Balance the Following Equations:

Instruction: While balancing equation write the physical state of

reactants and products as well as any reaction conditions.

1) CuSO4 + KI →Cu2I2 + K2SO4 + I2

2) NH3 + O2 →NO + H2O

3)Fe2O3 + CO → Fe + CO2

4) Cu + AgNO3 → Cu(NO3)2 + Ag

5) Pb(NO3)2 + H2SO4 → PbSO4 + HNO3

6) CaCO3 + HCl → CaCl2 + H2O(l) + CO2

7)MnO2 + HCl → MnCl2 + H2O + Cl2


I will report any comments that are not appropriate for the question asked or simply typed something for the points. Only answer if u know​

Answers

Answer 1

While balancing equation write the physical state of reactants and products as well as any reaction conditions.

What is reactants ?

Reactants are the substances that are present at the start of a chemical reaction. They are typically the substances that are used up during the reaction and are converted into different products. Reactants are usually written on the left side of a chemical equation, while the products are written on the right side. Reactants are essential components of any chemical reaction and are essential in order for the reaction to take place. Reactants are also known as substrates or starting materials.

Balancing the Following Equations:

1) CuSO4(s) + 2KI(aq) → Cu2I2(s) + K2SO4(aq) + I2(g)

2) 2NH3(g) + O2(g) → 2NO(g) + 2H2O(g)

3) 3Fe2O3(s) + 4CO(g) → 6Fe(s) + 3CO2(g)

4) Cu(s) + 2AgNO3(aq) → Cu(NO3)2(aq) + 2Ag(s)

5) 2Pb(NO3)2(aq) + H2SO4(aq) → PbSO4(s) + 2HNO3(aq)

6) CaCO3(s) + 2HCl(aq) → CaCl2(aq) + H2O(l) + CO2(g)

7) 2MnO2(s) + 4HCl(aq) → 2MnCl2(aq) + 2H2O(l) + Cl2(g)

To learn more about reactants

https://brainly.com/question/26283409

#SPJ4


Related Questions

A sample of nitrogen gas has a pressure of 6. 00 kpa at 540 K. If the volume does not change, what will the pressure bat at 250. 0 K?

Answers

The pressure of the nitrogen gas at 250.0 K will be 2.78 kPa.

To find the pressure of the nitrogen gas at 250.0 K, we will use the combined gas law formula:
P₁/T₁ = P₂/T₂

Where P₁ is the initial pressure (6.00 kPa), T₁ is the initial temperature (540 K), P₂ is the final pressure (which we want to find), and T₂ is the final temperature (250.0 K).

Since the volume does not change, we can use this simplified formula.

Step 1: Rearrange the formula to solve for P₂:
P₂ = (P₁ × T₂) / T₁

Step 2: Plug in the given values and calculate P₂:
P₂ = (6.00 kPa × 250.0 K) / 540 K

Step 3: Calculate P₂:
P₂ = 1500 / 540 = 2.78 kPa (rounded to two decimal places)

So, the pressure of the nitrogen gas at 250.0 K will be 2.78 kPa.

To know more about gas law :

https://brainly.com/question/30458409

#SPJ11

You have a solution of copper sulfate with a volume of 2 dm3. The concentration of the solution is 12 g/dm3. What is the mass of the copper sulfate?

Answers

The mass of copper sulfate in the given solution is 24 grams.

Copper sulfate, also known as cupric sulfate or copper (II) sulfate, is a chemical compound that consists of copper ions and sulfate ions. It has the molecular formula CuSO4 and is commonly used in agriculture, mining, and chemical industries.

In the given scenario, we have a solution of copper sulfate with a volume of 2 dm3 and a concentration of 12 g/dm3. This means that for every 1 dm3 of the solution, there are 12 grams of copper sulfate present. To find the mass of copper sulfate in the entire 2 dm3 solution, we can use the following formula:

Mass = Concentration x Volume

Substituting the given values, we get:

Mass = 12 g/dm3 x 2 dm3
Mass = 24 g

Therefore, the mass of copper sulfate in the given solution is 24 grams.

To know more about copper sulfate, visit:

https://brainly.com/question/22560035#

#SPJ11

Identify each bond between the component atoms as sigma bonds (single bonds), one sigma bond and one pi bond (double bonds), or one sigma bond and two pi bonds (triple bonds)

Answers

In general, there are three types of bonds: sigma bonds (single bonds), one sigma bond and one pi bond (double bonds), and one sigma bond and two pi bonds (triple bonds).

Sigma bonds are the simplest type of covalent bond, formed by the direct overlap of atomic orbitals between two component atoms. These bonds result in a strong, stable connection and are typically found in single bonds.

In double bonds, there is one sigma bond and one pi bond between the component atoms. The sigma bond is formed as mentioned earlier, while the pi bond results from the sideways overlap of p orbitals, creating a bond above and below the sigma bond plane.

This combination of bonds leads to a shorter and stronger connection between the atoms compared to a single bond.

Lastly, in triple bonds, there is one sigma bond and two pi bonds between the component atoms.

The sigma bond is formed in the same manner as single and double bonds, while the two pi bonds occur when two sets of p orbitals overlap perpendicularly to each other, with one set above and below, and the other set in front and behind the sigma bond plane.

