as it cools, olive oil slowly solidifies and forms a solid over a range of temperatures. which best describes the solid?

Answers

Answer 1


The solid formed when olive oil cools is called an oleogel.

An oleogel is a semisolid material that is formed by the physical combination of liquid oil and a gelling agent. It has a soft, solid texture and typically has a melting point that is lower than that of the pure liquid oil.

Oleogels are temperature-sensitive materials, which means that their physical state (solid or liquid) changes depending on their temperature.

The transition temperature range, in which oleogels go from liquid to solid and vice versa, is known as the “gelation range.” In olive oil, this range is generally between 13°C (55°F) and 28°C (82°F).

Because oleogels are formed through a physical process (rather than a chemical process), they are not as hard as true solids and can deform easily when pressure is applied.

They can also return to their liquid form if they are exposed to temperatures higher than their gelation range.

For these reasons, oleogels are often used in foods such as spreads and sauces that must maintain their shape and texture under varying conditions.

When olive oil cools, it slowly solidifies and forms an oleogel over a range of temperatures. An oleogel is a semisolid material with a soft, solid texture, and it has a gelation range between 13°C (55°F) and 28°C (82°F).

Oleogels are temperature-sensitive materials that can deform easily and return to their liquid form when exposed to temperatures outside their gelation range.

to know more about olive oil  refer here:

https://brainly.com/question/12056015#

#SPJ11


Related Questions

which period contains three elements that commonly exist as diatomic molecules at standard temperature and pressure conditions?

Answers

Answer:

H2, N2, O2, F2, Cl2

Explanation:

A student exposed r-1-bromo-2-propanol to sodium hydroxide, isolated an optically active product, and collected the proton nmr below. what is the structure of the compound that the student isolated?

Answers

The student obtained an optically active product after exposing r-1-bromo-2-propanol to sodium hydroxide. The proton NMR of the product is also provided.

The structure of the compound that the student isolated is:CH3 – CH (OH) – CH2 – Br

In the given compound r-1-bromo-2-propanol, the bromine atom is attached to the first carbon atom. When this compound is treated with sodium hydroxide, the hydroxide ion attacks the carbon atom attached to the bromine atom and forms a negatively charged oxygen atom.This negatively charged oxygen atom further attracts the proton of the adjacent carbon atom (second carbon atom). After the transfer of a proton, the negatively charged oxygen atom gets neutralized and an alkoxide ion is formed. This alkoxide ion further attacks the third carbon atom and the compound is formed.In the compound obtained, there is no plane of symmetry or center of symmetry. This makes the compound optically active.

Further, the proton NMR shows the presence of a singlet at chemical shift 1.1 ppm due to the presence of three equivalent methyl groups. The presence of a broad singlet at chemical shift 3.7 ppm is due to the presence of –OH group. The singlet at chemical shift 4.2 ppm is due to the presence of –CH2 group.The structure of the compound that the student isolated is CH3 – CH (OH) – CH2 – Br.

Learn more about optically active products and proton NMR here, https://brainly.com/question/24215073

#SPJ11

which three acids are used during this laboratory? give names and formulas for each. also indicate whether each acid is weak or strong and whether each acid is an oxidizing acid. acid formula acid name strong or weak? oxidizing or not? 1. 2. 3.

Answers

In this laboratory, the following three acids are used: Hydrochloric acid (HCl) with a formula of HCl, Sulfuric acid (H2SO4) with a formula of H2SO4, and Nitric acid (HNO3) with a formula of HNO3.Acids are known to be oxidizing agents, meaning that they are capable of accepting electrons to reduce other species.

Strong acids are those that completely dissociate into their constituent ions in aqueous solution. Hydrochloric acid, sulfuric acid, and nitric acid are all strong acids.

Here are the acids used during this laboratory: Acid Formula Name Strong or weak? Oxidizing or not?  

1. (HCL)Hydrochloric acid Strong (Yes) 2. (H2SO4) Sulfuric acid Strong (Yes) 3. (HNO3) Nitric acid Strong (Yes) Acids are used in various laboratory experiments due to their unique chemical and physical properties.

They are used as reactants in many chemical reactions, as solvents for various compounds, and as catalysts for several reactions, among other applications.

To know more about acids refer here:

https://brainly.com/question/14072179#

#SPJ11

the specific heat of plastic is 50 times greater than the specific heat of lead, 10 times greater than the specific heat of stone, and 1.5 times greater than the specific heat of water. if the samples of plastic, lead, stone, and water have identical masses and identical starting temperatures, and are given identical increases in energy of 1,000 j, which sample will end up with the highest temperature?

