The compounds arranged in order of increasing percentage of oxygen by mass are C2H4O2, NO2, CO2, H2O, and O2. Hence, the correct option is C2H4O2, NO2, CO2, H2O, and O2.
StepsThe percentage of oxygen by mass in each compound can be calculated using their molecular weight and the weight of the oxygen atoms present in the molecule.
C2H4O2: Molecular weight = 60.05 g/mol, 4 oxygen atoms present, so %O = (4 x 16.00 g/mol) / 60.05 g/mol x 100% = 42.63%
NO2: Molecular weight = 46.01 g/mol, 2 oxygen atoms present, so %O = (2 x 16.00 g/mol) / 46.01 g/mol x 100% = 69.57%
CO2: Molecular weight = 44.01 g/mol, 2 oxygen atoms present, so %O = (2 x 16.00 g/mol) / 44.01 g/mol x 100% = 72.73%
O2: Molecular weight = 32.00 g/mol, 2 oxygen atoms present, so %O = (2 x 16.00 g/mol) / 32.00 g/mol x 100% = 100.00%
H2O: Molecular weight = 18.02 g/mol, 1 oxygen atom present, so %O = (1 x 16.00 g/mol) / 18.02 g/mol x 100% = 88.86%
Therefore, the compounds arranged in order of increasing percentage of oxygen by mass are C2H4O2, NO2, CO2, H2O, and O2. Hence, the correct option is C2H4O2, NO2, CO2, H2O, and O2.
learn more about mass here
https://brainly.com/question/19385703
#SPJ1
In studying normal and mutant forms of a particular human enzyme, a geneticist came across a very interesting mutant form of the enzyme. The normal enzyme is 227-amino acids long, but the mutant form was 312-amino acid long, having that extra 85 amino acid as the block in the middle of the normal sequence. What are possible explanations for this phenomenon? How would you distinguish among them?
Determining the underlying cause of the mutant form of the enzyme would require a combination of genetic, molecular, and biochemical techniques to identify any differences.
What is the explanation?The mutation may have resulted from an insertion of extra DNA sequence in the gene encoding the enzyme. This could occur due to a replication error or as a result of exposure to mutagens.
To distinguish this from other possibilities, one could sequence the DNA of the normal and mutant forms of the enzyme to identify the differences.
Learn more about enzyme:https://brainly.com/question/14953274
#SPJ1
Macmillan Learning
Calculate the standard change in Gibbs free energy for the reaction at 25 °C. Standard Gibbs free energy of formation values can
be found in this table.
Fe₂O3(s) + 2Al(s)
AG=
先
Bi
B
1
Al₂O₂ (s) + 2 Fe(s)
45°F Cloudy
kJ/mol
4 ENG
9:05 PM
3/23/2003
48
4
+
B
*
The standard change in Gibbs free energy for the reaction at 25 °C is 278.0 kJ/mol for the given enthalpy of reaction .
What is Gibbs free energy ?The Gibbs free energy (or Gibbs energy as the preferred name; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of non-volume expansion work that a thermodynamically closed system can perform at constant temperature and pressure. It also serves as a prerequisite for processes like chemical reactions that may place under these conditions. The Gibbs free energy is denoted by the symbol G(p,T) = U+pV-TS = H-TS, where p denotes pressure, T denotes temperature, U denotes internal energy, V denotes volume, H denotes enthalpy, and S denotes entropy.
What is enthalpy of reaction ?A thermodynamic quantity equal to a system's entire heat content. It is equivalent to the system's internal energy plus the product of pressure and volume.
According to the table, the standard Gibbs free energy of formation values are;
Fe₂O₃ (s) = -822.1 kJ/mol
Al₂O₃ (s) = -1675.2 kJ/mol
Al (s) = -1477.7 kJ/mol
Fe (s) = 0 kJ/mol
The reaction is:
Fe₂O₃ (s) + 2 Al (s) → Al₂O₃ (s) + 2 Fe (s).
