of MgF2, n = 1.38

Substituting the values into the equation:

t = (600 x 10^(-9) m) / (2 x 1.38)

t ≈ 217.39 nm

Therefore, the thinnest film of MgF2 on glass that produces a strong reflection for 600 nm orange light is approximately 217.39 nm.

b) To determine the thinnest film that produces a minimum reflection, like an anti-reflection coating, we need to consider the condition for destructive interference. For minimum reflection, the phase change upon reflection should be 0 degrees.

Using the same equation as above:

2πnt/λ = 0

Simplifying the equation:

nt/λ = 0

Since the thickness of the film cannot be zero, we need to consider the next possible value that gives destructive interference. In this case, we can choose a thickness that results in a phase change of 360 degrees (or any multiple of 360 degrees).

nt/λ = 1

Rearranging the equation to solve for the thickness:

t = λ/n

Substituting the values:

t = (600 x 10^(-9) m) / 1.38

t ≈ 434.78 nm

Therefore, the thinnest film of MgF2 on glass that produces a minimum reflection, like an anti-reflection coating, is approximately 434.78 nm.

Learn more about anti-reflection coating here

https://brainly.com/question/31490655

#SPJ11


Related Questions

Radon (Rn) is a radioactive, colourless, odourless, tasteless noble gas that accounts for more than half of the total radiation dose received by the Irish population. Radon-222 has a half-life of 3.8 days and the activity of 1 g is 3.7 x 10¹⁰ Bq. (i) Radon-222 undergoes alpha decay. Show the decay equation for this including atomic number, mass and element symbols in your answer. (ii) Calculate the decay constant for Radon-222. (iii) Calculate the number of Radon-222 atoms present in 1g.

Answers

Radon-222 has a half-life of 3.8 days and the activity of 1 g is 3.7 x 10¹⁰ Bq. (I)an atom of radon-222 (atomic number 86, mass number 222) decays into an atom of polonium-218 (atomic number 84, mass number 218) by emitting an alpha particle (helium nucleus, 2 protons and 2 neutrons).(II)The decay constant for Radon-222 is 3.16 × 10⁻⁵ s⁻¹.(iii)There are 1.1 × 10¹⁵ radon-222 atoms present in 1 g.

(i) The decay equation for the alpha decay of radon-222 is as follows:

86 222 Rn → 2 4 He + 84 218 Po

This means that an atom of radon-222 (atomic number 86, mass number 222) decays into an atom of polonium-218 (atomic number 84, mass number 218) by emitting an alpha particle (helium nucleus, 2 protons and 2 neutrons).

(ii) The decay constant for radon-222 can be calculated using the following equation:

λ = ln(2) / T

where:

   λ is the decay constant (s⁻¹)

   ln(2) is the natural logarithm of 2 (0.693)

   T is the half-life (s)

Substituting the values for T, we get:

λ = ln(2) / 3.8 days

= 0.063 days⁻¹

= 3.16 × 10⁻⁵ s⁻¹

(iii) The number of radon-222 atoms present in 1 g can be calculated using the following equation:

N = A / λ

where:

   N is the number of atoms

   A is the activity (Bq)

   λ is the decay constant (s⁻¹)

Substituting the values for A and λ, we get:

N = 3.7 × 10¹⁰ Bq / 3.16 × 10⁻⁵ s⁻¹

= 1.1 × 10¹⁵ atom

Therefore, there are 1.1 × 10¹⁵ radon-222 atoms present in 1 g.

To learn more about half-life visit: https://brainly.com/question/1160651

#SPJ11

Light of 580 nm passing through a single slit, shows a diffraction pattern on a screen 4.50 m behind the all
as the one in the graph below.
a) What is the width of the central maximum?
b) Can we consider small angle approximation? Consider first minimum for order of magnitude (show
calculations that support your answer)
c) What is the width of the slit?
d) What is the distance from the central maximum to the 5th minimum?
e) If the length between the screen and the slit was increased, would the central maximum get wider,
narrower or it will not change?
f) If the width of the slit was increased, would the central maximum get wider, narrower or it will not
change?
The graph:
Question 2: The camera of a satellite has a diameter of 40cm. The satellite is orbiting 250 km from the surface of earth. What is the minimum distance 2 objects could be on the surface of earth to be result by this camera? Consider 500 cm light.

Answers

a) the width of the central maximum is 2.36 mm.b)Small angle approximation is valid.c)The width of the slit is 41.7 µm.

a) Width of the central maximumUsing the relation formula (the distance between the minima):d sin θ = (m + ½)λFor the first minimum: sin θ = (1/2)L / √(L² + b²)≈ (1/2)L / L = 1/2b ≈ tan θThus d ≈ 1.22λ / b= 1.22 × 580 nm / 0.30 mm≈ 2.36 × 10⁻³ m = 2.36 mmThe width of the central maximum is 2.36 mm.

b) Small angle approximation Let us use the approximation:sin θ ≈ θ ≈ tan θWhen the first minimum occurs at sin θ = λ/b, we have an upper limit for θ of:θ = sin⁻¹(λ/b) = tan⁻¹(λ/b)And the tangent of this angle is:tan θ = λ/bUsing λ = 580 nm and b = 0.3 mm, we get:tan θ ≈ 0.002 ≈ θThe small angle approximation is valid.

c) Width of the slitUsing the formula, where m is the number of the order of the diffraction minimum:d sin θ = mλThe angle of the first minimum θ can be approximated by θ ≈ tan θ ≈ sin θ.Thus sin θ = λ/b and d = mλ/Dwhere D is the distance from the slit to the screen and m = 1.Let's find D by using the ratio of the triangle's sides:D / b = L / √(L² + b²).

Then D = bL / √(L² + b²)We have:b = 0.3 mmL = 4.50 mD = bL / √(L² + b²)≈ 0.0139 mλ = 580 nmUsing the formula, we get:d = mλ / D≈ 0.000580 / 0.0139 m≈ 4.17 × 10⁻⁵ m = 41.7 µmThe width of the slit is 41.7 µm.

Learn more about angle here,

https://brainly.com/question/1309590

#SPJ11

a hedrogen atom moves from the n=3 level to the n=2 level, then i moved from the n=3 level to thr n=1level. which transmission leads to the emission of photon with the longest wavelength

Answers

The transition from the n=3 level to the n=2 level in a hydrogen atom leads to the emission of a photon with a longer wavelength compared to the transition from the n=3 level to the n=1 level. Therefore, the transition from n=3 to n=2 results in the emission of a photon with the longest wavelength.

In hydrogen atom transitions, the emitted photon's wavelength is inversely proportional to the difference in energy levels of the atom. The energy of a hydrogen atom at a particular level is given by the equation

E=−13.6eV/[tex]n^{2}[/tex], where

n is the principal quantum number.

When an electron transitions from a higher energy level to a lower energy level, it emits a photon. The difference in energy levels corresponds to the energy of the photon, and longer wavelength photons have lower energy.

Comparing the transitions mentioned, the difference in energy levels between n=3 and n=2 is smaller than between n=3 and n=1. Consequently, the transition from n=3 to n=2 leads to the emission of a photon with a longer wavelength compared to the transition from n=3 to n=1. Therefore, the transition from n=3 to n=2 results in the emission of a photon with the longest wavelength among the given options.

Learn more about photon

https://brainly.com/question/30858842

#SPJ11

The magnetic field of the earth at a certain location is directed vertically downward and has a magnitude of 50.0 µT. A proton is moving horizontally toward the west in this field with a speed of 6.80 106 m/s. What are the direction and magnitude of the magnetic force the field exerts on the proton?

Answers

The magnetic field of the earth at a certain location is directed vertically downward and has a magnitude of 50.0 µT.  the magnitude of the magnetic force exerted on the proton is approximately 5.44 x 10^(-14) Newtons.

The magnetic force experienced by a charged particle moving in a magnetic field is given by the formula:

F = q * v * B * sin(theta)

where F is the magnetic force, q is the charge of the particle, v is its velocity, B is the magnetic field strength, and theta is the angle between the velocity vector and the magnetic field vector.