Answers

The substances that is going to end up with the highest temperature in the list is water.

How does heat capacity affect temperature rise?

Heat capacity is the amount of heat energy required to raise the temperature of a substance by one degree Celsius or one Kelvin. It is a measure of the substance's ability to store heat. The greater the heat capacity of a substance, the more heat energy it can absorb before its temperature rises significantly.

When heat is added to a substance, the temperature of the substance increases. The amount by which the temperature increases depends on the amount of heat added and the heat capacity of the substance.

Learn more about heat capacity:https://brainly.com/question/1344005

#SPJ1

Draw the sun and label the 4 layers from middle to the surface.​

Answers

The layers of the sun can be seen in the image attached.

What are the layers of the sun?

The sun is composed of several layers, including:

Core: The innermost layer of the sun where nuclear fusion takes place. The temperature in the core is about 15 million degrees Celsius.

Radiative Zone: This layer is between the core and the convection zone. Energy produced in the core is transported through the radiative zone by photons.

Convection Zone: The outermost layer of the sun's interior where hot gas rises and cooler gas sinks. The energy produced in the core is carried to the surface by convection.

Photosphere: The visible surface of the sun where most of the sun's light is emitted. The temperature of the photosphere is around 5,500 degrees Celsius.

Chromosphere: A thin layer above the photosphere that emits a reddish glow during solar eclipses. The temperature of the chromosphere ranges from 4,000 to 10,000 degrees Celsius.

Corona: The outermost layer of the sun's atmosphere, extending millions of kilometers into space. The temperature of the corona is extremely high, around 1 to 3 million degrees Celsius.

Learn more about the sun:https://brainly.com/question/17376727

#SPJ1

the mass of a single atom of an element which has only one stable isotope is 1.79*10^-22 grams. what is the atomic weight of the element

Answers

The atomic weight of the element is 1.79 × 10-22 grams

The atomic weight of an element is the average mass of its atoms relative to the mass of an atom of carbon-12, which is defined as 12.0000 atomic mass units (amu).

Since the element has only one stable isotope, its atomic weight is equal to the mass of a single atom of the element in amu.

Converting the given mass of a single atom from grams to amu:

1.79 x 10^-22 g x (1 amu / 1.66054 x 10^-24 g) = 1.079 amu

Therefore, the atomic weight of the element is 1.079 amu.

To know more about atomic weight click here:

https://brainly.com/question/13000210

#SPJ11

if a student reacts 4.40 ml of acetic acid with 3.35 ml of isopentyl alcohol and obtains 3.25 ml of isopentyl acetate as the product, what was the percent yield

Answers

The percent yield of isopentyl acetate is 71.23% when reacting 4.4 ml f acetic acid with 3.35 ml of isopentyl alcohol

Percentage yield calculation

Percentage yield can be defined as the ratio of the actual yield of a reaction to the theoretical yield of a reaction, multiplied by 100.

The percentage yield is calculated as follows:

Percentage yield = (actual yield/theoretical yield) × 100

Given data:

Volume of acetic acid used = 4.40 ml

Volume of isopentyl alcohol used = 3.35 ml

Volume of isopentyl acetate obtained = 3.25 ml

Density of acetic acid = 1.049 g/mL and its molar mass = 60.05 g/mol

Density of isopentyl alcohol = 0.809 g/mL and its molar mass = 88.15 g/mol

Density of isopentyl acetate = 0.876 g/mL and its molar mass = 130.19 g/mol

The balanced chemical equation for the reaction is:

C5H11OH + CH3COOH → CH3COOC5H11 + H2O

First, we need to determine which reactant is the limiting reactant. We can do this by calculating the number of moles of each reactant:

Number of moles of acetic acid = (volume in mL) x (density) / (molar mass)Number of moles of acetic acid = (4.40 mL) x (1.049 g/mL) / (60.05 g/mol) = 0.0767 molNumber of moles of isopentyl alcohol = (volume in mL) x (density) / (molar mass)Number of moles of isopentyl alcohol = (3.35 mL) x (0.809 g/mL) / (88.15 g/mol) = 0.0307 mol

The mole ratio of acetic acid to isopentyl alcohol in the reaction is 1:1, so the limiting reactant is isopentyl alcohol because there are fewer moles of it.