Therefore, the standard change in Gibbs free energy for the reaction at 25 °C is:
AG = -822.1 kJ/mol + (2 x -1477.7 kJ/mol) - (-1675.2 kJ/mol) - (2 x 0 kJ/mol) = 278.0 kJ/mol
To know more about Gibbs free energy ,visit ;
https://brainly.com/question/20358734
#SPJ1
Which is NOT a compound?
A. silicon dioxide
B. water
C. carbon dioxide gas
D. oxygen gas
Answer: Oxygen
Explanation: Its found on the periodic table as an element.
calculate the pressure exerted by 2 mole of CO2 gas at temperature of 27 degrees Celsius and volume of 4 liters(dm3)
The pressure exerted by 2 moles of CO2 gas at a temperature of 27 degrees Celcius and a volume of 4 liters would be 12.27 atm.
Ideal gas problemFor an ideal gas:
PV = nRT
Where:
P is the pressureV is the volumen is the number of molesT is the temperatureR is a constantIn this case, n = 2 mole, v = 4 liters, and R = 0.08206
T = 27 + 273.15 = 300.15 K
Now we can plug in the values:
P(4) = (2)(0.08206)(300.15)
P = (2)(0.08206)(300.15) / 4
P = 12.27 atm
Therefore, the pressure exerted by 2 moles of CO2 gas at a temperature of 27 degrees Celsius and a volume of 4 liters is 12.27 atm.
More on ideal gas can be found here: https://brainly.com/question/28257995
#SPJ1
Is a mole to mole ratio needed? Yes or no
If the answer is yes what is it?
We need to use the mole ratio and in this case the mole ratio of the MgCl2 to the chloride ions is 1:2
What is the mole ratio?In chemistry, a mole ratio is the ratio of the amounts, in moles, of any two compounds or elements involved in a chemical reaction. It is determined by the coefficients of the balanced chemical equation for the reaction.
Mole ratios can be used in stoichiometric calculations to determine the amount of one substance that is required to react with a given amount of another substance, or to calculate the amount of product that will be formed from a given amount of reactant.
Learn more about mole ratio:https://brainly.com/question/15288923
#SPJ1
A sample of helium at 20 °C occupies a volume of 9.89 L
at a pressure of 5.79 atm.
What volume does this helium sample occupy if the pressure is reduced to 5.15 atm
while maintaining the temperature at 20 °C?
The helium sample would occupy a volume of 11.12 L if the pressure is reduced to 5.15 atm while maintaining the temperature at 20 °C.
What do Charles Law and Boyle's Law mean?According to Boyle's Law, gas volume grows as pressure lowers. According to Charles' Law, a gas expands in volume as its temperature rises. Moreover, Avogadro's Law states that as gas concentration rises, so does its volume.
The relationship between pressure, volume, and temperature of a gas is given by the ideal gas law:
PV = nRT
where P is the pressure of the gas, V is its volume, n is the number of moles of gas present, R is the gas constant, and T is the temperature of the gas in kelvins.
Assuming that the number of moles and the temperature of the gas remain constant, we can use the ideal gas law to solve for the new volume of the gas when the pressure is reduced:
P1V1 = P2V2
where P1 is the initial pressure, V1 is the initial volume, P2 is the final pressure, and V2 is the final volume.
Substituting the given values:
P1 = 5.79 atm
V1 = 9.89 L
P2 = 5.15 atm
T = 20 + 273.15 = 293.15 K (converting Celsius to Kelvin)
We can solve for V2:
P1V1 = P2V2
(5.79 atm)(9.89 L) = (5.15 atm)V2
V2 = (5.79 atm)(9.89 L) / (5.15 atm)
V2 = 11.12 L
To know more about temperature visit:-
brainly.com/question/29072206
#SPJ1
Formic acid has a Ka of 1.77 * 10 - 4.1To 55.0 mL of 0.25 M solution 75.0 mL of 0.12 M NaOH is added. What is the resulting pH .
The resulting pH of the solution is calculated as to be approximately 2.97.
What is formic acid?Formic acid is the simplest carboxylic acid that has the chemical formula HCOOH and structure H−C−O−H.
