Approximately 1.82 liters of ethylene glycol should be added to the water in the radiator to make a 50:50 mixture that will protect the system to -18°C.
A 50:50 mixture of ethylene glycol and water is recommended to provide protection down to approximately -37°C. This mixture will provide freeze point depression of approximately -34°C. We can use the following equation to calculate the volume of ethylene glycol required:
Veth = (Vtot × Ceth) / ρeth
where:
Veth = volume of ethylene glycol
Vtot = total volume of mixture
Ceth = concentration of ethylene glycol
ρeth = density of ethylene glycol
To calculate volume of ethylene glycol required to make a 50:50 mixture, we can substitute these values into the equation:
[tex]Veth = (Vtot * Ceth) / \rho eth \\Veth = (4 L * 0.5) / 1.1 kg/L \\Veth = 1.82 L[/tex]
To know more about ethylene glycol, here
brainly.com/question/10405060
#SPJ4
You want to link a suspect to a crime scene. You have a DNA sample that you’ve taken from the crime scene, but the suspect is nowhere to be found so you can’t get his DNA to compare it to. However, the suspect’s family has agreed to give you samples of their DNA. Which family member would be the best option to help you see if the crime scene sample can be linked to the suspect?
The suspect’s cousin
The suspect’s grandfather
The suspect’s stepmother
The suspect’s twin brother
The best option to help you see if the crime scene sample can be linked to the suspect would be the suspect's twin brother. The correct answer choice is "The suspect’s twin brother"
This is because twins, specifically identical twins, share almost 100% of their DNA. Comparing the DNA sample from the crime scene to the twin brother's DNA would provide the most accurate and reliable indication of whether the suspect is linked to the crime scene or not.
Other family members, such as the cousin, grandfather, and stepmother, would share a lesser degree of genetic similarity with the suspect, making it less conclusive for establishing a link.
Therefore, "The suspect’s twin brother" is the correct answer choice.
For more such questions on crime scene, click on:
https://brainly.com/question/29025973
#SPJ11
For each of the following compounds, decide whether the compound's solubility in aqueous solution changes with pH. If the solubility does change, pick the pH at which you'd expect the highest solubility. You'll find Ksp data in the ALEKS Data tab.
compound Does solubility change with pH? highest solubility pH = 5 | pH = 7. PH | pH = 8
NaBr Васо, OOOOO Сасі, X 5 ? Formula BaCrO4 BaSO4 CaCO3 CaF2 Co(OH)2 CuBr CuCO3 Fe(OH)2 POCO3 PbCr04 PbF2 Mg(OH)2 Ni(OH)2 AgBroz A92CO3 AgCI Ag2 CrO4 SrCO3 ZnCO3 Zn(OH)2 AgBr Aucl Ksp 1. 17x10-10 1. 08x10-10 3. 36x10-9 3. 45x10-11 5. 92x10-15 6. 27x10-9 1. 4x10-10 4. 87x10-17 7. 40x10-14 2. 8x10-13 3. 3x10-8 5. 61x10-12 5. 48x10-16 5. 38x10-5 8. 46x10-12 1. 77x10-10 1. 12x10-12 5. 60x10-10 1. 46x10-10 3. 0x10-17 5. 35x 10-13 1. 77x10-10
The solubility of some compounds does change with pH. Specifically, the solubility of compounds containing hydroxide ions (OH-) or carbonate ions (CO3^2-) will increase as the pH becomes more basic. For example, CaCO3 and Mg(OH)2 will have higher solubility at pH 8 compared to pH 5 or 7.
On the other hand, compounds containing sulfates (SO4^2-) or fluorides (F-) will have minimal pH dependence. For example, BaSO4 and CaF2 will have similar solubility at pH 5, 7, and 8.
For compounds with Ksp values given in the table, the pH at which highest solubility is achieved is dependent on the specific compound. The highest solubility pH for each compound can be determined by examining the specific ion involved and its dependence on pH.
Based on the provided Ksp values, I'll analyze the solubility of some of the compounds at different pH levels:
1. NaBr: Solubility does not change with pH as it's a neutral salt and neither cation nor anion react with water.
2. BaCrO4: Solubility changes with pH. Highest solubility at pH = 7, because the anion (CrO4^2-) can form a precipitate with Ba^2+ at lower pH levels.