The theoretical yield of isopentyl acetate can be calculated from the number of moles of limiting reactant:

Number of moles of isopentyl acetate = (number of moles of limiting reactant) = 0.0307 mol

Now we can calculate the percent yield:

Percent yield = (actual yield / theoretical yield) x 100%

The actual yield is given as 3.25 mL of isopentyl acetate, but we need to convert this to moles:

Number of moles of isopentyl acetate = (volume in mL) x (density) / (molar mass)Number of moles of isopentyl acetate = (3.25 mL) x (0.876 g/mL) / (130.19 g/mol) = 0.022 mol

Percent yield = (0.022 mol / 0.0307 mol) x 100% = 71.23%

Therefore, the percent yield of isopentyl acetate is 71.23%.

learn about percentage yield

https://brainly.com/question/11963853

#SPJ11

would you expect the entropy of 1.00 moles of agcl added to 1.00 l of water to form agcl (aq) to be greater than, less than, or equal to the entropy of 1.00 moles of nacl added to 1.00 l of water to form nacl (aq)? explain your reasoning. (hint: think about your solubility rules)

Answers

The entropy of 1.00 moles of AgCl added to 1.00 L of water to form AgCl(aq) would be less than the entropy of 1.00 moles of NaCl added to 1.00 L of water to form NaCl(aq).

This is because AgCl is less soluble in water compared to NaCl, due to solubility rules. When NaCl dissolves in water, it forms more ions and increases entropy more significantly than AgCl does.

Entropy is a thermodynamic quantity that describes the degree of disorder or randomness in a system. When a substance dissolves in a solvent, the entropy of the system increases due to the increased disorder caused by the mixing of the two substances.

In the given scenario, 1.00 moles of AgCl is added to 1.00 L of water to form AgCl(aq), and 1.00 moles of NaCl is added to 1.00 L of water to form NaCl(aq).

Since NaCl is more soluble in water compared to AgCl, it forms more ions when it dissolves in water, resulting in a greater increase in disorder and hence a greater increase in entropy.

Solubility rules state that AgCl is insoluble in water, meaning that it does not dissociate into ions and remains as AgCl(s) in water. On the other hand, NaCl is highly soluble in water, meaning that it dissociates into Na+ and Cl- ions when it dissolves in water.

Therefore, when NaCl dissolves in water, it forms more ions and contributes more to the increase in entropy of the system compared to AgCl.

Therefore, the entropy of 1.00 moles of AgCl added to 1.00 L of water to form AgCl(aq) would be less than the entropy of 1.00 moles of NaCl added to 1.00 L of water to form NaCl(aq), due to the difference in solubility and the resulting difference in the number of ions formed.

To learn more about entropy, refer below:

https://brainly.com/question/13135498

#SPJ11

PLEASE HELPPPP asapppppppppp

Answers

It has a charge because if I don’t get these 18 points I’m goin explode

magnesium chloride is a common deicer used to melt snow on the road in winter. what is the freezing point of a solution where 34.4 g of magnesium chloride is dissolved in 0.9 kg of water (kf

Answers

Answer : The freezing point of the solution is -0.746 °C.

Magnesium chloride is a common deicer used to melt snow on the road in winter.To find out the freezing point of the solution, we need to use the formula ΔTf = Kf × m where ΔTf is the freezing point depression, Kf is the freezing point depression constant, and m is the molality of the solution.

First, we need to find the molality of the solution. Molality is defined as the number of moles of solute per kilogram of solvent. The molar mass of magnesium chloride is 95.2 g/mol. Therefore, the number of moles of magnesium chloride in the solution is:

Number of moles of magnesium chloride = mass of magnesium chloride / molar mass of magnesium chloride
= 34.4 g / 95.2 g/mol
= 0.361 moles

The mass of water in the solution is 0.9 kg, which is equivalent to 900 g. Therefore, the molality of the solution is:
Molality = number of moles of solute / mass of solvent in kg
= 0.361 moles / 0.9 kg
= 0.401 m

The freezing point depression constant of water is 1.86 °C/m. Therefore, the freezing point depression of the solution is: ΔTf = Kf × m
= 1.86 °C/m × 0.401 m
= 0.746 °C

The freezing point of pure water is 0 °C. Therefore, the freezing point of the solution is: Freezing point of solution = freezing point of pure solvent − ΔTf
= 0 °C − 0.746 °C
= -0.746 °C

Know more about freezing point here:

https://brainly.com/question/3121416

#SPJ11

write the reaction that produces carbon dioxide in the separatory funnel in the workup of the reaction. g

Answers

One common reaction that produces carbon dioxide in organic chemistry workup is the reaction between sodium bicarbonate (NaHCO₃) and an acid.