Balanced equation is : HCOOH + NaOH → NaCOOH + H₂O
n(HCOOH) = V x C = 55.0 mL x 0.25 mol/L = 0.01375 mol HCOOH
And 75.0 mL of 0.12 M NaOH solution contains: n(NaOH) = V x C = 75.0 mL x 0.12 mol/L = 0.009 mol NaOH
n(HCOOH remaining) = n(HCOOH) - n(NaOH) = 0.01375 mol - 0.009 mol = 0.00475 mol
pH = pKa + log([A-]/[HA])
pKa is acid dissociation constant for HCOOH, [A-] is concentration of formate ion (HCOO-), and [HA] is concentration of unreacted formic acid.
n(HCOO-) = n(NaOH) = 0.009 mol
V = 55.0 mL + 75.0 mL = 130 mL = 0.13 L
Therefore, concentration of unreacted formic acid is: [HA] = n(HCOOH remaining) / V = 0.00475 mol / 0.13 L = 0.0365 M
pH = pKa + log([A-]/[HA]) = -log(1.77 x 10⁻⁴ + log(0.009/0.0365) = 2.97
Therefore, resulting pH of the solution is approximately 2.97.
To know more about formic acid, refer
https://brainly.com/question/10738052
#SPJ1
Help and i will give you brislied
The answer to your question is D) An invasive species is not native to the ecosystem and causes harm.
Invasive species of plants and animals typically tend to overtake an ecosystem that they do not naturally occur in. Due to this, it causes the resources within the ecosystem to diminish which ultimately harms other species that naturally occur in said ecosystem.
CuCl2(aq)+Na2CO3(aq) complete and balance the precipitation reaction.
Answer: Na2CO3(aq) + CuCl2(aq) → 2 NaCl(aq) + CuCO3(s).
Explanation:
use particle diagram to present the reactant and products of a reaction between aluminium and hydrochloric acid
pls draw
During the reaction, the hydrochloric acid molecules break apart into hydrogen ions (H+) and chloride ions (Cl-), which then react with the aluminium atoms to form aluminium chloride (AlCl₃) and hydrogen gas (H₂).
Calculation-HCl HCl
| |
Al Al aluminium
| |
HCl HCl
| |
H₂ Cl₂
Here's a particle diagram to represent the reaction between aluminium and hydrochloric acid.In the diagram, the reactants (hydrochloric acid and aluminium) are shown on the left-hand side, while the products (hydrogen gas and aluminium chloride) are shown on the right-hand side. The circles represent individual particles, with the blue circles representing aluminium atoms, the green circles representing chlorine atoms from hydrochloric acid, and the white circles representing hydrogen atoms from hydrochloric acid.
to know more about aluminium and hydrochloric acid here:
brainly.com/question/31305643
#SPJ1
Chemistry Help Please! It's worth a lot of points
1.Copper is commonly used to make electrical wires. How many moles of copper are in 5.00 grams of copper wire?
2.Our bodies synthesize protein from amino acids. One of these amino acids is glycine, which has a molecular formula of C2H5O2N. How many moles of glycine molecules are contained in 28.35 grams of glycine?
3. Vitamin C is a covalent compound with the formula of C6H8O6. The recommended daily dietary allowance of vitamin C for children aged 4-8 years is 1.42 x 10-4 mol.
a. What is the mass of this allowance in grams?
b. How many moles of carbon are in 1.42 x 10-4 mol of C6H8O6?
Answer:
1. To determine the number of moles of copper in 5.00 grams of copper wire, we need to use the molar mass of copper. The molar mass of copper is 63.55 g/mol. We can use the following conversion factor:
1 mol Cu = 63.55 g Cu
Using this conversion factor, we can calculate the number of moles of copper:
5.00 g Cu × (1 mol Cu / 63.55 g Cu) = 0.0787 mol Cu
Therefore, there are 0.0787 moles of copper in 5.00 grams of copper wire.