3. CaCO3: Solubility changes with pH. Highest solubility at pH = 5, because the anion (CO3^2-) can form a precipitate with Ca^2+ at higher pH levels.
4. CaF2: Solubility does not significantly change with pH as it's a slightly soluble salt, and the anion (F-) does not react with water.
5. Co(OH)2: Solubility changes with pH. Highest solubility at pH = 5, because the compound can form a precipitate at higher pH levels due to increased hydroxide concentration.
Note that due to the format of the provided information, it's not possible to analyze all compounds. However, this methodology can be applied to the remaining compounds based on their Ksp values and potential reactions with water.
To know more about Solubility-pH relation:
https://brainly.com/question/31632429
#SPJ11
complete the table below by deciding whether a precipitate forms when aqueous solutions a and b are mixed. if a precipitate will form, enter its empirical formula in the last column. solution a solution b does a precipitate form when a and b are mixed? empirical formula of precipitate potassium sulfide iron(ii) sulfate yes no zinc sulfate iron(ii) bromide yes no barium bromide potassium acetate
By considering the solubility rules, we can determine whether a precipitate will form and its empirical formula when mixing two aqueous solutions.
The table can be completed as follows(image attached):
To determine whether a precipitate will form when solutions A and B are mixed, we need to consider the solubility rules of the compounds involved. If the product of the ions in the solution is insoluble, then a precipitate will form.
In the first case, potassium sulfide (K2S) and iron(II) sulfate (FeSO4) will react to form potassium sulfate (K2SO4) and iron(II) sulfide (FeS), which is insoluble. Thus, a precipitate will form with empirical formula FeS. In the second case, both zinc sulfate (ZnSO4) and iron(II) bromide (FeBr2) are soluble in water and will not react to form an insoluble compound. Therefore, no precipitate will form.
In the third case, barium bromide (BaBr2) and potassium acetate (KC2H3O2) will react to form barium acetate (Ba(C2H3O2)2) and potassium bromide (KBr), which is soluble. However, barium acetate is insoluble and will form a precipitate with empirical formula Ba(C2H3O2)2.
To know more about the Aqueous solutions, here
https://brainly.com/question/29987702
#SPJ4
Three (3) brine solutions B1, B2, and B3 are mixed. B1 is one-half of this mixture (one-half of mixture mass, not volume). Brine B1 is 2. 5% salt, B2 is 4. 5% salt and B3 is 5. 5% salt. To this mixture is added 35 lbm of dry salt, while 230 lbm of water is evaporated leaving 3200 lbm of 5. 1% brine. Determine the amounts (in lbm) of B1, B2, and B3
The mass of B1 is one-half of the total mass of the mixture before any salt or water is added.The mass of B1 is 1582.5 lbm.
What is mixture ?Mixture is a combination of two or more substances that are not chemically combined. Mixtures can be either homogeneous, meaning the substances are uniformly dispersed, or heterogeneous, meaning the substances are not evenly distributed. Examples of mixtures include sand and water, sugar and water, and salt and pepper.
Since we are given that the total mass of the mixture is 3200 lbm and that 35 lbm of salt will be added, the total mass of the mixture before the salt and water are added is 3165 lbm.Since B2 is 4.5% salt, we can calculate the salt mass of B2 by multiplying 4.5 by the total mass of B2. Thus, the salt mass of B2 is 4.5 * 1582.5 lbm = 7162.5 lbm. Since we are given that 35 lbm of salt will be added, we can calculate the total mass of B2 before the salt and water are added by subtracting 35 lbm from 7162.5 lbm. Thus, the total mass of B2 before the salt and water are added is 7127.5 lbm. e B3 is 5.5% salt, we can calculate the salt mass of B3 by multiplying 5.5.
To learn more about mixture
https://brainly.com/question/24647756
#SPJ4
How many liters will 2. 5 moles of gas occupy at 322 K and. 90 atm of pressure?
2.5 moles of gas at 322 K and 0.90 atm of pressure would occupy 72.8 liters of volume.
We can use the ideal gas law to solve this problem:
PV = nRT
where P is the pressure in atm, V is the volume in liters, n is the number of moles, R is the ideal gas constant (0.0821 L·atm/mol·K), and T is the temperature in Kelvin.