When an acidic solution is added to a mixture containing sodium bicarbonate, carbon dioxide gas is produced as a result of the following reaction:

NaHCO₃ + H+ → Na+ + CO₂ + H₂O

The carbon dioxide gas will then bubble out of the mixture and can be collected in a separate container or released into the air.

In a separatory funnel workup, this reaction may be used to remove excess acid from an organic reaction mixture. The mixture is first extracted with a suitable organic solvent, and then an aqueous solution of sodium bicarbonate is added to the separatory funnel. The acidic components in the mixture will react with the sodium bicarbonate to produce carbon dioxide, which will bubble out of the mixture and can be released through the stopcock

To learn more about reaction refer to:

brainly.com/question/29039149

#SPJ4

if a sample has 50 atoms of 87 rb and 50 atoms of sr, how many half-lives has the sample gone through?

Answers

Answer: If a sample has 50 atoms of 87Rb and 50 atoms of Sr, it has gone through the equivalent of 77.7 billion years in half-lives.


In order to answer this question, we need to know the half-lives of both 87Rb and Sr. The half-life of 87Rb is 48.8 billion years and the half-life of Sr is 28.9 billion years.

Therefore, the sample has gone through the equivalent of (50/50) x 48.8 billion years, or 48.8 billion years, of 87Rb's half-life.

It has also gone through (50/50) x 28.9 billion years, or 28.9 billion years, of Sr's half-life. In total, the sample has gone through the equivalent of 77.7 billion years in half-lives.


In summary, if a sample has 50 atoms of 87Rb and 50 atoms of Sr, it has gone through the equivalent of 77.7 billion years in half-lives.


Learn more about half lives here:

https://brainly.com/question/30599798#

#SPJ11

what minimal photon energy in ev is required to eject an electron from the ground state of a doubly ionized lithium

Answers

The minimum photon energy required to eject an electron from the ground state of a doubly ionized lithium is 8.62 eV.

This is due to the fact that ionization energy of doubly ionized lithium is 8.62 eV, which means that the minimum amount of energy required to remove an electron from the atom is 8.62 eV.

This is the amount of energy that the incoming photon must have in order to eject an electron from the ground state of a doubly ionized lithium atom.

In other words, the photon must possess at least 8.62 eV of energy to remove the electron from the atom.

This is why a photon with energy of 8.62 eV or more is required to eject an electron from the ground state of a doubly ionized lithium atom.

To know more about ionization energy click on below link:

https://brainly.com/question/28385102#

#SPJ11

Convert 7.41 x 1024 molecules of C2H2 to grams

Answers

Answer:

To convert molecules of C2H2 to grams, we need to use the molar mass of C2H2, which is 26.04 g/mol.

First, we need to calculate the number of moles in 7.41 x 10^24 molecules of C2H2:

7.41 x 10^24 molecules / 6.022 x 10^23 molecules/mol = 12.31 mol

Then, we can use the formula:

mass = moles x molar mass

mass = 12.31 mol x 26.04 g/mol = 320.4624 g

Therefore, 7.41 x 10^24 molecules of C2H2 is equivalent to 320.4624 grams.

I Hope This Helps!

Which substance is the limiting reactant when 2.0 g of sulfur reacts with 3.0 g of oxygen and 4.0 g of sodium hydroxide according to the following chemical equation: 25() + 3 O2(g) + 4 NaOH(aq) → 2 Na2SO4(aq) + 2 H2O(l) 049) ONaOH(ag) O S(s) None of these substances is the limiting reactant 

Answers

The limiting reactant is Sulphur,  according to the chemical reaction given in the question.

Let's take the balanced chemical reaction in the question

2S + 3O₂ + 4NaOH → 2Na₂SO₄ + 2H₂O

Here,

We have to identify the limiting reactant when 2.0 g of sulfur reacts with 3.0 g of oxygen and 4.0 g of sodium hydroxide.

First, we need to calculate the moles of each substance, and then we can find out the limiting reactant.

Let's do it one by one.

Mole of sulphur (S) = 2 g/32 g/mol = 0.0625 moles

Moles of Oxygen (O2) = 3 g/32 g/mol = 0.09375 moles

Moles of Sodium Hydroxide(NaOH) = 4g/40g/mol = 0.1 moles

Now, we have to compare the number of moles of each substance to find out the limiting reactant.

Here we can see that the number of moles of sulphur (S) is the least among all the reactants, i.e., 0.0625 moles.

Hence, the limiting reactant is sulfur (S).

Therefore, the correct answer is "sulphur."