2. To determine the number of moles of glycine molecules in 28.35 grams of glycine, we need to use the molar mass of glycine. The molar mass of glycine is 75.07 g/mol. We can use the following conversion factor:
1 mol glycine = 75.07 g glycine
Using this conversion factor, we can calculate the number of moles of glycine molecules:
28.35 g glycine × (1 mol glycine / 75.07 g glycine) = 0.3778 mol glycine
Therefore, there are 0.3778 moles of glycine molecules in 28.35 grams of glycine.
3. a. To determine the mass of the daily dietary allowance of vitamin C in grams, we can use the following conversion factor:
1 mol C6H8O6 = 176.12 g C6H8O6
Using this conversion factor, we can calculate the mass of the allowance:
1.42 × 10^-4 mol C6H8O6 × (176.12 g C6H8O6 / 1 mol C6H8O6) = 0.0248 g
Therefore, the mass of the daily dietary allowance of vitamin C for children aged 4-8 years is 0.0248 grams.
b. To determine the number of moles of carbon in 1.42 × 10^-4 mol of C6H8O6, we can use the molar mass of carbon. The molar mass of carbon is 12.01 g/mol. There are 6 carbons in each molecule of C6H8O6, so we can use the following conversion factor:
6 mol C / 1 mol C6H8O6
Using this conversion factor, we can calculate the number of moles of carbon:
1.42 × 10^-4 mol C6H8O6 × (6 mol C / 1 mol C6H8O6) = 8.52 × 10^-4 mol C
Therefore, there are 8.52 × 10^-4 moles of carbon in 1.42 × 10^-4 mol of C6H8O6.
(Please could you kindly mark my answer as brainliest you could also follow me so that you could easily reach out to me for any other questions)
What is the empirical formula for a compound containing 37.5% carbon, 12.6% hydrogen, and 49.9% oxygen? A. CH₂O B. C₂HO5 C. C₂H₁203 D. C₂H₂O₂
The empirical formula for the compound containing 37.5% carbon, 12.6% hydrogen, and 49.9% oxygen is CH₄O
How do i determine the empirical formula?The following data were obtained from the question:
Carbon (C) = 37.5%Hydrogen (H) = 12.6%Oxygen (O) = 49.9%Empirical formula =?From the above data, we can obtain the empirical formula for the compound as shown below:
Divide by their molar mass
C = 37.5 / 12 = 3.125
H = 12.6 / 1 = 12.6
O = 49.9 / 16 = 3.119
Divide by the smallest
C = 3.125 / 3.119 = 1
H = 12.6 / 3.119 = 4
O = 3.119 / 3.119 = 1
Thus, we can conclude that the empirical formula is CH₄O
Learn more about empirical formula:
https://brainly.com/question/29153210
#SPJ1
Special rules or laws to predict predominant products for alcohols and ethers in organic chemistry
As alcohols and ethers undergo various reactions, there are a number of organic chemistry rules and principles that may be utilised to anticipate the main products that will result from those reactions.
How does Markovnikov's law relate to alcoholic beverages?Given that the water molecule can be thought of as H—OH, the Markovnikov's rule-following regioselectivity of alcohol products indicates that the hydrogen atom joins to the double bond carbon that has more hydrogen atoms, and the OH group attaches to the carbon that has fewer hydrogen atoms.
The Markovnikov rule is what?According to Markovnikov's rule, when an asymmetrical alkene is combined with an asymmetrical reagent, the reagent's negative half will connect to the carbon atom that has the fewest hydrogen atoms.
To know more about organic chemistry visit:-
https://brainly.com/question/14623424
#SPJ1
Martha has a large amount of 1.25 M H₂SO4 in her lab. She needs 36 grams of H₂SO4
for a chemical reaction she wants to perform. How many liters of the solution should she use?
Show work to receive credit.
Martha needs to use 0.294 liters or 294 milliliters of the 1.25 M H₂SO4 solution to obtain 36 grams of H₂SO4.
What is Chemical Reaction?
In a chemical reaction, the atoms and molecules of the reactants are rearranged to form new compounds or products. Chemical reactions involve the breaking and forming of chemical bonds between atoms and molecules, which involves the absorption or release of energy.