First, we need to convert the temperature from Celsius to Kelvin:
322 K = 49°C + 273.15
Now we can plug in the values and solve for V:
V = nRT/P
V = (2.5 mol)(0.0821 L·atm/mol·K)(322 K)/(0.90 atm)
V = 72.8 L
Therefore, 2.5 moles of gas at 322 K and 0.90 atm of pressure would occupy 72.8 liters of volume.
To know more about ideal gas law refer to-
https://brainly.com/question/28257995
#SPJ11
Calculate the mass of iron that releases 2432 J of energy as its temperture rises from 25. 0 degrees * C to 87. 0 degrees * C. (The specific heat of iron is 0. 448 J/g^ C)
To solve this problem, we can use the formula:
q = m * c * ΔT
where q is the heat energy absorbed or released, m is the mass of the substance, c is the specific heat capacity of the substance, and ΔT is the change in temperature.
We know that the heat energy released by the iron is 2432 J, the specific heat capacity of iron is 0.448 J/g°C, the initial temperature of the iron is 25.0°C, and the final temperature of the iron is 87.0°C.
The mass of iron that releases 2432 J of energy as its temperature rises from 25.0°C to 87.0°C is 96.2 g.
Substituting the values in the formula, we get:
2432 J = m * 0.448 J/g°C * (87.0°C - 25.0°C)
Simplifying the equation, we get:
m = 2432 J / (0.448 J/g°C * 62.0°C)
m = 96.2 g
Therefore, the mass of iron that releases 2432 J of energy as its temperature rises from 25.0°C to 87.0°C is 96.2 g.
To know more about temperature rise refer here:
https://brainly.com/question/2006890
#SPJ11
13. one of the two products of the reaction of baking soda and vinegar is carbonic acid (h2co3), which immediately forms water and the gas you identified after exposure to the flaming and glowing splints. write a balanced equation showing the decomposition of carbonic acid.
The balanced equation for the decomposition of carbonic acid (H₂CO₃) is H₂CO₃ → H₂O + CO₂.
In this reaction, carbonic acid (H₂CO₃) decomposes into water (H₂O) and carbon dioxide (CO₂). When baking soda (NaHCO₃) and vinegar (CH₃COOH) react, one of the products formed is carbonic acid.
This carbonic acid is unstable and quickly decomposes into water and carbon dioxide gas. The release of carbon dioxide gas creates the bubbling effect observed in this reaction.
The balanced equation demonstrates that for every one molecule of carbonic acid that decomposes, one molecule of water and one molecule of carbon dioxide gas are produced. This reaction plays an important role in everyday applications such as baking and science experiments.
To know more about balanced equation click on below link:
https://brainly.com/question/7181548#
#SPJ11
What is the volume of a 2. 00 M solution that contains 3. 75 moles of solute?
The volume of a 2.00 M solution that contains 3.75 moles of solute can be calculated using the formula V = n/C, where V is the volume of the solution, n is the number of moles of solute, and C is the concentration of the solution in units of M (moles per liter).
Plugging in the given values, we get V = 3.75 moles / 2.00 M = 1.88 L. Therefore, the volume of the solution is 1.88 liters. In 100 words, the volume of a solution can be determined by knowing the amount of solute present and the concentration of the solution.
This is because the concentration of a solution is defined as the amount of solute dissolved in a given volume of solution. Using the formula for concentration, we can determine the amount of solute dissolved in a given volume of solution.
Then, by rearranging the formula to solve for volume, we can determine the volume of the solution required to dissolve a specific amount of solute.
to know more about concentration refer here
https://brainly.com/question/13872928#
#SPJ11
How many compounds are there in 434g of ammonium nitrate?
3.266 × 10²⁴ compounds in 434g of ammonium nitrate
To determine how many compounds are in 434g of ammonium nitrate, we will follow these steps:
Step 1: Determine the molar mass of ammonium nitrate (NH₄NO₃).
Ammonium nitrate consists of one nitrogen (N) atom, four hydrogen (H) atoms, and three oxygen (O) atoms in its chemical formula. The molar masses of N, H, and O are approximately 14 g/mol, 1 g/mol, and 16 g/mol, respectively.