To know more about the limiting reactant https://brainly.com/question/14225536

#SPJ11

How many grams of KNO3 per 100g of water would be crystallized from a saturated solution as the temperature drops from:
A. 80°C to 20°C
B. 60°C to 40°C
C. 50°C to 30°C
D. 80°C to 0°C
E. 50°C to 10°C

Answers

A. 80°C to 20°C - 16.9g KNO3 per 100g of water

B. 60°C to 40°C - 14.7g KNO3 per 100g of water.

C. 50°C to 30°C - 12.6g KNO3 per 100g of water

D. 80°C to 0°C - 32.2g KNO3 per 100g of water.

E. 50°C to 10°C - 21.9g KNO3 per 100g of water

The temperature drops from various starting points of water

The amount of potassium nitrate that can be crystallized from a saturated solution is dependent on the temperature. As the temperature decreases, the amount of KNO3 that can be crystallized increases.

When the temperature drops from 80°C to 20°C, 16.9g of KNO3 can be crystallized from a saturated solution per 100g of water. This is the lowest amount of KNO3 that can be crystallized from a saturated solution, as the temperature cannot be lower than this.

The amount of KNO3 increases as the temperature drops from 60°C to 40°C, with 14.7g of KNO3 crystallizing per 100g of water. This pattern continues, with 12.6g of KNO3 crystallizing from a saturated solution when the temperature drops from 50°C to 30°C.

When the temperature drops from 80°C to 0°C, the highest amount of KNO3 can be crystallized from a saturated solution, with 32.2

Learn more about temperature drop here:

https://brainly.com/question/29177481

#SPJ1

which phase change will have a more dramatic increase in entropy? select the statement that best explains why.

Answers

Answer: Phase change from solid to gas will have a more dramatic increase in entropy.

This is because gas has the highest entropy of all phases. Gas has the highest entropy because its molecules are moving randomly, and it has the greatest amount of disorder. In addition, the transition from solid to gas involves both increasing temperature and changing the arrangement of particles from an ordered solid to a disordered gas. This results in a significant increase in entropy.

Phase transition refers to the process of changing from one phase of matter to another. When a substance changes from one phase to another, its entropy changes. Entropy refers to the degree of disorder or randomness in a system, and it is related to the number of ways that a system can be arranged. When the degree of disorder increases, the entropy also increases.

In summary, phase change from solid to gas has a more dramatic increase in entropy. This is because gas has the highest entropy of all phases, and the transition from solid to gas involves both increasing temperature and changing the arrangement of particles from an ordered solid to a disordered gas, resulting in a significant increase in entropy.



Learn more about entropy here:
https://brainly.com/question/13135498#

#SPJ11

a student prepares a solution by combining 100 ml of 0.30 m hno2(aq) and 100 ml of 0.30 m kno2(aq). which of the following equations represents the reaction that best helps to explain why adding a few drops of 1.0 m hcl(aq) does not significantly change the ph of the solution?

Answers

The reaction that best explains why adding a few drops of 1.0 M HCl(aq) does not significantly change the pH of the solution is HNO₂aq) + H₂O(l) ⇌ H₃O+(aq) + NO₂-(aq)

When HNO₂ and KNO₂ are mixed, they undergo a dissociation reaction in which HNO₂ donates a proton to water and forms H₃O+ and NO₂-. This reaction produces a weakly acidic solution with a pH of approximately 3. Adding a few drops of 1.0 M HCl to the solution would result in the protonation of NO₂- ions, forming HNO₂, which would lower the pH of the solution.

However, since HNO₂ is already present in the solution, the added HCl would not significantly change the pH of the solution. This is because the additional HNO₂ formed from the reaction of HCl with NO₂- would be in equilibrium with the original HNO₂ in the solution, and the concentration of HNO₂ would not significantly change.

Therefore, the equilibrium equation for the dissociation of HNO₂ in water can best explain why adding a few drops of HCl does not significantly change the pH of the solution.

To know more about pH of the solution, refer here:

https://brainly.com/question/30332511#

#SPJ11

Given 30 grams NaBr how many grams of Cl2 are required to complete this reaction?
2NaBr + Cl2 = 2NaCl + Br2

Answers

Answer:

10.3 grams

Explanation:

The balanced equation shows that 1 mole of Cl2 reacts with 2 moles of NaBr. To find out how much Cl2 is required to react with 30 grams of NaBr, we need to convert grams to moles.