We can use the formula:
to find the volume of the 1.25 M H₂SO4 solution that contains 36 grams of H₂SO4.
First, we need to calculate the number of moles of H₂SO4 in 36 grams:
molar mass of H₂SO4 = 2 x atomic mass of H + atomic mass of S + 4 x atomic mass of O
= 2 x 1.008 + 32.06 + 4 x 16.00
= 98.08 g/mol
moles of H₂SO4 = mass / molar mass
= 36 g / 98.08 g/mol
= 0.3675 mol
Now we can use the formula above to solve for the volume of the solution:
1.25 M = 0.3675 mol / volume (in liters)
volume (in liters) = 0.3675 mol / 1.25 M
= 0.294 L
= 294 mL
Learn more about Chemical Reaction from given link
https://brainly.com/question/25769000
#SPJ1
Calculate the PH of the solution in the Image
The solution has a pH of around 5.93.
Why is the buffer system of CH3COOH and CH3COONa used?When a weak acid or a weak base is applied in modest amounts, buffer solutions withstand the pH shift. A buffer made of a weak acid and its salt is an example of which is an acetic acid and sodium acetate solution (CH3COOH + CH3COONa).
The weak acid is then partially dissociated in water, resulting in the conjugate base and hydrogen ions:
CH3COOH + H2O ⇌ H3O+ + CH3COO-
The acid dissociation constant, Ka, which is what this reaction's equilibrium constant is, is as follows:
Ka = [H3O+][CH3COO-]/[CH3COOH]
The Henderson-Hasselbalch equation may be used to determine the pH of a solution:
pH = pKa + log([A-]/[HA])
To begin with, we must figure out how much CH3COOH is present in the solution:
moles of CH3COOH = M x V = 0.15 mol/L x 0.050 L = 0.0075 mol
mass of CH3COOH = moles x molar mass = 0.0075 mol x 60.05 g/mol = 0.450 g
After adding sodium acetate, the solution's residual CH3COOH will be:
0.450 g - 1.00 g
= -0.55 g
The amount of sodium acetate supplied may be used to determine the CH3COO- concentration:
moles of CH3COO-=1.00g/82.03 g/mol
=0.0122 mol
The concentration of CH3COO- in the solution will be:
0.0122 mol/0.050 L=0.244 M
The Henderson-Hasselbalch equation may now be used to determine the pH of the solution:
pH = pKa + log([A-]/[HA])
pKa = -log(Ka) = -log(1.75 x 10⁻⁵) = 4.756
[A-]/[HA] = [CH3COO-]/[CH3COOH]
= 0.244 M / 0.0075 M = 32.53
pH = 4.756 + log(32.53)
= 5.93
To know more about solution visit:-
https://brainly.com/question/22695394
#SPJ1
A sample of hydrogen nitrite or nitrous acid, HNO2 contains 8.8 x 1022 atoms. a. How many moles of nitric acid are in the sample? b. How much mass of nitric acid are in the sample?
Answer: The formula for nitrous acid is HNO2, not nitric acid (HNO3).
a. To find the number of moles of HNO2, we need to divide the number of atoms by Avogadro's number (6.022 x 10^23 atoms per mole):
moles = 8.8 x 10^22 atoms / 6.022 x 10^23 atoms/mol
moles = 0.146 mol HNO2
b. To find the mass of HNO2, we need to multiply the number of moles by the molar mass. The molar mass of HNO2 is:
1(1.008) + 1(14.01) + 2(15.99) = 63.01 g/mol
mass = 0.146 mol x 63.01 g/mol
mass = 9.20 g HNO2
Explanation:
If 24.00 grams of aluminum react with 30.00 grams of chlorine, how much aluminum chloride will be produced?
18.80 g
37.61 g
118.6 g
42.63 g
HCI + NaOH ->>
NaCl + H₂O
What volume of sodium hydroxide (NaOH) 0.9 M would be required to titrate 250 mL of hydrochloric acid (HCI)
0.25 M?
62.5 mL NaOH
(yellow)
69.44 mL NaOH
(purple)
90 mL NaOH
(blue)
Please help!!!!