In this case, a proton with a positive charge is moving horizontally toward the west, perpendicular to the vertically downward magnetic field. As a result, the angle theta between the velocity vector and the magnetic field vector is 90 degrees, and sin(theta) becomes 1.

The charge of a proton, q, is equal to the elementary charge, approximately 1.6 x 10^(-19) Coulombs.

Plugging in the values:

F = (1.6 x 10^(-19) C) * (6.80 x 10^6 m/s) * (50.0 x 10^(-6) T) * 1

F ≈ 5.44 x 10^(-14) N

Therefore, the magnitude of the magnetic force exerted on the proton is approximately 5.44 x 10^(-14) Newtons.

Since the proton is moving horizontally toward the west, the magnetic force acts perpendicular to both the magnetic field and the velocity vectors. Using the right-hand rule, we can determine that the magnetic force on the proton is directed upward, opposite to the force of gravity.

Learn more about magnetic field here:

https://brainly.com/question/7645789

#SPJ11

A charged rod is placed on the x-axis as shown in the figure. If the charge Q=-1.0 nC is distributed uniformly the rod, what is the electric potential at the origin (in Volt)? [1nC= 102C] XA dq a) -0.83 V=KS- Q b) +83.2 X c) -83.2

Answers

The charge Q=-1.0 nC is distributed uniformly the rod, then the electric potential at the origin. Therefore, the electric potential at the origin is 1.56 V. Hence, option A is correct.

Given that a charged rod is placed on the x-axis and its charge Q is -1.0 nC, which is distributed uniformly. We need to find out the electric potential at the origin. Let's first derive the expression for the potential due to the uniformly charged rod.

Potential at a point on the x-axis due to uniformly charged rod. Let us consider a small segment of the rod of length dx at a distance x from the origin.

The charge on this small segment can be written as, dq=λdx

where λ is the linear charge density of the rod.

λ = Q/L where L is the length of the rod.

Here Q= -1.0 nC = -1.0 × 10⁻⁹C.

The length of the rod is not given in the question.

Therefore, we consider the length of the rod as 1 meter.

Then, λ = -1.0 × 10⁻⁹C/m.

Putting the value of λ in dq, dq=λdx=-1.0 × 10⁻⁹ dx C

We know that the electric potential due to a point charge q at a distance r from it is given as,

V= 1/4πε₀ q/r

where ε₀ is the permittivity of free space which is equal to 8.85 × 10⁻¹² C²/Nm².

Using this expression, we can find the potential due to the small segment of the rod.

The potential due to a small segment of length dx at a distance x from the origin is,dV= 1/4πε₀ dq/x = (k dq)/xwhere k = 1/4πε₀

The total potential due to the entire rod is given by integrating this expression from x = -L/2 to x = L/2.

Here L is the length of the rod. L is considered as 1 meter as explained above.

Therefore, L/2 = 0.5m.

The total potential due to the entire rod is, V = ∫(k dq)/x = k ∫dq/x = k ∫_{-0.5}^{0.5} (-1.0 × 10⁻⁹dx)/x= - k (-1.0 × 10⁻⁹) ln|x| from x=-0.5 to x=0.5= k (-1.0 × 10⁻⁹) ln(0.5/-0.5) (ln of a negative number is undefined)Here k=1/(4πε₀) = 9 × 10⁹ Nm²/C².

Therefore, the potential at the origin is, V= - k (-1.0 × 10⁻⁹) ln(0.5/-0.5)= 2.25 × 10⁹ ln2 = 2.25 × 10⁹ × 0.693 = 1.56 V

Therefore, the electric potential at the origin is 1.56 V. Hence, option A is correct.

Learn more about  electric potential  here:

https://brainly.com/question/31173598

#SPJ11

Two similar waves are described by the equations y1 = 11cos(1100t - 0.59x) and y2 = 12.5cos(1125t - 0.59x) What is the beat frequency produced by the two waves when they interfere?

Answers

When the two waves y1 = 11cos(1100t - 0.59x) and y2 = 12.5cos(1125t - 0.59x) interfere, they produce a beat frequency of 4 Hz.

To determine the beat frequency produced by the interference of the two waves, we need to find the difference in frequencies between the two waves.

The general equation for a wave is given by y = A*cos(ωt - kx), where A is the amplitude, ω is the angular frequency, t is time, and x is position.

Comparing the equations y1 = 11cos(1100t - 0.59x) and y2 = 12.5cos(1125t - 0.59x), we can see that the angular frequencies are different: ω1 = 1100 and ω2 = 1125.

The beat frequency (fbeat) is given by the difference in frequencies:

fbeat = |f1 - f2| = |(ω1 / 2π) - (ω2 / 2π)| = |(1100 / 2π) - (1125 / 2π)| = |25 / 2π| ≈ 3.98 Hz

Rounding to the nearest whole number, the beat frequency is approximately 4 Hz.Therefore, the beat frequency produced by the interference of the two waves is 4 Hz.

Learn more about beat frequency here:

https://brainly.com/question/32064210

#SPJ11

A string with a linear density of 7.11 × 10 ^- 4 k g / m and a length of 1.14m is stretched across the open end of a closed tube that is 1.39m long. The diameter of the tube is very small. You increase the tension in the string from zero after you pluck the string to set it vibrating. The sound from the string's vibration resonates inside the tube, going through four separate loud points. What is the tension in the string when you reach the fourth loud point? Assume the speed of sound in air is 343m/s.

Answers

The tension in the string when reaching the fourth loud point is approximately 0.725 Newtons. The fundamental frequency is 61.97 Hz. To find the tension in the string when the fourth loud point is reached, we can use the concept of the harmonic series in a closed tube.

The fundamental frequency of a closed tube is given by:

f = v / (4L),

where f is the fundamental frequency, v is the speed of sound, and L is the length of the tube.

In this case, the length of the tube is given as 1.39 m, so we can calculate the fundamental frequency:

f = 343 m/s / (4 * 1.39 m)

≈ 61.97 Hz

The fundamental frequency corresponds to the first loud point. Each subsequent loud point is associated with a higher harmonic frequency, which is an integer multiple of the fundamental frequency.

For the fourth loud point, we need to calculate the fourth harmonic frequency:

f4 = 4 * f

≈ 4 * 61.97 Hz

≈ 247.88 Hz

The frequency of a vibrating string is related to the tension (T), linear density (μ), and length (L) of the string by the equation:

f = (1 / 2L) * √(T / μ)

Rearranging the equation to solve for tension:

T = ([tex]4L^2[/tex]* μ *[tex]f^2)[/tex]

Given that the linear density (μ) of the string is 7.11 × [tex]10^(-4)[/tex] kg/m, the length (L) of the string is 1.14 m, and the frequency (f) is 247.88 Hz (fourth harmonic frequency), we can calculate the tension (T):

T = (4 * ([tex]1.14 m)^2 * 7.11 * 10^(-4)[/tex]kg/m * (247.88 [tex]Hz)^2)[/tex]

≈ 0.725 N

Therefore, the tension in the string when reaching the fourth loud point is approximately 0.725 Newtons.

Learn more about tension here:

https://brainly.com/question/30037765

SPJ11

How far apart (m) will two charges, each of magnitude 15 μC, be a force of 0.88 N on each other? Give your answer to two decimal places.

Answers

The two charges under a force of 0.88 N will be 2.36 meters apart.

Two charges are given as Q1 = Q2 = 15 μC each.

The force acting between the charges is F = 0.88 N.

The electric force between two point charges is given by Coulomb’s Law:

F = (1/4πε) * (Q1Q2)/r² Where ε is the permittivity of free space and r is the distance between two charges.

The force between charges is directly proportional to the magnitude of the charges and inversely proportional to the square of the distance between them. We need to calculate the distance between two charges. Using Coulomb’s law, we can find the distance:

r = √(Q1Q2/ F * 4πε)

The value of ε is 8.85 x 10^-12 C²/Nm²

Substitute the given values

:r = √(15 μC × 15 μC / 0.88 N * 4π × 8.85 × 10^-12 C²/Nm²)

r = 2.36 meters (approx)

Therefore, the two charges will be 2.36 meters apart.

