Answer:
Step-by-step explanation:
To find the density of the wooden board, we need to divide the mass of the board by its volume. The volume of a rectangular prism is calculated by multiplying its length, width, and height.
Given:
Length (l) = 0.3 m
Width (w) = 2.1 m
Height (h) = 0.1 m
Mass (m) = 0.17 kg
Volume (V) = l × w × h
V = 0.3 m × 2.1 m × 0.1 m
V = 0.063 m³
Density (ρ) = mass / volume
ρ = 0.17 kg / 0.063 m³
ρ ≈ 2.7 kg/m³
The density of the wooden board is approximately 2.7 kg/m³.
Find the measure of the indicated arc:
55°
110°
O 250°
220°
?
Q
110 °
R
S
Answer:
? = 220°
Step-by-step explanation:
the measure of the inscribed angle QRS is half the measure of its intercepted arc QS , then
QS = ? = 2 × QRS = 2 × 110° = 220°
Find the values of x and y.
G
(6y)⁰
X =
(5x)
y =
M
(10x)⁰
K
L
Answer:
be more clear of what u mean edit the question to explain more
Step-by-step explanation:
no explanation
Margie has a $50.00 budget to purchase a $45.00 pair of boots. If
there is an 8% sales tax rate, then how much under budget will
Margie be?
Answer:
She willl be $1.40 under budget
Step-by-step explanation:
8% = 8/100 = 0.08
Adding this to 100% of the price of the shoes, we get 108% = 108/100 = 1.08.
We multiply the price of the shoes by this:
45*1.08 = 48.60
Subtract this from 50:
50 - 48.60 = 1.40
In a class of 40 students on average 4 will be left handed if a class includes 6 lefties estimate how many students are in the class
(08.01 MC)
A function is shown: f(x) = 4x² - 1.
Choose the equivalent function that best shows the x-intercepts on the graph.
Of(x) = (4x + 1)(4x - 1)
Of(x) = (2x + 1)(2x - 1)
f(x) = 4(x²+1)
f(x) = 2(x²-1)
The equivalent function that best shows the x-intercepts on the graph of f(x) = 4x² - 1 is option (a) or (b): Of(x) = (4x + 1)(4x - 1).
The correct answer to the given question is option a or b.
The given function is f(x) = 4x² - 1. We need to choose the equivalent function that best shows the x-intercepts on the graph.The x-intercepts are the points where the graph of a function intersects the x-axis. At the x-intercepts, the value of y is zero.
Therefore, to find the x-intercepts, we need to solve the equation f(x) = 0 for x. The function f(x) = 4x² - 1 can be factored as:(2x + 1)(2x - 1)
To find the x-intercepts, we set f(x) = 0:4x² - 1 = 0(2x + 1)(2x - 1) = 0So, either 2x + 1 = 0 or 2x - 1 = 0. Solving these equations, we get:
x = -1/2 or x = 1/2
These are the x-intercepts of the graph of f(x) = 4x² - 1.Now, let's look at the given options and determine which one shows the x-intercepts on the graph:
Option (a):
Of(x) = (4x + 1)(4x - 1)
This is the factored form of f(x) = 4x² - 1. It correctly shows the x-intercepts.
Option (b):
Of(x) = (2x + 1)(2x - 1)
This is the same as option (a) and correctly shows the x-intercepts.
Option (c): f(x) = 4(x² + 1)
This function does not have any x-intercepts. It has a minimum value of 4 at x = 0.
Option (d): f(x) = 2(x² - 1)
This function has x-intercepts at x = -1 and x = 1. It does not show the x-intercepts of the given function.
Therefore, the equivalent function that best shows the x-intercepts on the graph of f(x) = 4x² - 1 is option (a) or (b):
Of(x) = (4x + 1)(4x - 1).
For more such questions on equivalent function, click on:
#SPJ8
In ΔBCD,
B
D
‾
BD
is extended through point D to point E,
m
∠
C
D
E
=
(
9
x
−
12
)
∘
m∠CDE=(9x−12)
∘
,
m
∠
B
C
D
=
(
2
x
+
3
)
∘
m∠BCD=(2x+3)
∘
, and
m
∠
D
B
C
=
(
3
x
+
5
)
∘
m∠DBC=(3x+5)
∘
. Find
m
∠
B
C
D
.
m∠BCD.
m∠BCD = 31.57° (approx). Hence, the answer of the angle is 31.57 degrees.