The balanced chemical equation for the reaction between hydrochloric acid (HCI) and sodium hydroxide (NaOH) is:
HCI + NaOH -> NaCl + H2O
From the equation, we can see that 1 mole of HCI reacts with 1 mole of NaOH to produce 1 mole of NaCl and 1 mole of water.
First, let's calculate the number of moles of HCI in 250 mL of 0.25 M solution:
Molarity (M) = moles of solute / volume of solution (L)
0.25 M = moles of HCI / 0.25 L
moles of HCI = 0.25 L x 0.25 M = 0.0625 moles
Since 1 mole of NaOH reacts with 1 mole of HCI, we will need 0.0625 moles of NaOH to neutralize the HCI.
Now, let's calculate the volume of 0.9 M NaOH solution needed to provide 0.0625 moles of NaOH:
Molarity (M) = moles of solute / volume of solution (L)
0.9 M = 0.0625 moles of NaOH / volume of NaOH solution (L)
volume of NaOH solution (L) = 0.0625 moles / 0.9 M = 0.0694 L = 69.44 mL
Therefore, 69.44 mL of 0.9 M NaOH solution would be required to titrate 250 mL of 0.25 M HCI solution.
9: Archer used a balloon that contained 1.505 x 10-23 of Helium particles. Calculate the volume of the gas at 273 k and at 1 atm?
At 273 K and 1 atm, the helium gas's volume is [tex]4.33 * 10^{-23} L[/tex] .
The volume of a gas can be calculated using the Ideal Gas Law, which states that PV = nRT,
where V is the gas's volume, n is its moles in existence, R is the ideal gas constant (8.314 J/mol K), T is the gas's temperature in Kelvin, and P is the gas's atmospheric pressure.
Given that the number of moles of the gas is 1.505 x 10-23 and the temperature is 273 K (0°C), we can rearrange the equation to solve for V:
[tex]V = \frac{nRT}{P}\\[/tex]
[tex]V = \frac{(1.505 * 10^{-23})(8.314 J/mol-K)(273 K)}{(1 atm)}[/tex]
[tex]V = 4.33 * 10^{-23} L[/tex]
Therefore, the volume of the helium gas at 273 K and 1 atm is [tex]4.33 * 10^{-23} L[/tex]
learn more about helium gas Refer:brainly.com/question/13645498
#SPJ1
Question 6 of 10
Which prefix indicates a molecule with 7 carbon atoms?
OA. Non-
OB. Dec-
C. Hept-
OD. Eth-
Answer:
Hept
Explanation:
Non- 9 C9
Dec- 10 C10
Eth- 2 C2
Hepth- 7 C7
So the answer is D, because it idicates a molecule with 7 carbon atoms.
Hopefully this helps! :)
Consider the following equilibrium reaction having gaseous reactants and products which of the following would result from increasing only the concentration of hydrochloric acid
Answer:the concetraion of chrolune decrease
Explanation:because the chrolune not stable
Which equation would be used to calculate the rate constant from initial
concentrations?
O A. Kea
OB. PV = nRT
O C. k=
[Cror
[A] [B]
O D.
Rate
[A] [BY
-Ea
k = Ae RT
The equation that would be used to calculate the rate constant from initial concentrations is option C:
k = [C] / ([A] [B])
What is Concentration?
It is a measure of how much of a particular substance is dissolved in a given volume of a solution.
where [A] and [B] are the initial concentrations of the reactants and [C] is the concentration of the product at a given time. This equation is known as the rate law for a second-order reaction.
The other equations listed are:
A. Kea - This is not a standard equation used to calculate rate constants from initial concentrations.
B. PV = nRT - This is the ideal gas law, which relates the pressure, volume, temperature, and number of moles of an ideal gas.
Learn more about Concentration from given link
https://brainly.com/question/26255204
#SPJ1
2. What happens when heat is removed from a substance at a critical temperature?
O A. The substance releases heat but won't change temperature until the state changes completely.