This configuration leads to an even shorter and stronger bond compared to double bonds.

To identify the bond types between component atoms, you will need to examine the molecular structure and electron sharing between the atoms involved. Count the number of shared electron pairs to determine if it's a single (sigma), double (sigma and pi), or triple bond (sigma and two pi bonds).

To know more about bonds, visit:

https://brainly.com/question/17405470#

#SPJ11

Find the volume of 53.5 g of O2 at 30.1°C and 110.0 kPa. Round to the nearest tenth.

Answers

The volume of 53.5 g of O₂ at 30.1°C and 110.0 kPa is 1 m³ approximately

The Charles Law: What is it explained?

According to Charles' Law, while pressure is maintained constant, the volume of a given amount of gas varies in direct proportion to the absolute temperature of the gas. The Kelvin scale is used to measure temperature to determine the absolute temperature.

To find the volume of a gas, we can use the Ideal Gas Law:

PV = nRT

where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of gas, R is the universal gas constant, and T is the temperature of the gas in Kelvin.

First, we need to convert the given temperature of 30.1°C to Kelvin:

T = 30.1°C + 273.15 = 303.25 K

Next, we need to determine the number of moles of O₂ present. We can use the molar mass of O₂ to convert from grams to moles:

molar mass of O₂ = 32.00 g/mol

moles of O₂ = 53.5 g / 32.00 g/mol = 1.671875 mol

Now we can rearrange the Ideal Gas Law to solve for V:

V = nRT / P

V = 1.671875 × 8.3145 × 303.25 /110 k × 1000 Pa / kPa

V = 0.062878 m³

Finally, we round the answer to the nearest tenth: (rounded to one decimal place) V = 1 m³

To know more about volume visit:-

brainly.com/question/29796637

#SPJ1

Using the following balanced equation, how many moles of NaCl can be produced from 0.314 moles of Na3PO4?

equation : 3 FeCl2 + 2 Na3PO4 6 NaCl + Fe3(PO4)2

Answers

Answer: 0.942 moles of NaCl

Explanation:

for every 2 moles of Na3PO4 that react, 6 moles of NaCl form

therefore, to find how many moles of NaCl for we use this formula:

0.314 moles Na3PO4 * (6/2) = 0.942 moles of NaCl

Complete the balanced molecular reaction for the following weak acid with a strong base: HNO2(aq) + Ca(OH)2 (aq) ->



Correct answer should be 2 HNO2(aq) + Ca(OH)2(aq) -> 2 H2O(l) + Ca(NO2)2(aq).



Why?

Answers

The balanced molecular reaction for the reaction between HNO₂ and Ca(OH)₂ is:

2HNO₂(aq) + Ca(OH)₂(aq) -> 2H₂O(l) + Ca(NO₂)₂(aq)

The balanced molecular reaction for the combination of a weak acid with a strong base involves the neutralization reaction between the acid and the base. In this case, the weak acid is nitrous acid (HNO₂) and the strong base is calcium hydroxide (Ca(OH)₂).

When the two compounds are mixed together, the hydroxide ions (OH⁻) from the base react with the hydrogen ions (H+) from the acid to form water. However, since nitrous acid is a weak acid, it only partially dissociates in water to form hydrogen ions and nitrite ions (NO₂⁻). Therefore, the reaction requires the use of two molecules of HNO₂ to react with one molecule of Ca(OH)₂.

Thus balanced equation for the reaction is:

2HNO₂(aq) + Ca(OH)₂(aq) -> 2H₂O(l) + Ca(NO₂)₂(aq)

This means that two molecules of HNO₂ react with one molecule of Ca(OH)₂ to produce two molecules of water and one molecule of calcium nitrite (Ca(NO₂)₂). The balanced equation shows that the number of atoms of each element is the same on both sides of the equation, which means that the reaction is balanced and follows the law of conservation of mass.

To learn more about strong base visit:

https://brainly.com/question/7245674

#SPJ11

16. a solution contains 15. 0 g of naoh in 115. 0 ml of h20. the molarity would be:

(1l = 1000 ml)

Answers

The molarity of the solution containing 15.0 g of NaOH in 115.0 mL of H₂O is 3.26 M.

To calculate the molarity of the solution, we first need to convert the mass of NaOH and the volume of water to moles and liters, respectively.

First, we need to find the number of moles of NaOH in 15.0 g. The molar mass of NaOH is 40.00 g/mol, so:

15.0 g NaOH x (1 mol NaOH/40.00 g NaOH) = 0.375 mol NaOH

Next, we need to convert the volume of water from milliliters to liters:

115.0 mL H₂O x (1 L/1000 mL) = 0.115 L H₂O

Now we can calculate the molarity of the solution:

Molarity = moles of solute/liters of solution

Molarity = 0.375 mol NaOH / 0.115 L H₂O

Molarity = 3.26 M

Therefore, the molarity of the solution is 3.26 M.

Learn more about molarity at https://brainly.com/question/30404105

#SPJ11

The tripeptide ،
Ala-Arg_Asp

contains four ionizable groups with 9. 8, and 10. 5. Calculate the pI for this molecule

Answers

The correct answer is C. 7.0. The isolectric point for this molecule is 7.0.