Molar mass of NH₄NO₃ = 1(N) + 4(H) + 1(N) + 3(O)
= 14 + (4 × 1) + 14 + (3 × 16)
= 14 + 4 + 14 + 48
= 80 g/mol
Step 2: Calculate the number of moles of ammonium nitrate.
To find the number of moles, divide the given mass (434g) by the molar mass (80 g/mol).
Number of moles = 434 g / 80 g/mol
= 5.425 moles
Step 3: Calculate the number of compounds (molecules) in ammonium nitrate.
Use Avogadro's number (6.022 × 10²³ molecules/mol) to find the total number of molecules in 5.425 moles of ammonium nitrate.
Number of compounds = 5.425 moles × (6.022 × 10²³ molecules/mol)
= 3.266 × 10²⁴ molecules
So, there are approximately 3.266 × 10²⁴ compounds in 434g of ammonium nitrate.
To know more about Molar mass :
https://brainly.com/question/20552052
#SPJ11
Neon leaks out of a container in 15. 0 minutes. The same amount of an unknown gas will leak out in 21. 2 minutes under identical conditions. What is this unknown gas? *
The unknown gas is likely methane. The unknown gas leaks out of a container in 21.2 minutes, while Neon leaks out in 15.0 minutes under identical conditions.
To identify the unknown gas, we can use Graham's law of effusion. This law states that the rate of effusion of a gas is inversely proportional to the square root of its molar mass. Mathematically, this can be expressed as:
Rate1 / Rate2 = √(M2 / M1)
In this case, Rate1 is the rate of effusion of Neon, and Rate2 is the rate of effusion of the unknown gas. M1 is the molar mass of Neon, and M2 is the molar mass of the unknown gas.
First, let's find the ratio of the rates of effusion:
Rate1 / Rate2 = 15.0 minutes / 21.2 minutes = 0.7075
Next, we'll substitute this ratio and the molar mass of Neon (20.18 g/mol) into Graham's law equation:
0.7075 = √(M2 / 20.18)
Now, square both sides of the equation:
0.5006 = M2 / 20.18
Finally, solve for M2 (the molar mass of the unknown gas):
M2 = 0.5006 * 20.18 = 10.10 g/mol
The unknown gas has a molar mass of approximately 10.10 g/mol, which closely matches the molar mass of methane (CH4) at 16.04 g/mol. Therefore, the unknown gas is likely methane.
To know more about methane, visit:
https://brainly.com/question/2127750#
#SPJ11
1- what volume of 0. 200 m hcl solution is needed to neutralize 25. 0 ml of 0. 150 m naoh solution?
2- what volume of 1. 00 m naoh is required to neutralize 35. 0 ml of 0. 220 m sulfuric acid, h2so4?
3- what volume of 1. 00 m naoh is required to neutralize 0. 0100 l of 0. 143 m phosphoric acid, h3po4?
4- what volume of 1. 000 m ca(oh)2 is needed to neutralize 45. 0 ml of 0. 400 m hcl?
5- what volume of 0. 204 m h3po4 can furnish the same number of moles of h+ ions as
61. 2 ml of 0. 800 m hcl?
These problems involve acid-base neutralization and require stoichiometry calculations using the balanced chemical equation to determine the volume of one solution needed to neutralize another.
Step by step answers to the given questions are as follows :
1. To neutralize 25.0 ml of 0.150 M NaOH, we need the same number of moles of HCl.
Number of moles of NaOH = 0.150 mol/L x 0.0250 L = 0.00375 mol
Number of moles of HCl needed = 0.00375 mol
Concentration of HCl = 0.200 M
Volume of HCl needed = 0.00375 mol / 0.200 mol/L = 0.0188 L or 18.8 mL.
2. H₂SO₄ reacts with NaOH in a 1:2 ratio.
Number of moles of H₂SO₄ = 0.220 mol/L x 0.0350 L = 0.00770 mol
Number of moles of NaOH needed = 2 x 0.00770 mol = 0.0154 mol
Concentration of NaOH = 1.00 M
Volume of NaOH needed = 0.0154 mol / 1.00 mol/L = 0.0154 L or 15.4 mL.
3. H₃PO₄ reacts with NaOH in a 1:3 ratio.
Number of moles of H₃PO₄ = 0.143 mol/L x 0.0100 L = 0.00143 mol
Number of moles of NaOH needed = 3 x 0.00143 mol = 0.00429 mol
Concentration of NaOH = 1.00 M
Volume of NaOH needed = 0.00429 mol / 1.00 mol/L = 0.00429 L or 4.29 mL.