In the given diagram, BD is extended through point D to point E, m∠CDE = (9x - 12)°, m∠BCD = (2x + 3)°, and m∠DBC = (3x + 5)°. We need to find m∠BCD.
Use the Angle Sum Property of a Triangle.The Angle Sum Property of a Triangle states that the sum of all the angles in a triangle is equal to 180°.The angle sum of ΔBCD is:m∠BCD + m∠DBC + m∠CDE = 180°Substituting the given angles, we get:(2x + 3)° + (3x + 5)° + (9x - 12)° = 180°Simplifying the above expression, we get:14x - 4 = 180°14x = 180° + 4x = 184/14x = 92/7Find m∠BCDWe know that m∠BCD = (2x + 3)°
Substituting x = 92/7, we get:
m∠BCD = (2 × 92/7 + 3)° = (184/7 + 3)° = 221/7°
Therefore, m∠BCD = 31.57° (approx). Hence, the answer is 31.57.
For more such questions on angle, click on:
https://brainly.com/question/25770607
#SPJ8
Please awnser asap I will brainlist
The solution to the system is (a) (4/5, 5, -4, -4)
How to determine the solution to the systemFrom the question, we have the following parameters that can be used in our computation:
The augmented matrix
Where, we have
[tex]\left[\begin{array}{cccc|c}1&0&0&0&4/5\\0&1&0&0&5\\0&0&1&0&-4\\0&0&0&1&-4\end{array}\right][/tex]
From the above, we have the diagonals to be 1
And other elements to be 0
This means that the equation has been solved
So, we have
a = 4/5, b = 5, c = -4 and d =-4
Read more about matrix at
brainly.com/question/11989522
#SPJ1
A community is developing plans for a pool and hot tub. The community plans to form a swim team, so the pool must be built to certain dimensions. Answer the questions to identify possible dimensions of the deck around the pool and hot tub.
Part I: The dimensions of the pool are to be 25 yards by 9 yards. The deck will be the same width on all sides of the pool. Including the deck, the total pool area has a length of (x + 25) yards, and a width of (x + 9) yards.
Write an equation representing the total area of the pool and the pool deck. Use y to represent the total area. Hint: The area of a rectangle is length times width. (1 point)
Rewrite the area equation in standard form. Hint: Use the FOIL method. (1 point)
Rewrite the equation from Part b in vertex form by completing the square. Hint: Move the constant to the other side, add to each side, rewrite the right side as a perfect square trinomial, and finally, isolate y. (4 points: 1 point for each step in the hint)
What is the vertex of the parabola? What are the x- and y-intercepts? Hint: Use your answer from Part a to identify the x-intercepts. Use your answer from Part b to identify the y-intercept. Use your answer from Part c to identify the vertex. (4 points: 1 point for each coordinate point)
Graph the parabola. Use the key features of the graph that you identified in Part d. (3 points)
In this problem, only positive values of x make sense. Why? (1 point)
What point on your graph shows a total area that includes the pool but not the pool deck? (1 point)
The community decided on a pool area that adds 6 yards of pool deck to both the length and the width of the pool. What is the total area of the pool and deck when x = 6 yards? (2 points)
Part II: A square hot tub will be placed in the center of an enclosed area near the pool. Each side of the hot tub measures 6 feet. It will be surrounded by x feet of deck on each side. The enclosed space is also square and has an area of 169 square feet. Find the width of the deck space around the hot tub, x.
Step 1: Write an equation for the area of the enclosed space in the form y = (side length)2. Hint: Don't forget to add x to each side of the hot tub. (1 point)
Step 2: Substitute the area of the enclosed space for y in your equation. (1 point)
Step 3: Solve your equation from Part b for x. (3 points)
Step 4: What is the width of the deck around the hot tub? Hint: One of the answers from Part c is not reasonable. (1 point)
Part I- a) y = (x + 25)(x + 9)
b) y = x^2 + 34x + 225
c) y= (x + 17)^2 - 64
d) The y-intercept is (0, 225), The y-intercept is (0, 225).