Learn more about  force acting between the charges https://brainly.com/question/14696750

#SPJ11

The absorption rate of a monochromatic laser pulse by bulk GaAs increases as the exposure time of the material to the laser light increases (in the limit of long exposure times).
Justify your answer with mathematical equation or graphical illustration.

Answers

The absorption rate of a monochromatic laser pulse by bulk GaAs increases as the exposure time of the material to the laser light increases (in the limit of long exposure times) can be justified by plotting a graph of the absorption rate of the material versus exposure time.

Let us say the absorption rate is given by A and exposure time is given by t, and the equation relating A and t is given by;A = k1 * (1 - e ^ -k2t)Where, k1 and k2 are constants whose values depend on the laser pulse characteristics and the material properties. e is the mathematical constant (approximately equal to 2.71828).The equation indicates that the absorption rate is proportional to (1 - e ^ -k2t) which means that as the exposure time increases (t becomes larger), the term e ^ -k2t becomes smaller (as the exponential function decays), and therefore the absorption rate A increases. Thus, the absorption rate of a monochromatic laser pulse by bulk GaAs increases as the exposure time of the material to the laser light increases (in the limit of long exposure times).

The following is a graphical illustration of the relationship between A and t:Graphical illustration of the relationship between A and t.

Learn more about absorption rate here:

brainly.com/question/30132814

#SPJ11

a hockey puck is set in motion across a frozen pond . if ice friction and air resistance are absent the force required to keep the puck sliding at constant velocity is zero. explain why this is true

Answers

In the absence of ice friction and air resistance, the force required to keep a hockey puck sliding at a constant velocity is indeed zero.

This can be explained by Newton's first law of motion, also known as the law of inertia.

Newton's first law states that an object at rest will remain at rest, and an object in motion will continue moving at a constant velocity in a straight line, unless acted upon by an external force.

In the case of the hockey puck on a frictionless surface with no air resistance, there are no external forces acting on it once it is set in motion.

Initially, a force is applied to the puck to overcome its inertia and set it in motion. Once the puck starts moving, it will continue moving with the same velocity due to the absence of any opposing forces to slow it down or bring it to a stop.

In the absence of ice friction, there is no force acting in the opposite direction to oppose the motion of the puck. Similarly, in the absence of air resistance, there are no forces acting against the direction of the puck's motion due to the interaction between the puck and the air molecules.

Therefore, the puck will continue sliding at a constant velocity without the need for any additional force to maintain its motion.

To learn more about Newton's first law of motion visit:

brainly.com/question/29775827

#SPJ11

Suppose 435 mL of Ne gas at 21 °C and 1. 09 atm, and 456 mL of SF6 at 25 °C and 0. 89 atm are put into a 325 mL flask at 30. 2 °C (a) What will be the total pressure in the flask? (b) What is the mole fraction of for each of the gases in the flask?

Answers

(a) To determine the total pressure in the flask, we need to consider the partial pressures of each gas present and add them together.

Using the ideal gas law, we can calculate the partial pressure of each gas:

PV = nRT

For Ne gas:

P₁V₁ = n₁RT

P₁ = (n₁/V₁)RT

For SF6 gas:

P₂V₂ = n₂RT

P₂ = (n₂/V₂)RT

To find the total pressure, we add the partial pressures:

P_total = P₁ + P₂

(b) The mole fraction (χ) of each gas can be calculated using the formula:

χ = moles of gas / total moles of gas

To find the moles of each gas, we use the ideal gas law rearranged:

n = PV / RT

Now, let's calculate the values.

Given:

Volume of Ne gas (V₁) = 435 mL = 0.435 L

Temperature of Ne gas (T₁) = 21 °C = 294 K

Pressure of Ne gas (P₁) = 1.09 atm

Volume of SF6 gas (V₂) = 456 mL = 0.456 L

Temperature of SF6 gas (T₂) = 25 °C = 298 K

Pressure of SF6 gas (P₂) = 0.89 atm

Volume of flask (V_total) = 325 mL = 0.325 L

Temperature of flask (T_total) = 30.2 °C = 303.2 K

Gas constant (R) = 0.0821 L·atm/(K·mol)

(a) To calculate the total pressure:

P₁ = (n₁/V₁)RT₁

P₁ = (PV₁/RT₁)

P₂ = (n₂/V₂)RT₂

P₂ = (PV₂/RT₂)

P_total = P₁ + P₂

(b) To calculate the mole fraction:

n₁ = P₁V_total / RT_total

n₂ = P₂V_total / RT_total

χ₁ = n₁ / (n₁ + n₂)

χ₂ = n₂ / (n₁ + n₂)

By plugging in the given values and performing the calculations, we can find the total pressure in the flask and the mole fraction of each gas.

Learn more about pressure here:-

brainly.com/question/30351725

#SPJ11

The spectrum of light from a star is, to a good approximation, a blackbody spectrum. The red supergiant star Betelgeuse has ⋀max = 760 nm. (Note that this is actually in the infrared portion of the spectrum.) When light from Betelgeuse reaches the earth, the measured intensity at the earth is 2.9 X 10-8 W/m2. Betelgeuse is located 490 light years from earth. (a) Find the temperature of Betelgeuse. (b) Find the intensity of light emitted by Betelgeuse. (Hint: Remember that this and the measured intensity at the earth are related by an inverse square law.) (b) Find the radius of Betelgeuse. (Assume it is spherical.)

Answers

The temperature of Betelgeuse is 262,124.5 K. The intensity of light emitted by Betelgeuse is 6.95 × 10¹² W/m². The radius of Betelgeuse is 9.53 × 10¹² m.

Given below are the terms that are used in the problem -

The temperature of Betelgeuse: Let’s assume that Betelgeuse radiates as a black body. So we can use the Wein’s law here. λmaxT = 2.898×10−3 mK⋅ So, T = λmax/T = (760 × 10⁻⁹)/2.898×10−3 = 262,124.5 K(b),

Find the intensity of light emitted by Betelgeuse: As we know the measured intensity at the earth is 2.9 × 10⁻⁸ W/m² and Betelgeuse is located 490 light-years from earth. We need to find the intensity of light emitted by Betelgeuse by using the inverse-square law. The equation for Inverse Square Law is I1/I2=(r2/r1)², where I1 is the initial intensity I2 is the final intensity r1 is the initial distance from the light source r2 is the final distance from the light source.

So, I2 = (r1/r2)²I2 = (490 × 9.461 × 10¹²)² × 2.9 × 10⁻⁸I2 = 6.95 × 10¹² W/m²

The radius of Betelgeuse: Using the Stefan Boltzmann Law which is

P = σAT⁴,

where

P is power

A is surface area

T is temperature

σ is Stefan-Boltzmann constant

σ=5.67×10−8W/m²·K⁴

P = 4πR²σT⁴R² = P/(4πσT⁴) = (4 × 10³W)/(4π × 5.67×10⁻⁸ W/m²·K⁴ × (262,124.5 K)⁴)

R² = 9.09 × 10²⁶m²

So, the radius of Betelgeuse is R = √(9.09 × 10²⁶) = 9.53 × 10¹² m.

To know more about Wein’s law

https://brainly.com/question/31647689

#SPJ11

QS1 KM1 F 1 20 U V W 5 M1 3~ QS2 KM2 U V W 99 M2 IV. Circuit design (25 points) 3~ F2 Two motors MI and M2, M2 shall be started before MI can be started, if press the stop button, Ml stops before M2 stops. Please design the control circuit and try to analyze the work process. 6/7

Answers

QS1 KM1 F 1 20 U V W 5 M1 3~ QS2 KM2 U V W 99 M2 IV. Circuit design (25 points) 3~ F2 Two motors MI and M2, M2 shall be started before MI can be started, if press the stop button, Ml stops before M2 stops.

The control circuit for the given problem can be designed by using the concept of ladder logic.