First, we need to find the molar mass of NaBr:

NaBr = 23 + 79.9 = 102.9 g/mol

Now we can calculate the number of moles of NaBr:

30 g NaBr ÷ 102.9 g/mol = 0.291 moles NaBr

From the balanced equation, we know that 1 mole of Cl2 reacts with 2 moles of NaBr. Therefore, we need half as many moles of Cl2 as we have moles of NaBr:

0.291 moles NaBr ÷ 2 = 0.1455 moles of Cl2

Finally, we can convert moles of Cl2 to grams using its molar mass:

Cl2 = 35.5 x 2 = 71 g/mol

0.1455 moles Cl2 x 71 g/mol = 10.3 grams of Cl2

Therefore, 10.3 grams of Cl2 are required to react completely with 30 grams of NaBr in this reaction.

how many moles of each reactant are needed to produce 3.60*10 to the power of 2 g ch3oh

Answers

We need 5.62 moles of H2 and 5.62 moles of CO to produce 3.60 × 10^2 g of CH3OH.

How to calculate the mole ?

To calculate the number of moles of a substance, we use the formula:

moles = mass / molar mass

where "mass" is the mass of the substance in grams and "molar mass" is the molar mass of the substance in grams per mole.

To determine the number of moles of reactants needed to produce a given amount of product, we need to use the balanced chemical equation for the reaction and the molar mass of the product.

Assuming that the reaction is:

2H2 + CO → CH3OH

We can see that the stoichiometry of the reaction is 2:1, which means that for every 2 moles of H2, we need 1 mole of CO to produce 1 mole of CH3OH.

The molar mass of CH3OH is:

12.01 + 4(1.01) + 16.00 = 32.04 g/mol

Therefore, to produce 3.60 × 10^2 g of CH3OH, we need:

n(CH3OH) = (3.60 × 10^2 g) / (32.04 g/mol) = 11.23 mol

Since the stoichiometry of the reaction is 2:1, we need half as many moles of H2 as we do of CH3OH:

n(H2) = 1/2 × n(CH3OH) = 1/2 × 11.23 mol = 5.62 mol

And we need half as many moles of CO as we do of CH3OH:

n(CO) = 1/2 × n(CH3OH) = 1/2 × 11.23 mol = 5.62 mol

Therefore, we need 5.62 moles of H2 and 5.62 moles of CO to produce 3.60 × 10^2 g of CH3OH.

To know more about moles visit :-

https://brainly.com/question/1634438

#SPJ1

what causes the difference between ruby and corundum? choose one: a. impurities in the mineral b. formation pressure c. formation temperature d. mineral structure

Answers

The difference between ruby and corundum is caused by impurities in the mineral.

Ruby is a variety of the mineral corundum, where corundum itself is composed of aluminum oxide. The addition of trace elements such as chromium, titanium, and iron can turn a corundum into ruby.

The different impurities give the ruby its characteristic red color, while corundum remains colorless.

Ruby and corundum form in different conditions. Ruby typically requires higher pressure and temperatures than corundum.

The pressure of the Earth’s mantle helps the aluminum oxide and trace elements combine to form ruby, while corundum forms at lower pressures. Corundum can also form at higher temperatures and pressures, but this is less common.

Finally, the structure of the two minerals is different. Ruby has a trigonal structure, while corundum has an orthorhombic structure. The different impurities, pressures, and temperatures combine to create the two distinct minerals.

To know more about Corundum click on below link:

https://brainly.com/question/17081786#

#SPJ11

when the temperature of a rigid hollowsphere containing 685 l of helium gasis held to 621 k, the pressure of the gasis 1 kpa. how many moles ofhelium does the sphere contain?

Answers

Answer:

610 k because is the hollwsphere is the gasis and 1 kpa of helium

Which of the following electronic transitions for hydrogen would result in the emission of a quantized amount of energy?
A. n = 1 → n = 2
B. n = 2 → n = 3
C. n = 5 → n = 4
D. n = 4 → n = 6

Answers

A.

i had this question and i got it right

Two paths in a park intersect so that one of the angles at the intersection is 75°. What are the three other angle measurements formed by the intersection? A. 15°, 75°, 175° B. 65°, 105°, 135° C. 75°, 105°, 105° D. 75°, 115°, 115°

Answers

If one of the angles at the intersection is 75°, then the other three angles must add up to 180° (since they are forming a straight line).

To find the other angles, we can subtract 75° from 180° to get 105°. Then, since there are two other angles, we divide 105° by 2 to get 52.5°.

So that means, the three other angle measurements formed by the intersection are:

B. 65°, 105°, 135°

What is the balanced chemical
reaction for the synthesis of
nitrogen with hydrogen?
A. N₂ +H₂ → NH
B. N₂ + 2H₂ → 2NH3
C. 3N₂ + H₂ → 2NH3
D. N₂ + 3H₂ → 2NH3

Answers

The balanced chemical reaction for the synthesis of hydrogen with nitrogen is for the production of ammonia. This process is called Haber process. Option D is the correct answer.