e) The graph of the parabola has the vertex at (-17, -64), x-intercepts at (-25, 0) and (-9, 0), and the y-intercept at (0, 225).
f) Only positive values of x make sense because the dimensions of a pool and deck cannot be negative.
g) y = 465 square yards
Part II- a) y = (6 + 2x)^2
b) 169 = (6 + 2x)^2
c) x = 3.5 feet
Part I:
a) The equation representing the total area of the pool and the pool deck, using y to represent the total area, can be written as:y = (x + 25)(x + 9)
b) To rewrite the equation in standard form using the FOIL method:
y = x^2 + 9x + 25x + 225
= x^2 + 34x + 225
c) To rewrite the equation in vertex form by completing the square:
y = (x^2 + 34x) + 225
= (x^2 + 34x + (34/2)^2) + 225 - (34/2)^2
= (x^2 + 34x + 289) + 225 - 289
= (x + 17)^2 - 64
d) The vertex of the parabola is (-17, -64). The x-intercepts are found by setting y = 0 and solving the equation:
0 = (x + 17)^2 - 64
64 = (x + 17)^2
x + 17 = ±√64
x + 17 = ±8
x = -17 ± 8
x = -25, -9
Therefore, the x-intercepts are (-25, 0) and (-9, 0).
The y-intercept is obtained by setting x = 0 in the equation:
y = (0 + 17)^2 - 64
y = 17^2 - 64
y = 289 - 64
y = 225
Therefore, the y-intercept is (0, 225).
e) The graph of the parabola has the vertex at (-17, -64), x-intercepts at (-25, 0) and (-9, 0), and the y-intercept at (0, 225).
f) Only positive values of x make sense because the dimensions of a pool and deck cannot be negative. In this context, negative values for x would not provide meaningful solutions for the width of the deck.
g) The point on the graph that represents the total area including the pool but not the pool deck is the y-intercept (0, 225).
h) When x = 6 yards, the total area of the pool and deck can be found by substituting the value into the equation from Part b:
y = (6 + 17)^2 - 64
y = 23^2 - 64
y = 529 - 64
y = 465 square yards
Part II:
a) The equation for the area of the enclosed space in the form y = (side length)^2, considering the hot tub and the deck around it, is:
y = (6 + 2x)^2
b) Substituting the area of the enclosed space (169 square feet) for y in the equation:
169 = (6 + 2x)^2
c) Solving the equation for x:
√169 = √((6 + 2x)^2)
13 = 6 + 2x
2x = 13 - 6
2x = 7
x = 7/2
x = 3.5 feet
Therefore, the width of the deck space around the hot tub is 3.5 feet.
for such more question on parabola
https://brainly.com/question/9201543
#SPJ8
A charged particle produces an electric field with a magnitude of 2.0 N/C at a point that is 50 cm away from the particle. a) Without finding the charge of the particle, determine the electric field produced by this charge at a point 25 cm away from it. b) What will happen to the Electric field at the distance 50 cm, if you double the charge? c) What is the magnitude of the particle’s charge?
To solve these problems, we can use Coulomb's Law, which states that the magnitude of the electric field produced by a charged particle is directly proportional to the charge and inversely proportional to the square of the distance from the particle.
a) Without finding the charge of the particle, we can use the inverse square relationship. If the electric field magnitude is 2.0 N/C at a distance of 50 cm, then at half the distance (25 cm), the electric field would be four times stronger. Therefore, the electric field at 25 cm would be 4 * 2.0 N/C = 8.0 N/C.
b) Doubling the charge would result in doubling the electric field magnitude. So, if the electric field at a distance of 50 cm was initially 2.0 N/C, it would become 4.0 N/C after doubling the charge.
c) To determine the magnitude of the particle's charge, we need to use the equation for the electric field:
E = k * (|q| / r^2)
where E is the electric field magnitude, k is the electrostatic constant, |q| is the magnitude of the charge, and r is the distance from the particle.
Using the known values of E = 2.0 N/C and r = 50 cm (or 0.5 m), we can rearrange the equation to solve for |q|:
|q| = E * r^2 / k
Substituting the values and the known value of k, we can calculate the magnitude of the charge.
For more such questions on Coulomb's Law
https://brainly.com/question/28143917
#SPJ8
On a number line, a number, b, is located the same distance from 0 as another number, a, but in the opposite direction.