Working of the circuit:

When the start button (QS2) is pressed, power is supplied to the K1 contact of the KM2 coil. This makes the coil KM2 energized and its contact KM2 is latched. The contact KM2 of KM2 coil provides power supply to the coil KM1 through the F1 and F2 contacts. When the coil KM1 is energized, its contact KM1 is closed which provides power to the motor M2 and also to the coil M1.After some time delay, the F1 contact of KM1 is closed which provides power to the motor MI. If any of the stop button is pressed, the power supply to the M1 coil is cutoff which stops the motor MI immediately. But the power supply to M2 coil is not cutoff, and it stops after a while as there is no feedback control provided.The F2 contact of KM2 is provided to provide a hold-on condition to KM2 after the stop button is released. This ensures that M2 runs for some time delay before it stops.

Learn more about motors: https://brainly.com/question/25543272

#SPJ11

Is an asteroid orbiting the Sun with a velocity of 585 kilometers per second more than one astronomical unit away from the Sun? The equation of orbital velocity may be a useful reference

Answers

The asteroid is not more than one astronomical unit away from the Sun based on the given velocity.

Given that an asteroid is orbiting the Sun with a velocity of 585 kilometers per second. We need to determine if it is more than one astronomical unit away from the Sun.

In order to solve this problem, we need to use the equation of orbital velocity. The equation of orbital velocity is given by:v = [tex]√(GM / r)[/tex]

Where, G is the universal gravitational constant, M is the mass of the central body (in this case, the Sun), r is the distance between the asteroid and the Sun, and v is the orbital velocity of the asteroid.

Substituting the given values, we have:v =[tex]√[(6.674 × 10^-11 Nm^2/kg^2) × (1.989 × 10^30 kg) / (1 AU)][/tex]where 1 astronomical unit (AU) is equal to[tex]1.496 * 10^(11)[/tex] meters.

v = [tex]√[(6.674 × 10^-11 Nm^2/kg^2) × (1.989 × 10^30 kg) / (1.496 × 10^11 m)]v = 29.29 km/s[/tex]

Therefore, the asteroid's velocity of 585 kilometers per second is much greater than the calculated orbital velocity of 29.29 km/s. This implies that the asteroid cannot be in a stable orbit around the Sun.

Hence, the asteroid is not more than one astronomical unit away from the Sun.


Learn more about velocity here:

https://brainly.com/question/31036269


#SPJ11

Required information A train, traveling at a constant speed of 22.0 ms. comes to an incline with a constant slope. While going up the incline, the train slows down with a constant acceleration of magnitude 1.40 m/s2 66 Sped How far has the train traveled up the incline after 6.60 s? m

Answers

The train has traveled up the incline for 176 m after 6.60 s, using the given data: Speed of train = 22.0 m/s, Constant acceleration = 1.40 m/s², Time = 6.60 s

Formula used: The formula used to calculate the distance covered by the train is given by: `d = vit + 1/2 at²`, where `v` is the initial velocity, `a` is the acceleration, `t` is the time taken and `d` is the distance covered.

Initial speed of the train, u = 22.0 m/s Acceleration of the train, a = 1.40 m/s²Time taken by the train, t = 6.60 s.

Using the formula, d = vit + 1/2 at²`d = 22.0 × 6.60 + 1/2 × 1.40 × (6.60)²``d = 145.2 + 1/2 × 1.40 × 43.56``d = 145.2 + 30.576`d = 175.776 ≈ 176 m

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

In a Rutherford scattering experiment, an a-particle (charge = +2e) heads directly toward a mercury nucleus (charge = +80e). The α-particle had a kinetic energy of 4.7 MeV when very far (r→ [infinity]) from the nucleus. Assuming the mercury nucleus to be fixed in space, determine the distance of closest approach (in fm). (Hint: Use conservation of energy with PE = kₑq₁q₂ / r ) ______________ fm

Answers

In a Rutherford scattering experiment, an a-particle (charge = +2e) heads directly toward a mercury nucleus (charge = +80e). The α-particle had a kinetic energy of 4.7 MeV when very far (r→ [infinity]) from the nucleus.The distance of closest approach between the alpha particle and the mercury nucleus is approximately 76 femtometers (fm).

In a Rutherford scattering experiment, the distance of closest approach can be determined by considering the conservation of energy. Initially, the alpha particle is far away from the mercury nucleus, and its kinetic energy (KE) is given as 4.7 MeV.

When the alpha particle reaches the closest point to the mercury nucleus, all of its initial kinetic energy is converted into potential energy (PE) due to the repulsive electrostatic interaction between the two particles.

Using the principle of conservation of energy, we can equate the initial kinetic energy to the final potential energy:

KE_initial = PE_final

The initial kinetic energy is given as 4.7 MeV, which can be converted to joules by using the conversion: 1 MeV = 1.6 x 10^(-13) Joules.

KE_initial = 4.7 MeV * (1.6 x 10^(-13) Joules/MeV)

= 7.52 x 10^(-13) Joules

The potential energy between the alpha particle and the mercury nucleus is given by Coulomb's law:

PE = kₑ * (|q₁| * |q₂|) / r

where kₑ is the electrostatic constant (8.99 x 10^9 N m^2 / C^2), q₁ and q₂ are the charges of the particles, and r is the distance between them.

For an alpha particle (charge = +2e) and a mercury nucleus (charge = +80e), we can substitute the values into the equation:

PE = kₑ * (2e * 80e) / r

= kₑ * (160e^2) / r

Now we can equate the initial kinetic energy to the final potential energy:

KE_initial = PE_final

7.52 x 10^(-13) Joules = kₑ * (160e^2) / r

Rearranging the equation to solve for r:

r = kₑ * (160e^2) / (KE_initial)

Substituting the known values:

r = (8.99 x 10^9 N m^2 / C^2) * (160 * (1.6 x 10^(-19) C)^2) / (7.52 x 10^(-13) Joules)

Evaluating the expression:

r ≈ 7.6 x 10^(-14) m ≈ 76 fm

Therefore, the distance of closest approach between the alpha particle and the mercury nucleus is approximately 76 femtometers (fm).

To learn more about principle of conservation of energy visit: https://brainly.com/question/166559

#SPJ11

Pls answer this question

Answers

Answer:

3

Explanation:im almost certain thats what it is

The acceleration due to gravity on planet X is 2,7 m-s-2. The radius of this planet is a third (⅓) of the radius of Earth.

1. Calculate the mass of planet X.​

Answers

To calculate the mass of planet X, we can use the formula for the acceleration due to gravity:

g = G * (M / R^2)

Where:
g is the acceleration due to gravity,
G is the gravitational constant,
M is the mass of the planet, and
R is the radius of the planet.

Given:
Acceleration due to gravity on planet X (g) = 2.7 m/s^2
Radius of planet X (r) = (1/3) * Radius of Earth (R)

Let's denote the mass of planet X as "Mx."

Substituting the values into the formula, we have:

2.7 m/s^2 = G * (Mx / (r^2))

Now, let's consider the ratio of the radii:

r = (1/3) * R

Substituting this into the equation:

2.7 m/s^2 = G * (Mx / ((1/3 * R)^2))

Simplifying further:

2.7 m/s^2 = G * (Mx / (1/9 * R^2))

Multiplying both sides by (1/9 * R^2):

2.7 m/s^2 * (1/9 * R^2) = G * Mx

Rearranging the equation to solve for Mx:

Mx = (2.7 m/s^2 * (1/9 * R^2)) / G

The value of G, the gravitational constant, is approximately 6.67430 × 10^-11 m^3/(kg * s^2).

Let's assume the radius of Earth (R) is approximately 6,371 km (or 6,371,000 meters).

Now, we can substitute these values into the equation to calculate the mass of planet X (Mx):

Mx = (2.7 m/s^2 * (1/9 * (6,371,000 m)^2)) / (6.67430 × 10^-11 m^3/(kg * s^2))

Calculating this expression will give us the mass of planet X.

Use Snel's Law to calculate the answer for the following question. If light comes from air enters to the water with 2.16 degree angle to the surface normal, what will be the refraction angle of it? (keep 2 digits after the decimal point). Index of refraction for alr=1. Index of refraction for water = 1,33.

Answers

The refraction angle of the light in water is approximately 1.48 degrees.

Snell's Law states that the ratio of the sine of the angle of incidence (θ₁) to the sine of the angle of refraction (θ₂) is equal to the ratio of the indices of refraction (n₁ and n₂) of the two media:

n₁ * sin(θ₁) = n₂ * sin(θ₂)

In this case, the light is coming from air (n₁ = 1) and entering water (n₂ = 1.33). The angle of incidence is given as 2.16 degrees.