First, list the pka states that the tripeptide glycylarginylglutamate which can be found

pKa_1 = 2.1

pKa_2 = 4.1

pKa_3 = 9.8

pKa_4 = 12.5

The tripeptide, Ala-Arg_Asp. The three peptide bonds that are derived from the three amino acids are called tripeptides. A few examples of tripeptides are glutathione, Eisenin, GHK-Cu, etc. tripeptides are most commonly used for improving the look of ageing signs in the skin. Now it is necessary to find the isoelectric point (pI)

pl = SUM(pKa_1 + ... + pka_n)/n

pl = (2.1 + 4.1 + 9.8 + 12.5)/4

pl = 7.1 which is approximately 7.0.

The isolectric point for this molecule is 7.0.

To learn more about tripeptide check the link below-

https://brainly.com/question/28295128

#SPJ4

Complete question-

The tripeptide glycylarginylglutamate contains four ionizable groups with pKas of 2.1, 4.1 9.8, and 12.5. Calculate the pI for this molecule.

A. 3.1

B. 6.4

C. 7.0

D. 8.3

E. 7.3

Part 1. A chemist reacted 15. 0 liters of gas with in the laboratory to form Cl 2 and Use the ideal gas law equation to determine the mass of NaCl that reacted with F2 at 280. K and F 2 +2NaCl Cl 2 +2NaF Part 2. Explain how you would determine the mass of sodium chloride that can react with the same volume of fluorine gas at STP

Answers

At 280 K and 1.50 atm, the mass of NaCl required to react with F₂ is 115.83 g; at STP, the mass of NaCl required to react with F₂ is 78.39 g.

Using the ideal gas equation, we will first determine the number of moles in F2:

Volume (V) = 15 L

Temperature (T) = 280 K

Pressure (P) = 1.5 atm

Gas constant (R) = 0.0821 atm.L/Kmol

Number of mole (n) =?  

n = PV / RTn = (1.5 × 15) / (0.082 × 280)n = 0.98 mole

                                F₂ + 2NaCl → Cl₂ + 2NaF

From the balanced equation above,

1 mole of F₂ reacted with 2 moles of NaCl.

0.98 mole of F₂ will react with = 0.98 × 2

                                          = 1.96 moles of NaCl

Mole of NaCl = 1.96 moles

Molar mass of NaCl = 58.5 g/mol

Mass of NaCl =?

Mass = mole × molar massMass of NaCl = 1.98 × 58.5Mass of NaCl = 115.83 g

B. How to determine mass of NaCl needed at STP

At standard temperature and pressure (STP),

22.4 L = 1 mole of F₂

15 L = 15 / 22.4

15 L = 0.67 mole of F₂

                            F₂ + 2NaCl → Cl₂ + 2NaF

From the balanced equation above,

1 mole of F₂ reacted with 2 moles of NaCl.

0.67 mole of F₂ will react with = 0.67 × 2 = 1.34 moles of NaCl

Mole of NaCl = 1.34 moles

Molar mass of NaCl = 58.5 g/mol

Mass of NaCl =?

                Mass = mole × molar mass                Mass of NaCl = 1.34 × 58.5              Mass of NaCl = 78.39 g

Learn more about ideal gas law:

brainly.com/question/4147359

#SPJ4

What mass of LiOH would need to be dissolved in water to make 300. 0 mL of a solution with a pH of 11. 25

Answers

We need to dissolve 0.0405 mg mass of LiOH in 300.0 mL of water to get a solution with a pH of 11.25.

To find the mass of LiOH needed to make the solution, we need to first calculate the concentration of hydroxide ions in the solution using the pH value. Since pH = 11.25, the [OH⁻] concentration can be found by taking the negative logarithm of 11.25 and converting it to the concentration scale.

[tex][OH^-] = 10^{-11.25} = 5.62 \times 10^{-12} \, \text{M}[/tex]

Since LiOH is a strong base, it will dissociate completely in water, so the amount of LiOH needed can be calculated using the stoichiometry of the balanced equation:

LiOH + H₂O → Li⁺ + OH⁻ + H₂O

Thus, 1 mole of LiOH produces 1 mole of OH⁻. To achieve a concentration of 5.62 x 10⁻¹²M, we need 5.62 x 10⁻¹² moles of LiOH per mL of solution. Therefore, for 300.0 mL of solution, the number of moles of LiOH needed is:

[tex]\[5.62 \times 10^{-12} \, \text{mol/mL} \times 300.0 \, \text{mL} = 1.69 \times 10^{-9} \, \text{mol}\][/tex]

The molar mass of LiOH is 23.95 g/mol, so the mass of LiOH needed is:

1.69 x 10⁻⁹ mol x 23.95 g/mol = 4.05 x 10⁻⁸ g or 0.0405 mg (to 4 significant figures).

To know more about the LiOH refer here :

https://brainly.com/question/1686138#

#SPJ11

10. karl is at the gym exercising. after a while on the treadmill, he gets a cramp in his legs. karl blames
lactic acid building up in his muscles. what is the chemical equation for this process?
a. c.h20 -2c,h,o,
b. 2c,h,o, -c,h,206
c. ch2o2ch,oh + 2002

Answers

Karl's leg cramp is unlikely to be caused by lactic acid, and the chemical equation for the process he is thinking of is C₆H₁₂O₆ + 2 ATP → 2 C₃H₃O₃⁻ + 2 NADH, option B is correct.