The number b varies directly with the number a. For example b = 22 when a = -22. Which equation represents this
direct variation between a and b?
b=-a
0-b=-a
O b-a=0
Ob(-a)=0
Let theta be an angle in quadrant two such that cos theta=-3/4. find the exact values of csc theta and cot theta
The exact values of csc(theta) and cot(theta) are: csc(theta) = 4√7/7
cot(theta) = -3√7/7.
To find the exact values of csc(theta) and cot(theta), given that cos(theta) = -3/4 and theta is an angle in quadrant two, we can use the trigonometric identities and the Pythagorean identity.
We know that cos(theta) = adjacent/hypotenuse, and in quadrant two, the adjacent side is negative. Let's assume the adjacent side is -3 and the hypotenuse is 4. Using the Pythagorean identity, we can find the opposite side:
[tex]opposite^2 = hypotenuse^2 - adjacent^2opposite^2 = 4^2 - (-3)^2opposite^2 = 16 - 9opposite^2 = 7[/tex]
opposite = √7
Now we have the values for the adjacent side, opposite side, and hypotenuse. We can use these values to find the values of the other trigonometric functions:
csc(theta) = hypotenuse/opposite
csc(theta) = 4/√7
To rationalize the denominator, we multiply the numerator and denominator by √7:
csc(theta) = (4/√7) * (√7/√7)
csc(theta) = 4√7/7
cot(theta) = adjacent/opposite
cot(theta) = -3/√7
To rationalize the denominator, we multiply the numerator and denominator by √7:
cot(theta) = (-3/√7) * (√7/√7)
cot(theta) = -3√7/7
Therefore, the exact values of csc(theta) and cot(theta) are:
csc(theta) = 4√7/7
cot(theta) = -3√7/7
for more such question on theta visit
https://brainly.com/question/29600442
#SPJ8
find a positive and a negative coterminal angle for each given angle.
Answer:
D
Step-by-step explanation:
to find the coterminal angles add/ subtract 360° to the given angle
- 255° + 360° = 105°
- 255° - 360° = - 615°
Describe the given translation: T(0, 7)
Answer:
ok t means some thing but zero and seven should be solved
Christine has 1 blue sock, 3 purple socks and 1 green sock in a box.
Christine takes one sock at random from the box, puts it back, and takes another sock from the box. Find the probability that Christine takes at least one blue sock.
What is the meaning of "⊂-maximal element"?
A "⊂-maximal element" in set theory refers to an element in a set that cannot be strictly contained within any other element of the set, indicating a maximum extent or boundary within that set.
In the context of set theory and Tarski's notion of finiteness, a "⊂-maximal element" refers to an element within a set that cannot be strictly contained within any other element of the set. Let's break down the meaning of this term.
Consider a set S and a partial order relation ⊆ (subset relation) defined on the power set P(S) of S. A "⊂-maximal element" u of a set A ⊆ S is an element that is not strictly contained within any other element of A with respect to the subset relation. In other words, there is no element v in A such that u is a proper subset of v.
Formally, for any u ∈ A, if there is no v ∈ A such that u ⊂ v, then u is a ⊂-maximal element of A. This means that u is as large as possible within A and cannot be extended by including additional elements.
In the context of T-finite sets, the existence of a ⊂-maximal element in every nonempty subset of the set guarantees that the set has a well-defined structure and does not continue indefinitely without boundaries.
It ensures that there is a definitive maximum element within each subset, which is a key characteristic of finiteness.
For more such question on theory. visit :
https://brainly.com/question/13458417
#SPJ8
Parker has 12 blue marbles. Richard has 34
of the number of blue marbles that Parker has.
Part A
Explain how you know that Parker has more blue marbles than Richard without completing the multiplication.
Enter equal to, greater than, or less than in each box.
Multiplying a whole number by a fraction
less than
1 results in a product that is
the original whole number.
Part B
How many blue marbles does Richard have? Enter your answer in the box.
blue marbles
Which expression is equivalent to 3(x+4)
The answer is:
3x + 12
Work/explanation:
To simplify this expression, we will use the distributive property:
[tex]\sf{3(x+4)}[/tex]
Distribute the 3:
[tex]\sf{3\cdot x + 3 \cdot 4}[/tex]
[tex]\sf{3x+12}[/tex]
Therefore, the answer is 3x + 12.d 1 1 logx tanx
dx x
+ + +
The expression you provided appears to be an integral with multiple terms involving logarithmic and trigonometric functions. To solve it, we need to break it down and evaluate each term separately.