Plugging in the values into Snell's Law:

1 * sin(2.16°) = 1.33 * sin(θ₂)

sin(θ₂) = (1 * sin(2.16°)) / 1.33

sin(θ₂) = 0.025902

To find the value of θ₂, we take the inverse sine (or arcsine) of both sides:

θ₂ = arcsin(0.025902)

Using a calculator, we find θ₂ ≈ 1.48 degrees.

To know more about Snell's Law

https://brainly.com/question/31432930

#SPJ11

You are given a vector in the xy plane that has a magnitude of 81.0 units and a y component of −69.0 units. Part B Assuming the x component is known to be positive, specify the magnitude of the vector which, if you add it to the original one, would give a resultant vector that is 80.0 units long and points entirely in the −x direction. Part C Specify the direction of the vector. Express your answer using three significant figures

Answers

Part A: we have the following:|a| = √(ax² + ay²) = √(81² + (-69)²) = 105 units.Part B: The magnitude of the second vector is 44.1 units.

Part C: The direction of the vector is 57.1 degrees below the negative x-axis.

Part A:To find the magnitude of a vector, the Pythagorean theorem is used. Thus, the magnitude of a vector is given by the square root of the sum of the squares of the components of a vector.|a| = √(ax² + ay²)Where ax is the x-component and ay is the y-component of vector a.Using this formula, we have the following:|a| = √(ax² + ay²) = √(81² + (-69)²) = 105 units.

Part B:We can use the Pythagorean theorem to find the magnitude of the second vector. If v is the second vector, then:v = -sqrt((80)^2 - (105)^2) = -44.1 units.The magnitude of the second vector is 44.1 units.

Part C:To find the direction of the second vector, we need to find its angle relative to the -x-axis. If we draw a diagram of the vectors in the -x, -y plane, we can see that the second vector is in the second quadrant, so its angle is given by:θ = tan^(-1)(ay/ax) = tan^(-1)(-69/44.1) = -57.1°.Thus, the direction of the vector is 57.1 degrees below the negative x-axis.The direction of the vector is 57.1 degrees below the negative x-axis.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ11

A proton (mass m = 1.67 x 10⁻²⁷ kg) is being acceler- ated along a straight line at 3.6 x 10¹⁵ m/s in a machine. If the pro- ton has an initial speed of 2.4 x 10 m/s and travels 3.5 cm, what then is (a) its speed and (b) the increase in its kinetic energy?

Answers

A proton (mass m = 1.67 x 10⁻²⁷ kg) is being accelerate along a straight line at 3.6 x 10¹⁵ m/s in a machine. If the pro- ton has an initial speed of 2.4 x 10 m/s and travels 3.5 cm(a)The final speed of the proton is 2.4126 x 10⁷ m/s.(b)the increase in the kinetic energy of the proton is 1.14 x 10⁻¹³ J.

(a) The final speed of the proton is calculated using the following equation:

v = v₀ + at

where:

   v is the final speed (m/s)

   v₀ is the initial speed (m/s)

   a is the acceleration (m/s²)

   t is the time (s)

We know that v₀ = 2.4 x 10 m/s, a = 3.6 x 10¹⁵ m/s², and t = 3.5 cm / 100 cm/m = 0.035 s. Substituting these values into the equation, we get:

v = 2.4 x 10 m/s + (3.6 x 10¹⁵ m/s²)(0.035 s)

v = 2.4 x 10⁷ m/s + 1.26 x 10⁵ m/s

v = 2.4126 x 10⁷ m/s

Therefore, the final speed of the proton is 2.4126 x 10⁷ m/s.

(b) The increase in the kinetic energy of the proton is calculated using the following equation:

∆KE = 1/2 mv² - 1/2 mv₀²

where:

   ∆KE is the increase in kinetic energy (J)

   m is the mass of the proton (kg)

   v is the final speed of the proton (m/s)

   v₀ is the initial speed of the proton (m/s)

We know that m = 1.67 x 10⁻²⁷ kg, v = 2.4126 x 10⁷ m/s, and v₀ = 2.4 x 10 m/s. Substituting these values into the equation, we get:

∆KE = 1/2 (1.67 x 10⁻²⁷ kg)(2.4126 x 10⁷ m/s)² - 1/2 (1.67 x 10⁻²⁷ kg)(2.4 x 10 m/s)²

∆KE = 1.14 x 10⁻¹³ J

Therefore, the increase in the kinetic energy of the proton is 1.14 x 10⁻¹³ J.

To learn more about  acceleration  visit: https://brainly.com/question/460763

#SPJ11

An RL circuit is composed of a 12 V battery, a 6.0 Hinductor and a 0.050 Ohm resistor. The switch is closed at t = 0 The time constant is 2.0 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V. The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is zero. The time constant is 2.0 minutes and after the switch has been closed a long time the current is The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V.

Answers

With a long time of charging, the voltage across the inductor will be zero, and the current will be constant. In contrast, with a long time of discharging, the voltage across the inductor will be zero, and the current will stabilize.

To determine the behavior of the RL circuit in each scenario, we need to understand the concept of the time constant (τ) and the behavior of the circuit during charging and discharging.

The time constant (τ) of an RL circuit is given by the formula: τ = L / R, where L is the inductance and R is the resistance. It represents the time it takes for the current or voltage to reach approximately 63.2% of its maximum or minimum value, respectively.

(a) In the scenario with a time constant of 2.0 minutes and the voltage across the inductor as 12 V, we can infer that the circuit has been charged for a long time. In a charged RL circuit, when the switch is closed, the inductor acts as a current source and maintains a steady current. Thus, the current flowing through the circuit will be constant.

(b) In the scenario with a time constant of 1.2 minutes and the voltage across the inductor as zero, we can conclude that the circuit has been discharged for a long time. In a discharged RL circuit, when the switch is closed, the inductor initially resists the change in current and behaves as an open circuit. Therefore, the voltage across the inductor is initially high but gradually decreases to zero as the current stabilizes.

Learn more about RL circuit here:

https://brainly.com/question/17050299

#SPJ11

The Maxwell speed distribution (a) Verify from the Maxwell speed distribution that the most likely speed of a molecule is √2kT/m. - (b) Use a computer to plot the Maxwell speed distribution for nitrogen molecules at T 300 K and T 600 K. Plot both graphs on the same axes, and label the axes values.

Answers

The Maxwell speed distribution of a gas is given by the expression,1. f(v) = (m/2πkT)3/2 exp[-m*v2/2kT]. Therefore, from the graph, we can observe that as the temperature of the gas increases, the distribution of speeds becomes broader.

Maxwell speed distribution the most likely speed of a molecule is √2kT/m can be verified from the Maxwell speed distribution.

The Maxwell speed distribution of a gas is given by the expression,1. f(v) = (m/2πkT)3/2 exp[-m*v2/2kT]

where, f(v) is the number of molecules having a speed v within the range v to v+dv.

The most likely speed of a molecule can be obtained by differentiating f(v) with respect to v and equating the result to zero, df(v)/dv = (m/2πkT)3/2 {d/dv(exp[-m*v2/2kT])} = 0we get the most likely speed vmp as, vmp = √(2kT/m)

The plot for the Maxwell speed distribution of nitrogen molecules at temperatures of 300 K and 600 K are shown in the figure below:

The x-axis represents the speed v and the y-axis represents the fraction of molecules f(v).

The red line represents the plot at 300 K, and the blue line represents the plot at 600 K.

Therefore, from the graph, we can observe that as the temperature of the gas increases, the distribution of speeds becomes broader.

Learn more about Maxwell speed distribution here:

https://brainly.com/question/31648187

#SPJ11

If a projectile is launched downwards, the value of v0y is: A. Zero B. Positive C. Negative
D. Cannot be determined from the problem.

Answers

When a projectile is launched downwards, the value of v0y is negative.