B. The temperature of the substance will change rapidly as heat is lost until the state changes completely.
C. The heat is cycled back into the substance, causing the temperature to increase.
D. The substance changes temperature at the same rate before, during, and after the change of state.
The lethal dose of aspirin is 50 mg per kg of body weight. How many 325 mg tablets would be deadly for a 60 lb child?
To determine the number of 325 mg tablets of aspirin that would be deadly for a 60 lb child, we first need to convert the weight to kg.
1 lb is equal to 0.453592 kg. Therefore, a 60 lb child weighs approximately 27.2155 kg (60 x 0.453592).
The lethal dose of aspirin is 50 mg per kg of body weight. Therefore, for a 27.2155 kg child, the lethal dose would be 1,360.775 mg (27.2155 x 50).
Each aspirin tablet is 325 mg. Therefore, the number of tablets that would be deadly for the child would be 4.19 (1,360.775 / 325).
However, it is important to note that even a slightly higher dose of aspirin can be harmful to a child, and it is never recommended to give aspirin to children without consulting a doctor first.
To know more about aspirin, visit :
https://brainly.com/question/29133232
#SPJ1
If two forces are going in opposite directions, find the net force by (A. multiply), (B. subtract), (C. add), (D. divide) the forces.
Answer:
B subtract
Explanation:
they are pulling away from one another so a and c are out of the question then that leaves you with b or d but we're not dividing anything. soooo we're left with B.
Perform the conversions.
958.5 mmHg=
atm
2.325 atm=
Torr
444.4 kPa=
atm
1427.2 mmHg=
Pa
Answer: To perform the conversions, we can use the following conversion factors:
1 atm = 760 mmHg
1 atm = 101.325 kPa
1 atm = 14.696 psi
1 atm = 101325 Pa
1 Torr = 1/760 atm
1 Pa = 1/101325 atm
Using these conversion factors, we can perform the conversions as follows:
958.5 mmHg = 958.5/760 atm = 1.2625 atm (rounded to 4 decimal places)
2.325 atm = 2.325 x 760 Torr = 1767 Torr (rounded to the nearest whole number)
444.4 kPa = 444.4/101.325 atm = 4.3817 atm (rounded to 4 decimal places)
1427.2 mmHg = 1427.2/760 atm = 1.8789 atm
= 1.8789 x 101325 Pa = 190694.87 Pa (rounded to 2 decimal places)
Therefore, the conversions are:
958.5 mmHg = 1.2625 atm
2.325 atm = 1767 Torr
444.4 kPa = 4.3817 atm
1427.2 mmHg = 190694.87 Pa
The conversions is given as: 958.5 mmHg=1.26 atm, 2.325 atm=1767.9 Torr, 444.4 kPa=4.381 atm and 1427.2 mmHg= 190237.2 Pa
Conversions refer to the process of changing a quantity or value from one unit of measurement to another. It involves converting the numerical value while maintaining the same physical quantity.
1 atm = 760 mmHg (Torr)
1 atm = 101.325 kPa
1 mmHg (Torr) = 133.322 Pa
Converting 958.5 mmHg to atm:
958.5 mmHg × (1 atm / 760 mmHg) = 1.26 atm
Converting 2.325 atm to Torr:
2.325 atm ×(760 mmHg / 1 atm) = 1767.9 Torr
Converting 444.4 kPa to atm:
444.4 kPa × (1 atm / 101.325 kPa) = 4.381 atm
Converting 1427.2 mmHg to Pa:
1427.2 mmHg × (133.322 Pa / 1 mmHg) = 190237.2 Pa
To know more about conversions, here:
https://brainly.com/question/33338623
#SPJ6
2K(s) + 2H₂O(l) → 2KOH(aq) + H₂(g) in word form
Two solid potassium (K) combine with two liquid water (H2O) molecules to generate two aqueous potassium hydroxide (KOH) and one gaseous hydrogen (H2) molecule. For this reaction, the chemical equation is balanced as follows:
2K(s) + 2H2O(l) → 2KOH(aq) + H2(g)
Steps
The chemical reaction between potassium and water is depicted in this equation. Two liquid water (H2O) molecules and two solid potassium (K) atoms serve as the reactants.