Let's examine each term in the given expression:The integral of 1 with respect to x is simply x.The integral of 1/x is ln|x|.
The integral of tan(x) can be evaluated using a substitution or integration by parts technique, depending on the specific limits of integration or any additional context provided.
Without specific limits or further instructions, it's challenging to provide a precise solution or simplify the expression further. However, if you provide more information or clarify the problem statement, I can help you with a more detailed solution.
For more such questions on integral
https://brainly.com/question/26505535
#SPJ8
Select the correct answer.
Mr. Miller owns two hotels and is ordering towels for the rooms. He ordered 27 hand towels and 48 bath towels for a bill of $540 for the first hotel. He
ordered 50 hand towels and 24 bath towels for a bill of $416 for the other hotel.
What is the cost of one hand towel and one bath towel?
O A.
OB.
OC.
O D.
The cost of one hand towel is $4 and the cost of one bath towel is $9.
The cost of one hand towel is $9 and the cost of one bath towel is $4.
The cost of one hand towel is $5 and the cost of one bath towel is $8.
The cost of one hand towel is $8 and the cost of one bath towel is $5.
Answer: D: The cost of one hand towel is $8 and the cost of one bath towel is $5.
Step-by-step explanation:
Let's assume the cost of one hand towel is 'x' dollars and the cost of one bath towel is 'y' dollars.
For the first hotel, Mr. Miller ordered 27 hand towels and 48 bath towels, resulting in a bill of $540. This can be expressed as the equation:
27x + 48y = 540 ...(equation 1)
For the second hotel, Mr. Miller ordered 50 hand towels and 24 bath towels, resulting in a bill of $416. This can be expressed as the equation:
50x + 24y = 416 ...(equation 2)
To solve this system of equations, we can use any suitable method such as substitution or elimination. Let's use the elimination method:
Multiplying equation 1 by 2 and equation 2 by 3, we get:
54x + 96y = 1080 ...(equation 3)
150x + 72y = 1248 ...(equation 4)
Now, subtracting equation 4 from equation 3, we have:
(54x + 96y) - (150x + 72y) = 1080 - 1248
-96x + 24y = -168
Dividing both sides of the equation by -24, we get:
4x - y = 7 ...(equation 5)
Now, we have a system of equations:
4x - y = 7 ...(equation 5)
50x + 24y = 416 ...(equation 2)
Solving this system of equations, we find that x = 8 and y = 5.
Therefore, the cost of one hand towel is $8 and the cost of one bath towel is $5.
So, the correct answer is option D: The cost of one hand towel is $8 and the cost of one bath towel is $5.
Answer:
Step-by-step explanation:
Total cost of hand towels for first hotel = 27 * $5 = $135
Total cost of bath towels for first hotel = 48 * $8 = $384
Total cost of hand towels for second hotel = 50 * $5 = $250
Total cost of bath towels for second hotel = 24 * $8 = $192
Total cost of all hand towels = $135 + $250 = $385
Total cost of all bath towels = $384 + $192 = $576
Total number of hand towels = 27 + 50 = 77
Total number of bath towels = 48 + 24 = 72
Average cost of one hand towel = $385 / 77 = $5
Average cost of one bath towel = $576 / 72 = $8
Pls help I am stuck thank you so much
The perimeter of shape C is 30 cm shorter than the total perimeter of A and B.
What is the perimeter of a polygon?The perimeter of a polygon is given by the sum of all the lengths of the outer edges of the figure, that is, we must find the length of all the edges of the polygon, and then add these lengths to obtain the perimeter.
Hence the perimeter of each shape is given as follows:
A = 2 x (5 + 12) = 34 cm.B = 2 x (4 + 9) = 26 cm.C = 12 + 5 + 9 + 4 = 30 cm.Then the difference is given as follows:
34 + 26 - 30 = 30 cm.