Let's define the variables: vy = vertical component of velocity.

v0y = initial vertical component of velocity. a = acceleration (due to gravity) = -9.8 m/s²

When a projectile is launched downwards, it means the angle of projection is downwards. The vertical component of velocity (v0y) will be negative. This is because the upward direction is conventionally defined as positive and the downward direction is defined as negative.

v0y = -|v0|sinθ

Here, θ is the angle of projection and |v0| is the initial velocity of the projectile. Since the angle of projection is downwards, sinθ is negative.

Therefore, v0y is negative. So the correct option is C. Negative.

Learn more about projectile: https://brainly.com/question/8104921

#SPJ11

A mixture of ice and water with total volume 1 litre (and weight 1kg) is placed in a kettle which has a heat capacity of 2900 J/K and which delivers 2kW to the ice/water mixture. If the mixture is 82.4% ice, how long does it take for the kettle to boil? O a. 491 s O b. 566 s O c. 519 s O d. 547 s O e. 584 s

Answers

A mixture of ice and water with total volume 1 litre (and weight 1kg) is placed in a kettle. the time it takes for the kettle to boil the mixture is approximately 146.312 seconds.

To determine how long it takes for the kettle to boil the ice/water mixture, we need to calculate the amount of heat required to raise the temperature of the mixture from its initial temperature to the boiling point.

Given:

Total volume of the mixture = 1 liter

Weight of the mixture = 1 kg

Heat capacity of the kettle, C = 2900 J/K

Power delivered to the mixture = 2 kW = 2000 J/s

Percentage of ice in the mixture = 82.4%

First, we can calculate the mass of ice in the mixture:

Mass of ice = 82.4% * 1 kg = 0.824 kg

Next, we can calculate the heat required to raise the temperature of the ice to its melting point, which is 0°C:

Heat required = mass of ice * specific heat of ice * temperature change

Heat required = 0.824 kg * 2100 J/kg°C * (0 - (-10°C)) = 17208 J

Now, we need to calculate the heat required to convert the ice at 0°C to water at 0°C (latent heat of fusion):

Heat required = mass of ice * latent heat of fusion of ice

Heat required = 0.824 kg * 334000 J/kg = 275416 J

Total heat required = Heat required to raise the temperature + Heat required for phase change

Total heat required = 17208 J + 275416 J = 292624 J

Finally, we can calculate the time required using the formula:

Time = Total heat required / Power delivered

Time = 292624 J / 2000 J/s ≈ 146.312 s

Therefore, the time it takes for the kettle to boil the mixture is approximately 146.312 seconds.

Learn more about Heat capacity  here:

https://brainly.com/question/28302909

#SPJ11

PLEASE HELPPP
Force: Adding vectors (find resultant force)
50N north plus 50N west Plus 50N north west

Answers

To find the resultant force of the vectors 50N north, 50N west, and 50N northwest, we can use vector addition.
One way to do this is to draw a diagram of the vectors and use the head-to-tail method to find the resultant vector. We can start by drawing the vector 50N north, then draw the vector 50N west starting from the end of the first vector, and finally draw the vector 50N northwest starting from the end of the second vector and ending at the tip of the resultant vector. The resultant vector is the vector that starts at the beginning of the first vector and ends at the tip of the last vector.
Alternatively, we can use trigonometry to find the magnitude and direction of the resultant vector. We can break down each vector into its x and y components, then add up the x components and the y components separately to get the x and y components of the resultant vector. The magnitude of the resultant vector is then given by the square root of the sum of the squares of the x and y components, and the direction is given by the arctangent of the y component divided by the x component.
Using either method, we can find that the magnitude of the resultant force is approximately 70.7N, and the direction is approximately 45 degrees north of west

Aone-gram sample of thorium ²²⁸Th contains 2.64 x 10²¹ atoms and undergoes a decay with a half-life of 1.913 yr (1.677 x 10⁴h).Each disintegration releases an energy of 5.52 MeV (8.83 x 10⁻¹³ J). Assuming that all of the energy is used to heat a 3.72-kg sample of water, find the change in temperature of the sample that occurs in one hour. Number i _____Units

Answers

one-gram sample of thorium ²²⁸Th contains 2.64 x 10²¹ atoms and undergoes a decay with a half-life of 1.913 yr (1.677 x 10⁴h).Each disintegration releases an energy of 5.52 MeV (8.83 x 10⁻¹³ J).

To find the change in temperature of the water sample, we need to calculate the total energy released by the decay of the thorium sample and then use it to calculate the change in temperature using the specific heat capacity of water.

Given:

Mass of thorium sample = 1 gNumber of thorium atoms = 2.64 x 10^21 atomsDecay energy per disintegration = 5.52 MeV = 5.52 x 10^-13 JHalf-life of thorium = 1.913 years = 1.677 x 10^4 hoursMass of water sample = 3.72 kg

Step 1: Calculate the total energy released by the decay of the thorium sample.

To find the total energy, we need to multiply the energy released per disintegration by the number of disintegrations.

Total energy released = Energy per disintegration x Number of disintegrations

Total energy released = (5.52 x 10^-13 J) x (2.64 x 10^21)

Step 2: Convert the time period of one hour to seconds.

1 hour = 60 minutes x 60 seconds = 3600 seconds

Step 3: Calculate the change in temperature of the water sample.

The change in temperature can be calculated using the equation:

Change in temperature = Energy released / (mass of water x specific heat capacity of water)

Specific heat capacity of water = 4.18 J/g°C

First, we need to convert the mass of the water sample to grams.

Mass of water sample in grams = 3.72 kg x 1000 g/kg

Now, we can substitute the values into the equation:

Change in temperature = (Total energy released) / (Mass of water sample x Specific heat capacity of water)

Remember to convert the change in temperature to the desired units.

Let's calculate the change in temperature:

Total energy released = (5.52 x 10^-13 J) x (2.64 x 10^21)

Mass of water sample in grams = 3.72 kg x 1000 g/kg

Specific heat capacity of water = 4.18 J/g°C

Change in temperature = (Total energy released) / (Mass of water sample x Specific heat capacity of water)

Finally, convert the change in temperature to the desired units.

Change in temperature in 1 hour = (Change in temperature) x (3600 seconds / 1 hour) x (1 °C / 1 K)

To learn more about Half-life visit: https://brainly.com/question/1160651

#SPJ11

A volleyball with a man of 0.200 kg approaches a player horizontally with a speed of 10.0 m/s. The player strikes the ball with her hand, which comes the ball to move in the opposite direction with a speed of 1.3 m/s ( What magnitude of impulsa (in kg min delivered to the ball by the buyer m/s (b) What is the direction of the impulse delivered to the ball by the player In the same direction as the ball's initial velocity Perpendicular to the ball's initial velocity Opposite to the ball's initial velocity The magnitude is zero. (c) If the player's hand is in contact with the ball for 0.0600 , what is the magnitude of the average force (In N) exerted on the player's hand by the ball? N

Answers

(a) the magnitude of the impulse delivered to the ball by the player is 1.34 kg m/s

(b) the answer is opposite to the ball's initial velocity.

(c) the magnitude of the average force exerted on the player's hand by the ball is 558.6 N. The direction of the force is opposite to the ball's initial velocity. Hence, the answer is opposite to the ball's initial velocity.

Given data:

Mass of man = m = 0.200 kg

Initial velocity of ball = u = 10.0 m/s

Final velocity of ball = v = 1.3 m/s

Time taken to strike the ball = t = 0.0600 s

(a) Impulse is defined as the product of force and time. The impulse momentum theorem states that the change in momentum of a body is equal to the impulse applied to it.

The initial momentum of the ball is m × u

Final momentum of the ball is m × v

Change in momentum of the ball = Final momentum - Initial momentum

= m × v - m × u

= m(v - u)

Now, Impulse = Change in momentum

= m(v - u)

= 0.200(1.3 - 10.0)

≈ -1.340 kg m/s

(b) As the final velocity of the ball is in opposite direction to the initial velocity, the direction of the impulse delivered to the ball by the player is in the opposite direction to the ball's initial velocity.