Karl's assumption that lactic acid is responsible for his leg cramp is a common misconception. In reality, lactic acid is a byproduct of anaerobic respiration, which occurs when there is not enough oxygen available to support aerobic respiration.

The process of glycolysis, which is the breakdown of glucose to pyruvate with the help of ATP. This process occurs in the cytoplasm of cells and is the first step in cellular respiration. The two pyruvate molecules produced by glycolysis can then be further broken down in the mitochondria to produce ATP through aerobic respiration, option B is correct.

To learn more about lactic follow the link:

brainly.com/question/4596922

#SPJ4

The complete question is:

Karl is at the gym exercising. After a while on the treadmill, he gets a cramp in his legs. Karl blames lactic acid building up in his muscles. What is the chemical equation for this process?

A) C₆H₁₂O₆ + 2 ADP + 2 Pi → 2 C₃H₆O₃ + 2 ATP

B) C₆H₁₂O₆ + 2 ATP → 2 C₃H₃O₃⁻ + 2 NADH

C) C₃H₃O₃⁻ + CoA + NAD+ → Acetyl-CoA + CO₂ + NADH

D) Acetyl-CoA + 3 NAD+ + FAD + GDP + Pi → 2 CO₂ + 3 NADH + FADH₂ + GTP

Complete the following reaction



a. HN03 + KOH -->. +.



b. HCl + LiOH -->. +.



c. H2S + NaOH -->. +

Answers

a. HNO3 + KOH --> KNO3 + H2O

b. HCl + LiOH --> LiCl + H2O

c. H2S + 2NaOH --> Na2S + 2H2O

To know more about KNO3  refer here

https://brainly.com/question/27118748#

#SPJ11

The solubility of a gas is 0. 650 g/L at a pressure of 109 kPa. What is the solubility of the gas if the pressure is increased to 131 kPa?

Answers

The solubility of the gas increases to 0.780 g/L when the pressure is increased to 131 kPa.

According to Henry's law, the solubility of a gas in a liquid is directly proportional to the pressure of the gas above the liquid. Thus, we can use the following equation to calculate the new solubility:

S₂ ÷ S₁ = P₂ ÷ P₁

where S₁ is the initial solubility, S₂ is the new solubility, P₁ is the initial pressure, and P₂ is the new pressure.

Plugging in the given values, we have:

S₂ ÷ 0.650 g/L = 131 kPa ÷ 109 kPa

Solving for S₂, we get:

S₂ = (0.650 g/L) × (131 kPa ÷ 109 kPa)

S₂ = 0.780 g/L

To learn more about solubility follow the link:

brainly.com/question/28170449

#SPJ4

In the following acid-base reaction hpo42- is the_____________

Answers

In the following acid-base reaction, hpo₄²⁻ is the base.

This can be seen as it accepts a proton (H⁺) from H₂O to form the conjugate acid, H₂PO₄⁻. The other reactant, H₂O, donates the proton, making it the acid in the reaction. It is important to note that in an acid-base reaction, the species that donates a proton is the acid and the species that accepts the proton is the base.

The strength of the acid and base can also be determined by the equilibrium constant of the reaction. The larger the equilibrium constant, the stronger the acid or base. In this particular reaction, hpo₄²⁻ is a weak base, as it only partially accepts the proton from H₂O.

To know more about acid-base reaction click on below link:

https://brainly.com/question/3911136#

#SPJ11

Given 425.0 mL of a gas at 12.0 °C. What is its volume at 6.0 °C?

Answers

The volume of the gas at 6.0 °C is 416.8 mL.

What is Charles Law?

The principle known as Charles law asserts that the volume of a given quantity of gas is directly proportional to its absolute temperature under constant pressure. This means that as the temperature increases, so does the volume of the gas. Conversely, when the temperature decreases, so does the volume. It's important to note that this relationship only holds true if pressure remains constant.

Equation:

Using Charles law

V1/T1 = V2/T2

Where:

V1 = initial volume of gas

T1 = initial temperature of gas

V2 = final volume of gas

T2 = final temperature of gas

Converting the initial and final temperatures from Celsius to Kelvin

T1 = 12.0 + 273.15 = 285.15 K

T2 = 6.0 + 273.15 = 279.15 K

Plugging in the values

V1/T1 = V2/T2

425.0 mL / 285.15 K = V2 / 279.15 K

V2 = (425.0 mL / 285.15 K) * 279.15 K

V2 = 416.8 mL (rounded to three significant figures)

To know more about Charles Law, click here

https://brainly.com/question/16927784

#SPJ1

A sample of graphite with a mass of 15.0 grams drops from an initial temperature of 22°C to a
final temperature of 12°C. Calculate how much heat was transferred, and state whether it was
gained or lost based on the sign of your answer.

Answers

Answer:

106.5 J, and it was lost.

Explanation:

To calculate the amount of heat transferred, we can use the following formula:

Q = m * c * ΔT

where Q is the amount of heat transferred, m is the mass of the substance, c is the specific heat capacity of the substance, and ΔT is the change in temperature.

For graphite, the specific heat capacity is approximately 0.71 J/g°C.