What is Haber process?

The Haber process is a chemical process that is used to produce ammonia (NH₃) from nitrogen (N₂) and hydrogen (H₂) gases. The process was developed by German chemist Fritz Haber in 1909 and is also known as the Haber-Bosch process.

The process involves the reaction of nitrogen and hydrogen in the presence of an iron catalyst and high pressure and temperature. The reaction is exothermic, releasing a large amount of heat. The Haber process is represented by the given balanced equation:

N₂ + 3H₂ → 2NH₃

The ammonia produced by the Haber process is a key component in the production of fertilizers and is also used in the manufacture of a wide range of other products, including explosives, dyes, and cleaning agents.

To find out more about ammonia, visit:

https://brainly.com/question/17392683

#SPJ1

tungsten has a radius of 141 pm and crystallizes in a body-centered cubic structure. what is the edge length of the unit cell?

Answers

Answer:  The edge length of the unit cell for tungsten is 0.548 nm.

Tungsten has a radius of 141 pm and crystallizes in a body-centered cubic structure.

The edge length of the unit cell can be calculated as follows:

Edge length of a body-centered cubic unit cell

(a) = √3 × 4r/3, where r is the radius of the atom.

Given, tungsten has a radius of 141 pm.

Thus, a = √3 × 4 × 141 pm / 3

= √3 × 564 pm / 3

= 1.417 × 10^-7 m / pm × √3 × 564

= 0.316 nm × 1.732

= 0.548 nm

The edge length of the unit cell for tungsten is 0.548 nm.



Learn more about length of cell here:

https://brainly.com/question/29475879#




#SPJ11

What happens to molecules once they are eaten by animals

Answers

When animals consume food containing large polymeric molecules, such as proteins, carbohydrates, and nucleic acids, their digestive system breaks down these molecules into smaller components that can be absorbed and utilized by the body.

Mechanical digestion occurs in the mouth and stomach, where food is broken down into smaller pieces through chewing and mixing with digestive enzymes and acids. Chemical digestion occurs primarily in the small intestine, where enzymes and other compounds break down complex molecules into smaller components.

Proteins, for example, are broken down into their constituent amino acids by proteases, while carbohydrates are broken down into simple sugars like glucose and fructose by amylases. Nucleic acids are broken down into nucleotides by nucleases.

Once these molecules are broken down, they are absorbed into the bloodstream through the walls of the small intestine and transported to the liver, where they are further metabolized and distributed to other parts of the body as needed. The body then uses these molecules to build new proteins, carbohydrates, and nucleic acids or to generate energy through cellular respiration. Any excess molecules are typically stored for later use or eliminated from the body as waste.

To know more about molecules, here

brainly.com/question/4745152

#SPJ4

--The complete question is, What happens to large polymeric molecules in food once they are eaten by animals?--

(a) Calculate the number of moles in 12.25 kg of ammonium chloride (NH4Cl) Relative Formula Mass (Mr) = 53.5
answer in standard for to 2 sf​

Answers

The number of moles in 12.25 kg of ammonium chloride would be 229.02 moles.

Number of moles

To calculate the number of moles of ammonium chloride (NH4Cl) in 12.25 kg, we need to use the formula:

Number of moles = Mass / Molar mass

First, we need to calculate the molar mass of NH4Cl, which is the sum of the atomic masses of all the atoms in one mole of the compound:

Molar mass of NH4Cl = (1 x atomic mass of N) + (4 x atomic mass of H) + (1 x atomic mass of Cl)

= (1 x 14.01) + (4 x 1.01) + (1 x 35.45)

= 53.49 g/mol (rounded to two decimal places)

Now we can use the formula to calculate the number of moles:

Number of moles = Mass / Molar mass

= 12,250 g / 53.49 g/mol

= 229.02 mol (rounded to two decimal places)

Therefore, there are 229.02 moles of ammonium chloride in 12.25 kg of the compound.

More on number of moles can be found here: https://brainly.com/question/31039725

#SPJ1

in the solidifcation process the production of metallic slabs or ingots is known as the process of turning the metallic slabs or ingots into useful shapes is known as

Answers

The process of turning metallic slabs or ingots into useful shapes is known as "hot working" or "hot forming".