(c) Force is defined as the rate of change of momentum. Force = change in momentum / time

F = (mv - mu) / t

F = m(v - u) / t

F = 0.200 (1.3 - 10.0) / 0.0600

F ≈ -558.6 N

To learn more about magnitude, refer:-

https://brainly.com/question/31022175

#SPJ11

(T=2,A=2,C=2) Two go-carts, A and B, race each other around a 1.0 km track. Go-cart A travels at a constant speed of 20 m/s. Go- cart B accelerates uniformly from rest at a rate of 0.333 m/s 2
. Which go-cart wins the race and by how much time?

Answers

Go-cart B takes approximately 60.06 seconds to complete the race. The time difference between go-cart A and go-cart B is approximately 60.06 seconds - 50 seconds = 10.06 seconds, which is approximately 11.22 seconds.

Go-cart A travels at a constant speed of 20 m/s, which means it maintains the same velocity throughout the race. Since the track is 1.0 km long, go-cart A takes 1.0 km / 20 m/s = 50 seconds to complete the race.

Go-cart B, on the other hand, starts from rest and accelerates uniformly at a rate of 0.333 m/s². To determine how long it takes for go-cart B to reach its final velocity, we can use the formula v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Since go-cart B starts from rest, its initial velocity u is 0 m/s. We can rearrange the formula to solve for time: t = (v - u) / a.

The final velocity of go-cart B is obtained by multiplying its acceleration by the time it takes to reach that velocity. In this case, the final velocity is 20 m/s (the same as go-cart A) because they both need to travel the same distance. Thus, 20 m/s = 0 m/s + 0.333 m/s² * t. Solving for t, we get t = 20 m/s / 0.333 m/s² ≈ 60.06 seconds.

Therefore, go-cart B takes approximately 60.06 seconds to complete the race. The time difference between go-cart A and go-cart B is approximately 60.06 seconds - 50 seconds = 10.06 seconds, which is approximately 11.22 seconds. Hence, go-cart A wins the race against go-cart B by approximately 11.22 seconds.

Learn more about final velocity here:

https://brainly.com/question/28608160

#SPJ11

A particle starts from the origin at t=0.0 s with a velocity of 5.2 i m/s and moves in the xy plane with a constant acceleration of (-5.4 i + 1.6 j)m/s2. When the particle achieves the maximum positive x-coordinate, how far is it from the origin?

Answers

Answer: The particle is 4.99 m from the origin.

Velocity of the particle, v = 5.2 i m/s

Initial position of the particle, u = 0 m/s

Time, t = 0 s

Acceleration of the particle, a = (-5.4 i + 1.6 j) m/s²

At maximum x-coordinate, the velocity of the particle will be zero. Let, maximum positive x-coordinate be x.

After time t, the velocity of the particle can be calculated as:

v = u + at  Where,u = 5.2 ia = (-5.4 i + 1.6 j) m/s², t = time, v = 5.2 i + (-5.4 i + 1.6 j)t = 5.2/5.4 j - 1.6/5.4 i.

So, at maximum x-coordinate, t will be:v = 0i.e., 0 = 5.2 i + (-5.4 i + 1.6 j)tv = 0 gives, t = 5.2/5.4 s = 0.963 s.

Now, using the equation of motion,s = ut + 1/2 at². Where, s is the distance covered by the particle. Substituting the given values, the distance covered by the particle is:

s = 5.2 i (0.963) + 1/2 (-5.4 i + 1.6 j) (0.963)²

= 4.99 m

Therefore, the particle is 4.99 m from the origin.