So we have:

Q = 15.0 g * 0.71 J/g°C * (-10°C)

Q = -106.5 J

The negative sign of the answer indicates that the graphite lost heat, since its temperature decreased. Therefore, the heat was transferred from the graphite to its surroundings.

So the amount of heat transferred from the graphite was 106.5 J, and it was lost.

17. saccharin, an artificial sweetener that is 3000 times sweeter than sucrose, is composed of

45.90% carbon, 2.73% hydrogen, 26.23% oxygen, 7.65% nitrogen, and 17.49% sulfur. is the molecular formula of saccharin (a) c14h10o6n2s2, (b) csh,ons, (c) c&h9o2ns, and following orition: com 12.0%

(d) c;h5o3ns?​

Answers

Saccharin, an artificial sweetener that is 3000 times sweeter than sucrose, is composed of a) C₁₄H₁₀O₆N₂S₂.

45.90% carbon, 2.73% hydrogen, 26.23% oxygen, 7.65% nitrogen, and 17.49% sulfur. is the molecular formula of saccharin.

To determine the molecular formula of saccharin, we first need to calculate the empirical formula using the given percentages of each element.

Assuming we have 100 grams of saccharin, we have:

Carbon: 45.90 g / 12.01 g/mol = 3.82 mol

Hydrogen: 2.73 g / 1.01 g/mol = 2.70 mol

Oxygen: 26.23 g / 16.00 g/mol = 1.64 mol

Nitrogen: 7.65 g / 14.01 g/mol = 0.55 mol

Sulfur: 17.49 g / 32.07 g/mol = 0.55 mol

We can divide each value by the smallest one, which is 0.55 mol, to get the following ratios:

Carbon: 3.82 / 0.55 = 6.95

Hydrogen: 2.70 / 0.55 = 4.91

Oxygen: 1.64 / 0.55 = 2.98

Nitrogen: 0.55 / 0.55 = 1

Sulfur: 0.55 / 0.55 = 1

The resulting ratios are close to whole numbers, so we can assume the empirical formula to be C₇H₅NO₃S. To find the molecular formula, we need to determine the actual molecular mass of saccharin.

The empirical formula mass of C₇H₅NO₃S is approximately 183 g/mol. The molecular mass of saccharin is known to be around 452 g/mol, so we can calculate the ratio of the molecular mass to the empirical formula mass:

452 g/mol / 183 g/mol = 2.47

This means that the molecular formula is 2.47 times the empirical formula, or:

C₇H₅NO₃S * 2.47 = C₁₇H₁₃N₂O₅S

Therefore, the molecular formula of saccharin is (a) C₁₄H₁₀O₆N₂S₂. The other options (b) CSH,ONS, (c) C&H₉O₂NS, and (d) C;H₅O₃NS are not correct.

To know more about the saccharin refer here :

https://brainly.com/question/31703738#

#SPJ11

Question 1 (2 points)


2. 5 L of a gas is heated from 200 K to 300 K. What is the final volume of the gas?

Answers

The final volume of the gas can be determined using the ideal gas law, which states that pressure multiplied by volume is equal to the number of moles of a gas multiplied by the gas constant and the temperature (PV=nRT).

Since the pressure is constant, the final volume can be determined by simply calculating the ratio of the final temperature (300 K) over the initial temperature (200 K). Thus, the final volume of the gas would be 5L x (300/200) = 7.5L.

This is based on the assumption that the ideal gas law holds true, meaning that the gas particles are well separated, the forces between them are negligible, and the volume occupied by the gas particles is negligible.

This equation works well for most gases at relatively low pressures and temperatures, but it fails to accurately describe some gases in extreme conditions.

Know more about Ideal gas law here

https://brainly.com/question/28257995#

#SPJ11

How do tectonic events impact the flow of radiant energy

Answers

Tectonic events can impact the flow of radiant energy in various ways. One of the primary ways is through the formation of mountains and the alteration of landforms.

When tectonic plates collide and push against each other, they can form mountains, which can affect the flow of radiant energy. Mountains can block or redirect the flow of wind, which in turn can affect the amount of solar radiation that reaches the earth's surface.

They can also create changes in atmospheric pressure and temperature that impact the movement of air masses, which can affect the flow of radiant energy.

Tectonic events can also impact the flow of radiant energy by altering the composition of the atmosphere.

For example, volcanic eruptions can release large amounts of sulfur dioxide and other particles into the atmosphere, which can reflect and scatter incoming solar radiation, leading to cooling of the earth's surface.

To know more about radiant energy refer to-

https://brainly.com/question/29102331

#SPJ11

A 50. 0 ml. Soap bubble is blown at standard pressure. When a thunderstorm passes later in the day, the pressure becomes 700. 0 mmHg. Will the bubble get bigger or smaller? What is its new volume?

Answers

The new volume of the soap bubble is approximately 54.29 mL. Since the volume has increased, the bubble will get bigger when the pressure drops to 700.0 mmHg during the thunderstorm.



A 50.0 mL soap bubble is blown at standard pressure. When a thunderstorm passes later in the day, the pressure becomes 700.0 mmHg. To determine if the bubble will get bigger or smaller and to find its new volume, we will use Boyle's Law, which states that P1V1 = P2V2, where P1 and V1 are the initial pressure and volume, and P2 and V2 are the final pressure and volume.