The reaction moves from the left to the right, as shown by the arrow sign, which also denotes its direction.
In the reaction, hydrogen gas and potassium hydroxide are created when potassium atoms interact with water molecules.
Two molecules of aqueous potassium hydroxide (KOH) and one molecule of gaseous hydrogen (H2) are the reaction's end products.
According to the correctly balanced chemical equation, two potassium atoms and two water molecules combine to form two molecules of potassium hydroxide and one hydrogen gas molecule.
learn more about potassium hydroxide here
https://brainly.com/question/28330489
#SPJ1
if equal 20g of both So2 and O2 are reacted. which substance is alimiting reacted ? how many grams of are formed ?
Answer: The balanced chemical equation for the reaction between SO2 and O2 is:
2 SO2 + O2 → 2 SO3
According to the equation, 1 mole of O2 reacts with 2 moles of SO2 to form 2 moles of SO3.
To determine which substance is the limiting reactant, we need to calculate the amount of product that can be formed by each reactant and choose the reactant that produces the least amount of product.
First, we need to determine the number of moles of SO2 and O2 present:
Number of moles of SO2 = mass / molar mass = 20 g / 64.06 g/mol = 0.312 moles
Number of moles of O2 = mass / molar mass = 20 g / 32.00 g/mol = 0.625 moles
Now we can calculate the amount of product formed by each reactant:
Amount of SO3 formed from SO2 = 0.312 moles × (2 moles SO3 / 2 moles SO2) × (80.06 g/mol SO3) = 12.48 g SO3
Amount of SO3 formed from O2 = 0.625 moles × (2 moles SO3 / 1 mole O2) × (80.06 g/mol SO3) = 100.10 g SO3
From the calculations, we can see that the limiting reactant is SO2, as it produces the least amount of product (12.48 g of SO3). Therefore, 12.48 g of SO3 is formed when 20 g of both SO2 and O2 are reacted.
Explanation:
A 0.5998g sample of a new compound has been analyzed and found to contain the following masses of elements: carbon = 0.1.565g ; hydrogen = 0.02627g ; oxygen = 0.4170g. Calculate the empirical formula of the compound.
The empirical formula of a novel compound is CH2O if an analysis of a 0.5998g sample reveals that it contains the following masses of elements: carbon (0.1.565g), hydrogen (0.02627g), and oxygen (0.4170g).
What's in a 23.0 g sample of a substance?You need to be aware of a compound's molar mass in order to ascertain its molecular formula. You can then decide which multiple of the empirical formula corresponds to the right molecular formula. 12.0g of carbon, 3.0g of hydrogen, and 8.0g of oxygen make up a compound in a 23.0g sample.
Which chemical has an empirical formula that is 92.3% carbon and 7.7% hydrogen?In a hydrocarbon, carbon makes up 92.3% of the mass and hydrogen makes up 7.7%.
To know more about empirical formula visit:-
https://brainly.com/question/14044066
#SPJ1
a 0.1 m acid solution at 298 k would conduct electricity best of the acid had ka value of
As the conductivity of a 0.1 M acid solution at 298 K depends on the acid's strength, a specific Ka value cannot be determined.
How can you figure out the acid's ka value, which would allow it to conduct electricity most effectively?We may utilize the following relationship between Ka and the level of ionization to estimate the Ka value that would produce the maximum conductivity for a 0.1 M acid solution at 298 K:
α²/(1-α) = Ka/[H+]
α²/(1-α) = Ka/0.1
1²/(1-1) = Ka/0.1\sKa = 0
Given that only strong acids completely breakdown into ions in solution, it follows that the acid would need to be strong with a Ka value significantly greater than zero in order to conduct electricity most effectively.
To learn more about conductivity of acid visit:
brainly.com/question/28721140
#SPJ1