Learn more about coordinate: https://brainly.com/question/11337174

#SPJ11

Other Questions
Draw the direct-form implementation of the following FIR transfer functions: y(n) = x(n)-2x(n-1) + 3x(n-2)-10x(n-6) Which of the following graphs shows a pair of lines that represents the equations with the solution (4, 1)? A coordinate grid is shown from negative 8 to positive 8 on the x axis and also on the y axis. A pair of lines is shown intersecting on ordered pair 1 unit to the right and 4 units down. A coordinate grid is shown from negative 8 to positive 8 on the x axis and also on the y axis. A pair of lines is shown intersecting on ordered pair 4 units to the right and 1 unit down. A coordinate grid is shown from negative 8 to positive 8 on the x axis and also on the y axis. A pair of lines is shown intersecting on ordered pair 4 units to the left and 1 unit up. A coordinate grid is shown from negative 8 to positive 8 on the x axis and also on the y axis. A pair of lines is shown intersecting on ordered pair 1 unit to the left and 4 units up. Mother, along with Aunt Clara has left for New York. Is that grammatical correct? K enjoys traveling 1 (in trips) and eating meat r (in kilograms). He is very rich and will never exhaust his income. He is environmentally conscious, however, and has set a fixed amount of emissions he may be responsible to be E = 2. Let s = 1 be the emissions per trip and s2 = 1 denote the emissions per kilo of meat.(a) Represent K's constraints and his chosen bundle (1.5; 0.5). (Hint: Think of total emissions asincome and the emission rate of different goods as their prices) A projectile moves at a speed of 500 m/s through still air at 35C and atmospheric pressure of 101 kPa. Determine the (a) celerity, (b) Mach number and (b) if the projectile is moving at what type of speed. matrilinealsystema system in which theline is dominant A uniform meterstick balances on a fulcrum placed at the 70.0-cm mark when a weight w is placed at the 90.0- cm mark. What is the weight of the meterstick? a. 0.78w b. 1.0w C. W/2 d. 0.70w e. 0.90w f. 0.22w Atmosphere the plates of the atmosphere move - on this hot mane below the semi liquid zone on the upper metal directly below the lithosphere Mr. Perry just announced much to my surprise that he's leaving for Japan on Friday. Where does the commas go? Identify a myth about sexuality or sexual behavior that you used to believe. (If you never believed in one, identify one that you heard someone repeat.) How do you think this belief came about? What do you think can be done to counter beliefs such as these? Before the 1998 discovery of accelerating expansion, astronomers focused on the so-called standard models. Because the matter density (including dark matter) in the universe was found to be low, the favored model at that time was...A.) closedB.) flatC.) openD.) spherical In 2020, UW Bothell investigators started a study of the association of hypertension and stroke in a group of 2,000 healthy persons who had participated in a hypertension screening program in 2012. The UW Bothell researchers determined exposure categories using blood pressure levels in all persons that were measured at the time of the screening program. A cutoff value of 160 mmhg was used to define "high" blood pressure while those with levels below 160 were identified as having "normal" blood pressure. Using this definition, 1,000 persons had "high" blood pressure levels while the remaining 1,000 persons had "normal" blood pressure. The investigators determined that 150 cases of stroke occurred by the end of 2024, with 113 cases occurring in the hypertensive (high blood pressure) group.a. What is the study design that the investigators used? (1 point)b. What type of risk measure should the investigators calculate and why (please provide a detailed explanation)? (2 points) Why is the 17th amendments significant? UFMFHT-30-1 Applied Electronics 3 Level 1 - BJT as a Switch One application of BJT is in switching-type circuits, where a load is either switched OFF or ON. ON in this context means that the load current has the nominal value, while OFF signifies no or insignificant current flow through the load. A typical switching application is one where a BJT turns ON or OFF an LED depending on a logic-level input voltage, le, a voltage that is either OV or +5V. The appropriate circuit diagram is shown in Figure 1. UPPLY Figure 1 Twitch The input voltage VIN in Figure hereby controls the BJT, which is either in the cutoff region (OFF) or in the Saturation region (ON). IF VIN=0, then the Base current must be zero since the BE-voltage is zero. Hence, the BIT is in the cut-off region, also said to be turned-off. IF VIN=SV, then the circuit needs to be designed so that the BJT is in the Saturation region. For this we need to know the following Transistor parameters Vaam: the Base-Emitter voltage when the BIT is on this is usually 0.7V Vow the Collector-Emitter saturation voltage; this is given in Transistor datasheets and assumed here to be 0.2V B: the current gain in the forward-active region, assumed here to be 100 In order to design for correct operation, we must also know the characteristic of the LED, LA we must know the nominal LED current and voltage. This largely depends on the color of the LED and is shown in the following table. UPMEHT-30-1 Applied Electronics CORO Forward Voltage Ultraviolet Materia Nitride AIN Buminimalium Nitride (Gat19 AmiGuminium Nitride Indium Gamit GON Violet 28-4 Blue 25-37 indium Gallium Nitride Sicon Carbide Green 19-40 Galium Phosphide Blumn Galluminium Phosphide AG Alumn Gallium Phosphide GP) Galium Arsenide Phosphide GP Aluminium Gallium Indium Phosphide A Yellow 21-22 Orange/be 20-21 Gallum Arsenide Phosphide Blumn Gallium Indium Phosphide A 15-20 Alumio Galium Arsenidee Gabun Arsenide Phosphidea lumia Galuminium Phosphide AG Galium Phosphide Gallium Arsenidea! om Galium Arsenide Infrared >9 For this laboratory assignment we choose a red LED. eared LED. A typical excerpt of adatasheet is shown in Figure 2 Symbol Auteng 20 Forward Current Par For Current Sagestion Current Reverse Voltage Power Dis Operation Temer Storage Tempe Lead Seleng Temperature 10 40 40-100 Figure 2. LED datashee To increase the lifetime of the LED, we choose an LED current = 10mA. Also, V-125 chosen We then can calculate the required values for the Base resistor Re and the Collector resistor Reas follows: UFMFHT-30-1 5 Applied Electronics C-Eloop: -Vol+Ve+Ic"Rc+Va=0 Since the transistor in the ON-case is in the Saturation region, we replace Veswith V. Also, the LED is ON, hence, Viis chosen to be 1.8V and the Collector current (which is the same as the LED current) is 10mA. We then can solve for the Collector resistor: Reet - Vesa) / ltp = 1K0 To ensure that the BJT is in the Saturation region, we choose a Base current I, which is somewhat higher than necessary: >>[/B = 10mA/100 = 100HA A typical factor here is 10, so that the Base current 1, becomes 10*1004A = ImA. We then can calculate the required Base resistor by observing the Base-Emitter loop: -VX+R*4 + Vajon = 0 Solving this equation for Releads to: R$ = (V-Venl/=(5V-0.7V)/1mA = 4,360 We can simulate this circuit using a 2N3904 as the BJT and a red LED shown in Figure 3. LEDI R2 Q1 2N3904 Vin RI w 43 VI JOV 5V 10ms 20ms s Hole 12V Figure 3: BIT as a Switch The current gain of the used 2N3904 transistor must be changed to 100. We can do this by double-clicking on the BJT, which opens up the dialog box for changing the BIT parameters as shown in Figure 4: UFMFHT-30-1 Applied Electronics 7 (Note: to show two separate Windows within the same Grapher View, Copy and then Paste the View; you then can select which traces to display and can independently zoom each graph) Figure 5 clearly shows that the LED current in the ON state is 10mA. We can also look at the Base Current, shown in Figure 7. + Figure 7 Base Current it clearly can be seen that the Base current is ImA in the ON case. (Note: It must be pointed out here that the negative spike in the Base current originates from discharge of the parasitic Base-to-Emitter and Base to-Collector capacitance) Design a BJT-as-a-Switch (such as shown in Figure 3) having the following parameters: uno = 24V V SV (ON) or OV (OFF) Vam - 0.7V V0.2V B-200 V 1.8V kr = 10mA (a) Show the calculations for all circuit components (b) Simulate your circuit and show Input Voltage and LED current in a transient (c) simulation showing at least two periods (d) Build your circuit on a breadboard . (e) Measure the input and output voltage using an oscilloscope Your submission must include the following (see the template for this level): A heat engine manufacture claims the following: the engine's heat input per second is 9.0 kJ at 435 K, and the heat output per second is 4.0 kJ at 285 K. a) Determine the efficiency of this engine based on the manufacturer's claims. b) Determine the maximum possible efficiency for this engine based on the manufacturer's claims. c) Should the manufacturer be believed? i.e. This engine ______ thermodynamics. does not violate does violates the second law of Write a recursive function to compute the nth term of the sequence defined by the recursiverelation an = an-1 + an-2 + an-3, where a0 = 1, a1 = 1, and a2 = 1, and n = 3, 4, 5, ... . Then, usingthe approach that we used in Class 14, identify what happens to the ratio an/an-1 as n gets larger.Does there appear to be a "golden ratio" for this recursively defined function? After a few days of searching, the submersibles have finally found what they believe to be the remains of The Arabella, though the ship is now in tatters and spread wide across the ocean floor due to the pressure. After a few more hours of searching, the team finds what they believe to be the chest, and the treasure, of Captain Blood, returning it promptly to the surface, which has now become coated in a deep and thick fog. Before your captain can open the tightly-sealed chest, the Blacktide's radar picks up something in the distance, again before immediately turning off and becoming worthless. Strangely, instead of giving a bearing or any seemingly useful information, the radar read " 530i,a complex number. While trying to fix the radar and wondering why there would be an imaginary coordinate in the first place, a crewman points out a ship off of the Blacktide's starboard (righthand) side. This is a resurrected Arabella with Captain Blood himself at the helm, here to reclaim his treasure! 1. You need to do a quick calculation to tell which direction the Blacktide needs to follow to escape the angry ghost pirate captain. You figure that going in the exact opposite direction from the ghost ship's position would suffice in order to escape, trusting in your more advanced ship's speed to outrun a decrepit wooden ship that shouldn't even be floating. Using the complex number as the position of the Arabella, determine the angle of the ghostly ship in reference to your ship (assume your ship is facing East along the Real Axis (so you're finding the standard position angle) and give a bearing for the helmsman to follow in order to escape! Round both answers to the nearest positive whole degree. There were major factors that contributed to the brutality of the prisoners in this experiment. First of all, the experimenters encouraged the guards to be tough on the prisoners.Second is a term that is discussed in the other topic. Deindividualization is when you become part of a group, thus losing your individuality and doing things you would not normally do as an individual. The guards became a cohesive group and acted in ways in which they would normally not act, if individualized. They wore uniforms and mirrored sunglasses and created anonymity amongst themselves.Lastly, the prisoners were dehumanized by stripping them, making them wear the prison clothes and calling them by numbers rather than names. Allowing them to be thought of more as objects and less than people.The idea of this experiment was to simulate a real prison situation. Knowing what this research says about the power of prison situations to have a corrosive effect on human nature, what recommendations would you make about changing the correctional system in your community? Find solutions for your homeworkFind solutions for your homeworkbusinessaccountingaccounting questions and answersyou are given the following information about ivanhoe plumbing company. revenues in 2020 totaled $988.00, depreciation expenses $84.00, costs of goods sold $399.00, and interest expenses $67.00. at the end of the year, current assets were $137.00 and current liabilities were $113.00. the company has an average tax rate of 29.00 percent. calculate its netThis problem has been solved!You'll get a detailed solution from a subject matter expert that helps you learn core concepts.See AnswerQuestion: You Are Given The Following Information About Ivanhoe Plumbing Company. Revenues In 2020 Totaled $988.00, Depreciation Expenses $84.00, Costs Of Goods Sold $399.00, And Interest Expenses $67.00. At The End Of The Year, Current Assets Were $137.00 And Current Liabilities Were $113.00. The Company Has An Average Tax Rate Of 29.00 Percent. Calculate Its NetHelp Q11student submitted image, transcription available belowstudent submitted image, transcription available belowShow transcribed image textExpert AnswerRevenues = $988 Depreciation expense = $84 Cost of goods sold = $399 Interest expense = $67 Current assets = $137 CurrenView the full answeranswer image blurTranscribed image text:You are given the following information about Ivanhoe Plumbing Company. Revenues in 2020 totaled $988.00, depreciation expenses $84.00, costs of goods sold $399.00, and interest expenses $67.00. At the end of the year, current assets were $137.00 and current liabilities were $113.00. The company has an average tax rate of 29.00 percent. Calculate its net income by setting up an income statement. (Round answers to 2 decimal places, e.g. 15.25.) 0.01000000000 This passage helps to establish Sojourner Truth's credibility by showing thatshe:A. believes women are not able to work as hard as men.B. has struggled as both a slave and a woman.C. was often punished for bad behavior as a slave.D. hates having to work so hard for such a small sum of money.