Step 1: Convert the initial and final pressures to the same unit. The standard pressure is 1 atmosphere (atm), which is equivalent to 760 mmHg. The final pressure is given as 700.0 mmHg.

Step 2: Apply Boyle's Law. Let P1 = 760 mmHg, V1 = 50.0 mL, and P2 = 700.0 mmHg. We will solve for V2, the new volume.

760 mmHg * 50.0 mL = 700.0 mmHg * V2

Step 3: Solve for V2.

V2 = (760 mmHg * 50.0 mL) / 700.0 mmHg
V2 ≈ 54.29 mL

Learn more about volume at https://brainly.com/question/14197390

#SPJ11

I’m the space provided below, show a correct numerical setup for calculating the total number of moles of ethylene glycol needed to prepare 2.50 liters of a 10.0 M solution?

Answers

2.50 litres of a 10.0 M solution require the preparation of 25.0 moles of ethylene glycol.

What is the recommended ratio of ethylene glycol to water?

Excellent antifreeze, anti-boil, and anti-corrosive qualities are produced when antifreeze and water are mixed in a 50/50 ratio. The proportion of conventional ethylene glycol to water in severely cold conditions can reach 70% antifreeze, 30% water. The maximum antifreeze to water ratio when using DEX-COOL® is 60/40.

moles = concentration (M) x volume (L)

Given that the desired concentration is 10.0 M and the volume needed is 2.50 L, the setup for calculating the total number of moles of ethylene glycol can be written as:

moles = 10.0 M x 2.50 L

moles = 25.0 mol

To know more about solution visit:-

https://brainly.com/question/1416865

#SPJ1

Determine the formula of the hydrated salt with iron 20. 14%, oxygen 23. 02%,sulphur11. 51%,water 45. 32% and molecular mass ofsalt is278

Answers

To determine the formula of the hydrated salt, we need to first find the empirical formula by determining the smallest whole number ratio of the elements present in the compound.

Then, we can use the molar mass of the empirical formula and the percentage composition of the water to find the molecular formula.

Step 1: Find the empirical formula

Assuming 100 g of the compound, we can calculate the masses of each element present:

- Iron: 20.14 g

- Oxygen: 23.02 g

- Sulphur: 11.51 g

- Water: 45.32 g

Next, we need to convert these masses to moles:

- Iron: 20.14 g / 55.85 g/mol = 0.360 mol

- Oxygen: 23.02 g / 16.00 g/mol = 1.439 mol

- Sulphur: 11.51 g / 32.06 g/mol = 0.359 mol

- Water: 45.32 g / 18.02 g/mol = 2.515 mol

We can then divide each mole value by the smallest mole value to get the mole ratio:

- Iron: 0.360 mol / 0.359 mol ≈ 1

- Oxygen: 1.439 mol / 0.359 mol ≈ 4

- Sulphur: 0.359 mol / 0.359 mol = 1

- Water: 2.515 mol / 0.359 mol ≈ 7

The mole ratio is approximately 1:4:1:7, which gives us the empirical formula:

FeSO4·7H2O

Step 2: Find the molecular formula

The empirical formula mass of FeSO4·7H2O is:

(55.85 + 32.06 + 4(16.00)) + 7(18.02) = 278.00 g/mol

We know from the problem that the molecular mass of the salt is 278 g/mol, so the empirical formula is also the molecular formula. Therefore, the formula of the hydrated salt is FeSO4·7H2O.

To know more about empirical refer here

https://brainly.com/question/977538#

#SPJ11

Explain why I2 is a solid, Br2 is a liquid but Cl2and F2 are gases even though they are all Halogens

Answers

I₂ is a solid, Br₂ is a liquid, while Cl₂ and F₂ are gases because of their increasing molecular size and decreasing strength of their intermolecular forces.

The main factor influencing the physical states of halogens is the strength of the intermolecular forces (Van der Waals forces) between their molecules.

As you move down Group 17 in the periodic table (from F₂ to I₂), the size and mass of the halogen molecules increase. Larger molecules have a greater number of electrons, leading to stronger dispersion forces (a type of Van der Waals forces) between molecules.

For I₂, these forces are strong enough to hold the molecules together in a solid form. For Br₂, the forces are slightly weaker but still strong enough to form a liquid. However, in Cl₂ and F₂, the forces are weaker, allowing the molecules to be in a gaseous state at room temperature.

In summary, the physical states of the halogens depend on the strength of their intermolecular forces, which is influenced by the size and mass of the molecules.

To know more about intermolecular forces click on below link:

https://brainly.com/question/9007693#

#SPJ11

6. a monobasic organic acid x has the composition 31. 6% carbon, 5. 3% hydrogen and 63. 1% oxygen.

a. what is the empirical formula of acid x?

b. an aqueous solution solution contains 11. 4 g of x per dm. 20 cm of this solution required 30

cm² of 0. 100 mol dm naoh for reaction in a titration. calculate the relative molecular mass of

the acid.

Answers

A) The empirical formula of acid X is CH2O since it contains 31.6% carbon, 5.3% hydrogen, and 63.1% oxygen, b) the relative molecular mass of acid X is 34.2 g mol⁻¹.