4. Ca(OH)₂ reacts with HCl in a 1:2 ratio.
Number of moles of HCl = 0.400 mol/L x 0.0450 L = 0.0180 mol
Number of moles of Ca(OH)₂ needed = 0.00900 mol
Molar mass of Ca(OH)₂ = 74.10 g/mol
Mass of Ca(OH)₂ needed = 0.00900 mol x 74.10 g/mol = 0.667 g
Concentration of Ca(OH)₂ = 1.000 M
Volume of Ca(OH)₂ needed = 0.00900 mol / 1.000 mol/L = 0.00900 L or 9.00 mL.
5. H₃PO₄ has three acidic hydrogens and each reacts with one H+ ion.
Number of moles of HCl = 0.800 mol/L x 0.0612 L = 0.0489 mol
Number of moles of H+ ions in HCl = 0.0489 mol
Number of moles of H+ ions needed = 3 x 0.0489 mol = 0.1467 mol
Concentration of H₃PO₄= 0.204 M
Volume of H₃PO₄ needed = 0.1467 mol / 0.204 mol/L = 0.719 L or 719 mL.
To know more about the acid-base neutralization refer here :
https://brainly.com/question/31591186#
#SPJ11
calculate the volume of 0.150 m hydrochloric acid required to completely neutralize 25.0 ml of 0.250 m iron (iii) hydroxide.
0.125 L HCl solution, or 125 mL HCl solution (Depending on the units requested)
Explanation:Major steps:
1. Determine the chemical formulas for each compound
2. Write the unbalanced chemical equation, and balance it
3. Use dimensional analysis to determine the amount of acid needed.
Step 1. Determine the chemical formulas for each compound
hydrochloric acid is [tex]HCl[/tex]. This is from memorization of nomenclature, or consulting a resource.
Iron (iii) hydroxide is [tex]Fe(OH)_3[/tex] . This is from memorization of nomenclature, knowing that the charge on "hydroxide" is a negative 1, and that 3 hydroxide ions will be needed to balance the charge with a Iron (iii), or consulting a resource.
Step 2. Write the unbalanced chemical equation, and balance it
For "neutralization reactions", an "Acid" and a "Base" will combine to form Water and a "salt".
Unbalanced chemical equation:
[tex]HCl + Fe(OH)_{3} \rightarrow H_{2}O+ FeCl_{3}[/tex]
Balance the equation by increase the number of "Chlorines" on the left, and the number of "hydroxides" (trapped in the 'water') on the right.
Balanced chemical equation:
[tex]3HCl + Fe(OH)_{3} \rightarrow 3H_{2}O+ FeCl_{3}[/tex]
Step 3. Use dimensional analysis to determine the amount of acid needed.
Knowing we have 25.0mL of Iron (iii) hydroxide solution (in milliliters), we first convert to Liters (since concentrations for "molarity" are measured in moles per Liter).
Then convert to convert to moles of Iron(iii) hydroxide using the solution's concentration.
Convert to moles of hydrochloric acid using the mole ratio from the balanced chemical equation.
Lastly convert to volume of the hydrochloric acid solution using that solution's concentration:
[tex]\dfrac{25.0 \text{ mL } Fe(OH)_3 \text{ solution}}{1} * \dfrac{1 \text{ L }}{1000 \text{ mL }} * \dfrac{0.25 \text{ mol } Fe(OH)_3 }{1 \text{ L } Fe(OH)_3 \text{ solution}} * \dfrac{3 \text{ mol } HCl }{1 \text{ mol } Fe(OH)_3 } * \dfrac{1 \text{ L } HCl \text{ solution} }{0.150 \text{ mol } HCl }=[/tex]
[tex]=0.125 \text{ L } HCl \text{ solution}[/tex]
If the requested answer should be measured in milliliters, one last conversion will yield the answer:
[tex]\dfrac{0.125 \text{ L } HCl \text{ solution}}{1} * \dfrac{1000 \text{ mL }}{1 \text{ L }} = 125 \text{ mL } HCl \text{ solution}[/tex]
Observe that the original measurements use 3 significant figures, so each answer should use 3 significant figures (both answers do).