More can be learned about the perimeter of a polygon at https://brainly.com/question/3310006
#SPJ1
Determine the equation of the circle graphed below 100pts pls
Answer:
(x + 5)² + (y – 1)² = 25
Step-by-step explanation:
Note that the general equation of a circle is (x – h)² + (y – k)² = r², where (h, k) represents the location of the circle's center, and r represents the length of its radius.
The circle is 10 units in diamater, so the radius is half this: r=10/2=5.
The circle goes from -10 to 0 along the x-axis, so the x-coordinate of its centre is halfway between this: h=(-10+0)/2=-10/2=-5
The circle goes from -4 to 6 along the y-axis, so the y-coordinate of its centre is halfway between this: k=(-4+6)/2=-2/2=1
Now that we know r, h, and k, we can sub these into the general formula to get our equation:
(x - (-5))² + (y – 1)² = 5²
(x + 5)² + (y – 1)² = 25
How many solutions does this system of equations have?
-x+7
= -2x³ + 5x² + x - 2
O A.
0 в.
OC.
D.
no solution
1 solution
2 solutions
3 solutions
Reset
Next
The system of equation: -x + 7 = -2x³ + 5x² + x - 2 has three solutions
The correct answer is option D.
To solve the system of equations:
-x + 7 = -2x³ + 5x² + x - 2
We need to simplify and rearrange the equation to find its solutions. Let's start by combining like terms:
-x + 7 = -2x³ + 5x² + x - 2
Simplifying the left side:
7 = -2x³ + 5x² - x - 2
Next, let's arrange the equation in descending order of the variable's exponent:
-2x³ + 5x² - x - 2 = 7
Now, let's move all terms to one side of the equation to set it equal to zero:
-2x³ + 5x² - x - 2 - 7 = 0
Simplifying further:
-2x³ + 5x² - x - 9 = 0
To determine the number of solutions, we can analyze the degree of the equation. Since it is a cubic equation, it can have a maximum of three real solutions.
The given system of equations is:
-x + 7 = -2x³ + 5x² + x - 2
To find the solutions, we need to set the equation equal to zero. Let's rearrange the terms:
2. -2x³ + 5x² - x - 9 = 0
Now, we can try to factor or use numerical methods to solve the equation. However, factoring a cubic equation can be complex and time-consuming. In this case, we'll use numerical methods to approximate the solutions.
One common numerical method is the Newton-Raphson method, which involves making an initial guess for the solutions and iterating to converge on a more accurate solution.
Using numerical software or calculators, we can find the approximate solutions of the equation as follows:
x ≈ -1.607, x ≈ 1.279, and x ≈ 3.328
For more such information on: system of equation:
https://brainly.com/question/13729904
#SPJ8
Use basic inference rules to establish the validity of the argument: p ⟹ ¬q ,q V r ,p V u ,¬r├ u
Using basic inference rules, we can establish the validity of the argument: p ⟹ ¬q, q V r, p V u, ¬r ├ u.
1. We are given the following premises:
- p ⟹ ¬q (Premise 1)
- q V r (Premise 2)
- p V u (Premise 3)
- ¬r (Premise 4)
2. To prove the conclusion, u, we need to use the premises and apply inference rules.
3. From Premise 4 (¬r) and the Disjunctive Syllogism rule, we can deduce ¬q: (¬r, q V r) ⟹ ¬q.
4. From Premise 1 (p ⟹ ¬q) and Modus Ponens, we can conclude ¬p: (p ⟹ ¬q, ¬q) ⟹ ¬p.
5. From Premise 3 (p V u) and Disjunctive Syllogism, we obtain ¬p V u.
6. Using Disjunctive Syllogism with ¬p V u and ¬p, we can derive u: (¬p V u, ¬p) ⟹ u.
7. From Premise 2 (q V r) and Disjunctive Syllogism, we have q.
8. Finally, using Modus Tollens with q and ¬q, we can deduce ¬p: (q, p ⟹ ¬q) ⟹ ¬p.
9. Therefore, combining ¬p and u, we can conclude the desired result: ¬p ∧ u.
10. Since ¬p ∧ u is logically equivalent to u, we have established the validity of the argument: p ⟹ ¬q, q V r, p V u, ¬r ├ u.