What is empirical formula?

An empirical formula is a chemical formula that indicates the simplest, whole number ratio of atoms in a molecule. It shows the types of atoms and the number of each type of atom that make up a single molecule of a compound.

a. The empirical formula of acid X is CH2O since it contains 31.6% carbon, 5.3% hydrogen, and 63.1% oxygen.

b. The number of moles of acid X in 11.4 g of the solution is 11.4/M, where M is the relative molecular mass of acid X. The number of moles of NaOH required to react with this amount of acid X is 0.100 mol dm⁻³ × 30 cm² = 0.03 mol. Thus, the mole ratio of acid X to NaOH is 11.4/M : 0.03, or M : 0.03 × 11.4/M. This can be rearranged to give M = 0.03 × 11.4/M, or M = 34.2 g mol⁻¹. Therefore, the relative molecular mass of acid X is 34.2 g mol⁻¹.

To learn more about empirical formula

https://brainly.com/question/1603500

#SPJ4

January 2 is a third quarter moon. What is the approximate date of the next full moon?

Answers

The approximate date of the next full moon after January 2 would be around January 9 or 10.

The approximate date of the next full moon after January 2, which is a third quarter moon, can be determined by understanding the lunar cycle. The lunar cycle, also known as the moon's phases, takes approximately 29.5 days to complete.

The cycle starts with the new moon, then progresses through the waxing crescent, first quarter, waxing gibbous, full moon, waning gibbous, third quarter, and finally the waning crescent before returning to the new moon.

Since January 2 is a third quarter moon, we can estimate the remaining days in the lunar cycle until the next full moon. The third quarter moon marks the transition from the waning gibbous to the waning crescent phase, which is about 3/4 of the way through the lunar cycle.

From the third quarter moon, there are still the waning crescent, new moon, waxing crescent, first quarter, and waxing gibbous phases to go through before reaching the full moon. These phases take approximately 1/4 of the lunar cycle, which is about 7 to 8 days.

Taking this into consideration, the approximate date of the next full moon after January 2 would be around January 9 or 10.

To know more about full moon, visit:

https://brainly.com/question/31392459#

#SPJ11

1. In a purple camote peel soaked with rubbing alcohol overnight and steel wool vinegar supernatant liquid. What is the explanation of the reaction or result when you add 2 teaspoons of supernatant liquid in the purple camote peel extract soaked with rubbing alcohol?


2. In flower alcoholic extract, bougainvillea petal soaked with rubbing alcohol overnight. What is the explanation of the reaction or result when you add 2 teaspoons of supernatant liquid in the flower alcoholic extract?

Answers

The reaction that takes place when 2 teaspoons of supernatant liquid is added to the purple camote peel extract soaked with rubbing alcohol overnight is the formation of a purple pigment.

The purple pigment is created when the alcohol and steel wool vinegar react with the camote peel extract to break down the cell walls and release the pigment. This reaction is further enhanced by the addition of the supernatant liquid, which helps to dissolve the pigment and make it more easily visible.

The reaction that takes place when 2 teaspoons of supernatant liquid is added to the flower alcoholic extract of bougainvillea petal soaked with rubbing alcohol overnight is the formation of a pinkish-red pigment.

The pinkish-red pigment is created when the alcohol and steel wool vinegar react with the petal extract to break down the cell walls and release the pigment. This reaction is further enhanced by the addition of the supernatant liquid, which helps to dissolve the pigment and make it more easily visible.

Know more about Supernatant liquid  here

https://brainly.com/question/31171418#

#SPJ11

A sample of river water taken near to a factory
shows a pH of 5.
al Do you think this represents a pollution
problem? Give reasons for your answer.
b What other evidence might you need to
consider before reaching a conclusion?

Answers

a) A pH of 5 for river water near a factory does suggest a potential pollution problem. The normal pH range for most natural waters is around 6.5-8.5. pH values below 6.5 can indicate acidification, which can be caused by pollutants such as sulfur dioxide and nitrogen oxides from industrial activities, or from natural sources such as acid rain.

What is the river water about?

A pH of 5 is more acidic than most natural waters and could indicate the presence of acidic pollutants in the water.

Therefore, in terms of b) Other evidence that would be useful to consider before reaching a conclusion about whether the pH of 5 represents a pollution problem includes:

Information about the specific factory located near the river and the activities that take place there. This could help to identify any potential sources of pollutants that could be causing the decrease in pH.Water quality testing for other parameters such as dissolved oxygen, temperature, and nutrient levels. This could help to identify other potential sources of pollution, and could help to determine the overall health of the river ecosystem.A comparison of the pH of the river water at different times of year, and at different locations along the river. This could help to identify any seasonal or regional patterns in the pH levels, which could be related to natural factors such as rainfall or the geology of the area.

Read more about river water here:

https://brainly.com/question/19609890

#SPJ1

The period of a simple pendulum of length 1m on a massive planet is 1 sec. What is the acceleration due to gravity on that planet?

Answers

The acceleration due to gravity on the massive planet is 39.48 m/s².

How do we calculate?

The period (T) of a simple pendulum is given by:

T = 2π√(L/g),

where L is the length of the pendulum and g is the acceleration due to gravity.