Hot working is a metalworking process where metals are shaped when they are above their recrystallization temperature. This process is usually done after a metal has been solidified from its molten state. It involves the application of force to change the shape of the metal, usually by compressing, drawing, forging, or extruding.

The temperature used during hot working can vary depending on the type of metal, but typically it must be at least half of the metal's melting point temperature. By hot working, the metal can be formed into various shapes, including thin sheets, rods, and tubes.

In the hot working process, the metal is heated until it reaches the recrystallization temperature and then deformed by mechanical means, such as hammering or rolling. The metal is then cooled down, either slowly or rapidly, depending on the required properties of the metal. Rapid cooling will increase the strength of the metal but also make it brittle, while slower cooling will give the metal more ductility. During cooling, some of the metal grains are recrystallized, leading to a homogeneous microstructure.

Hot working is an important process for many metal fabrication industries, including automotive, aerospace, and construction. It is used to create metal parts and components with superior strength and ductility, as well as for creating metal artworks or sculptures. The process is also widely used in metal recycling, where it is used to reshape and reform metals from their original form. Hot working can be a complex process and is typically done by highly skilled metalworkers.

To know more about hot working, refer here:

https://brainly.com/question/18994380#

#SPJ4

how many electrons does cl want to gain? hint: how many are gained to form a stable noble gas electron configuration, ns2 np6 (octet rule)?

Answers

Chlorine (Cl) is a nonmetal, meaning it has the tendency to gain electrons to achieve the electron configuration of a noble gas. The noble gas electron configuration of the nearest noble gas, argon (Ar), is 1s2 2s2 2p6 3s2 3p6, with a total of 18 electrons.

Chlorine has 7 valence electrons, meaning it needs 1 more electron to achieve a stable noble gas electron configuration. Therefore, chlorine wants to gain 1 electron to achieve a stable noble gas configuration.

In terms of bonding, chlorine can either gain 1 electron to form an anion with a 1- charge or it can share electrons with another atom to form a covalent bond. Chlorine most commonly forms a single covalent bond with another atom, such as hydrogen, to form hydrogen chloride (HCl). In this case, both atoms share electrons to form a stable molecule.

To know more about Chlorine refer here:

https://brainly.com/question/28440406#

#SPJ11

Other Questions
what factors led to the saffron revolution? what was the result of the revolution (short and long-term)? The acid should be handled with great care why? In this stanza, the poet uses imagery that appeals to the readers senses ofsight and sound.smell and taste.sight and touch.sound and touch. the contingency table shows the results of a survey of students in two math classes. find p(more than 1 hour of tv | 6th period class). round to the nearest thousandth. did you watch more than one hour of tv last night? PLEASEEEElectric vehicles have less range they can drive compared to plug-in hybrid electric vehicles. True False If energy is released in a chemical reaction, then ______. CHOOSE ALL THAT APPLY help I don't understand assume that the bet placed between oscar and vinny is legal in the state in which they live. what is maria's (or the fresh air fund's) relationship to the contract? x^2+x+9=0 which number would have to be added to complete the square 9. Programs A and B are analyzed and found to have worst-case running time no greater than 150 N log, N and N?, respectively. Answer the following questions, if possible a. Which program has the better guarantee on the running time, for large values of N (N>10,000)? b. Which program has the better guarantee on the running time, for small values of N (N dr. clasen is interested in studying cells in v1 that receive input from different eyes. she should place electrodes in: KLM is the midpoints of GHJ. What is the perimeter of GHJ, given GH is 12 inches, KL is 7 inches, and LJ is 4 inches Finding the area and perimeter which of these is a key difference between arrays and arraylists? arrays cannot store primitive types but arraylists can. arrays are objects but arraylists are not objects. arrays are fixed size but arraylists can change in size. arrays have extra helper methods like get but arraylists do not. how many recursive partitioning levels are required for a list of 256 elements? question 74 options: 9 7 8 6 Describe the first generation of computer based on hardware, software, computer characteristics, physical appearance and their applications? the graph below shows consumer surplus and producer surplus. is there any deadweight loss? why or why not? which statement would a cognitive-behavioral theorist be most likely to make about conversion and somatic symptom disorders? campbell launched tomato soup in the uk with the same product and ads as they use in the us. this strategy is called: A system of linear equations is shown on the graph.The graph shows a line that passes through negative 4 comma 0, negative 3 comma 1, and 0 comma 4. The graph also shows another line that passes through negative 6 comma 0, negative 3 comma 1, and 0 comma 2.What is the solution to the system of equations? There are infinitely many solutions. There is no solution. There is one unique solution (6, 0). There is one unique solution (3, 1).