For more such questions on validity, click on:
https://brainly.com/question/16216589
#SPJ8
Rearrange the equation so u is the independent variable
-12u+13=8w-3
w=_______
the answer is
w = -3/2 u + 2
Pamela bought a cat carrier to take her new kitten, Muffinnette, to the vet. The carrier is shaped like a rectangular prism that is 15 inches long, 9 1/2
inches wide, and 10 inches tall.
Which equation can you use to find the volume of the cat carrier, V?
What is the volume of the cat carrier?
Evaluate the expression. −3[−4(3−10)−12] over −2(−1) What is the value of the expression?
Answer: -24
Step-by-step explanation:
To evaluate the expression, I guess we need to break it down into steps:
Expression: -3[-4(3-10)-12] / -2(-1)
Step1: Simplify the innermost parentheses Inside the square brackets: 3 - 10 = -7 Expression becomes: -3[-4(-7) - 12] / -2(-1)
Step2: Simplify the multiplication in square brackets: -4 * (-7) = 28. Expression becomes: -3[28 - 12] / -2(-1)
Step3: Simplify the subtraction inside the square brackets: 28 - 12 = 16. Expression becomes: -3[16] / -2(-1)
Step4: Simplify the multiplication outside the square brackets: -3 * 16 = -48. Expression becomes: -48 / -2(-1)
Step5: Simplify the multiplication inside the denominator: -2 * (-1) = 2 Expression becomes: -48 / 2
Step 6: Perform the division -48 divided by 2 is equal to -24
Therefore, the value of the expression -3[-4(3-10)-12] / -2(-1) is -24.
Sarah has 12 cents. If she adds 1 dime and 1 quarter, how much money will she have?
Answer:
47 cents or $0.47
Step-by-step explanation:
1 dime = 10 cents (or $0.1)
1 quarter = 25 cents or ($0.25)
12 cents + 1 dime + 1 quarter = 12 + 10 + 25 = 47 cents
Select the correct answer. What is the solution to this equation? 9^x - 1 = 2 O A. - 1/1/20 OB. 2 O C. OD. 1/1/20 1 23 Edmentum. All rights reserved. Reset Next
Answer:
D. 1/2
Step-by-step explanation:
9^x - 1 = 2
9^x = 3
x = log{sub}9 (3)
x = 1/2 (9^(1/2)=3)
Roger can run one mile in 9 minutes. Jeff can run one mile in 6 minutes. If Jeff gives Roger a 1 minute head start, how
long will it take before Jeff catches up to Roger? How far will each have run?
They each will have run of a mile.
Both Roger and Jeff will have run a distance of 1/3 mile when Jeff catches up to Roger after 2 minutes.
To solve this problem, we can determine the relative speeds of Roger and Jeff.
Since Roger runs one mile in 9 minutes, his speed is 1/9 miles per minute.
Similarly, Jeff runs one mile in 6 minutes, so his speed is 1/6 miles per minutes.
Let's assume that Jeff catches up to Roger after t minutes.
In that time, Roger would have run (1/9) [tex]\times[/tex] t miles, and Jeff would have run (1/6) [tex]\times[/tex] t miles.
Since Jeff gives Roger a 1-minute head start, we can express their distances covered as:
Distance covered by Roger = (1/9) [tex]\times[/tex] (t+1) miles
Distance covered by Jeff = (1/6) [tex]\times[/tex] t miles
For Jeff to catch up to Roger, their distances covered must be equal. So we can set up the equation:
(1/9) [tex]\times[/tex] (t+1) = (1/6) [tex]\times[/tex] t
To solve for t, we can cross-multiply and simplify:
6(t+1) = 9t
6t + 6 = 9t
6 = 9t - 6t
6 = 3t
t = 2
Therefore, it will take 2 minutes for Jeff to catch up to Roger.
Substituting t = 2 back into the equations, we can find the distances covered by each:
Distance covered by Roger = (1/9) [tex]\times[/tex] (2+1) = 1/3 mile
Distance covered by Jeff = (1/6) [tex]\times[/tex] 2 = 1/3 mile
For similar question on distance.
https://brainly.com/question/28529268
#SPJ8
Which point could not be part of a function that includes (3, -1), (4, 2), (5, 4), (-2, 0), and (8, -3)?
(6, -7)
(2,2)
(3, -2)
(7, 4)
Answer:
(3, -2) is the correct choice.