In this scenario, we are given that the period of the pendulum (T) is 1 second and the length of the pendulum (L) is 1 meter.

So, substituting these values into the equation:

1 = 2π√(1/g)

Simplifying this equation :

g = (4π²) / (1²)

g = 4π² m/s²

g ≈ 39.48 m/s²

Learn more about simple pendulum at: https://brainly.com/question/31309965

#SPJ1

Viewing the moon on the 7th day of the lunar cycle, what percentage of the the lunar surface would be illuminated?



a. 17%


b. 35%


C. 45%

Answers

Viewing the moon on the 7th day of the lunar cycle, 35% of the the lunar surface would be illuminated.

The moon is in its first quarter phase on the seventh day of the lunar cycle, which makes it seem as a half-circle in the sky. This occurs because the sun's surface is lighted exactly 50% of the time at this time.

The moon's other half was still completely opaque. Different regions of the moon will be illuminated on any given day depending on the moon's phase, which changes over the course of the lunar cycle.

On the seventh day of the cycle, when the moon will be in its first quarter phase, just half of the lunar surface will be fully illuminated by the sun.

Learn more about lunar cycle:

https://brainly.com/question/31453214

#SPJ4

The following reaction occurs when a burner on a gas stove is lit:


CH4(g) + 2O2(g) ⇄ CO2(g) + 2H20(g)


Evaluate the following statements and select the correct grouping. True statements are marked with a T, and false statements are marked with an F.


The system cannot reach equilibrium because it is not a closed system.

Increasing the concentration of the CH4 will increase the production of CO2 and water.

Increasing the temperature of the flame will increase the production of CO2 and water.

Adding CO2 will increase the volume of methane and oxygen

Answers

The correct grouping is:

F, T, T, F

Explanation:

- The first statement is false. Although the system is not closed in the strictest sense, it can still reach equilibrium because the reactants and products are all gases and can interact with each other.
- The second statement is true. According to Le Chatelier's principle, increasing the concentration of a reactant will shift the equilibrium towards the products, in this case, CO2 and water.
- The third statement is also true. Increasing the temperature will increase the rate of the forward reaction, causing the equilibrium to shift towards the products.
- The fourth statement is false. Adding CO2 to the system will not affect the volume of methane and oxygen. It may, however, affect the equilibrium position by shifting it towards the reactants, as Le Chatelier's principle predicts that adding a product will shift the equilibrium towards the reactants.
Other Questions
consider the rabin cryptosystem with key n = 1 359 692 821 = 32359 42019. (a) encode the plaintext m = 414 892 055. (b) find the four decodings of the ciphertext c = 823 845 737. A drink costs 4 dollars. a pizza costs 8 dollars. given the number of each, compute total cost and assign to totalcost. ex: 2 drinks and 3 pizzas yields totalcost of 32.let drinkquantity = 2; // code tested with values: 2 and 4let pizzaquantity = 3; // code tested with values: 3 and 7let totalcost = 0;this is javascript not math!!!!!! do not give me some form of math answer Solve the equation and check your solution: x + 4 = -2 + x In a database record, what terms are used to describe the article- terms you could use to locate other materials on the subject find the exact value of z. What is the domain indicated on the graph for each portion of the piecewise function?f(x) = StartLayout enlarged left-brace 1st Row 1st column negative 2, 2nd column Domain 1st piece 2nd row 1st column 2 x + 1, 2nd column Domain 2nd piece Third row 1st column negative one-half x, 2nd column Domain 3rd piece EndLayout A piece of unknown metal with a mass of 23.8 g is heated to 100.0C and is dropped into 50.0 g of water at 24.0C. The final temperature is 32.5C. What is the specific heat of the metal? Solve x^2+6x=5 using any method. Round your solutions to the nearest hundredth Monica agrees to sell her bike to Nakoya for $520. They shake hands, and Nakoya leaves the yard sale, promising to return with her checkbook to pay for and pick up the bike. Nakoya never returns. Monica sues Nakoya in small claims court for breach of contract 5. Which model is most appropriate for the data shown in the graph below? (1 point)O quadraticO linearO exponentialO line A catering service offers 5 appetizers, 11 main courses, and 4 desserts. A customer is to select 4 appetizers, 9 main courses, and 3 desserts for a banquet. In how many ways can this be done? What is the anwser to number 3 What is the vertex of the graph of the equation Y=3x2( to the second power) +6x+1A.(-1,-2)B.(-1, 10)C.(1, -2)D.(1, 10) help pleasethe triangle above has the following measures. q = 7cm m SOS HELPPPPP Please help these 3 are Biology questions i need a hand withFor three answers i will give 30 points no trolls Explain why the capitalist system developed in Europe. a woman bought 100 christmas cards. she paid 30 cents each for the cards that play a song when they are opened. for the rest she paid 5 cents each. of the cards cost $10.25 in all, how many of the expensive kind did she buy? a teenager is admitted to a health care facility for a fungal infection. it has been determined that the infection was present for a long time, but there was no treatment undertaken. the teenager now has a systemic fungal infection for which flucytosine is prescribed. which would be most important for the nurse to assess before beginning therapy? I need help hurry!!! 50 Points! Multiple choice algebra question. Photo attached. Thank you!