Total Mass of reactants of Alpha Decay , Beta Plus Decay, Beta Minus decay
During alpha decay, atomic nuclei emit alpha particles, which are helium-4 nuclei composed of two protons and two neutrons. So, during alpha decay, the total mass of the reactants is equal to the mass of the main nucleus before decay.
What is the total mass of other reactants?In beta-plus decay, also called positron emission, protons in the nucleus are converted into neutrons, and positrons and neutrinos are emitted. Since the mass of a positron is very small compared to the mass of a proton or neutron, the total mass of the reactants in beta and decay is very close to the mass of the parent nucleus before decay.
Beta -mm is also known as electrons or negatively, and the nucleus neutron is transformed into protons and electrons and is produced by antizatinrino. Because the electronic mass is very small compared to the mass of protons or neutrons, the total mass of the minimum minimum minimum reagent is very close to the body of the body.
Generally, the total mass of the reactants in a fission process is very close to the mass of the parent nucleus before fission, because the mass of the particles released during fission is much smaller than the mass of the parent nucleus. However, due to the conservation of energy and momentum, there can be slight differences in mass between the reactants and the decay products, called mass defects.
This mass defect is converted into energy according to Einstein's famous equation E = mc². where E is the energy released, m is the mass defect, and c is the speed of light.
learn more about total mass of reactants: https://brainly.com/question/19958395
#SPJ1
What is the total number of moles, to the nearest tenth, of solute contained in 0. 50 liter of 3. 0 M HCl?
The total number of moles, to the nearest tenth, of solute contained in 0. 50 liter of 3. 0 M HCl is 1.5 moles.
To determine the total number of moles of solute in a solution, we need to use the formula:
moles of solute = Molarity x volume in liters
Given that we have a 0.50 L solution of 3.0 M HCl, we can simply substitute the values in the formula to obtain:
moles of HCl = 3.0 mol/L x 0.50 L = 1.5 moles of HCl
Therefore, there are 1.5 moles of HCl in 0.50 liters of 3.0 M HCl solution. We can round this to the nearest tenth, giving us a final answer of 1.5 moles of HCl.
To know more about the moles of solute refer here :
https://brainly.com/question/31039725#
#SPJ11
If you apply 1,200 Newtons of force to an object and move it 8 meters, how much work do you do on the object?
To calculate the work done on an object, we use the formula:
Work = Force × Distance × cos(theta)
where "Force" is the magnitude of the force applied, "Distance" is the distance over which the force is applied, and "theta" is the angle between the force and the direction of motion.
In this case, the force is 1,200 Newtons, the distance is 8 meters, and we'll assume the angle between the force and direction of motion is 0 degrees (meaning the force is applied in the same direction as the object is moving). Therefore:
Work = 1,200 N × 8 m × cos(0°)
Work = 9,600 J
So, you do 9,600 joules of work on the object.
To know more about Distance refer here
https://brainly.com/question/13034462#
#SPJ11
Which choice represents the correct skeleton (unbalanced) equation for the following reaction?
Sodium metal reacts with chlorine gas to produce solid sodium chloride.
A. NaCl(s) → Cl(g) + Na(s)
B. Na(s) + CO2(g) → NaCO2(s)
C. Na(s) + Cl(g) → NaCl(s)
D. Na(s) + Cl2(g) → NaCl(s)
C. Na(s) + Cl(g) → NaCl(s) the correct skeleton (unbalanced) equation for the following reaction
What distinguishes an endothermic process from an exothermic one?Both the sodium cation (Na+) and the chloride anion (Cl-), which are created when a sodium atom donates an electron to a chlorine atom, have full valence shells and are thus more stable energetically. The reaction is very exothermic and generates a lot of heat energy in addition to a brilliant yellow light.
There are two ways to tell exothermic processes from endothermic ones. The temperature of the reaction mixture rises as energy is released in an exothermic process. In an endothermic process, the temperature drops as energy is absorbed.
learn more about sodium cation
https://brainly.com/question/29853321
#SPJ1
A 2.5l sample of gas is at stp. when the temperature is raised to 373 and the pressure remains constant what will the new volume of the gas be?
To solve this problem, we can use the combined gas law formula, which relates the initial and final states of a gas:
V1/T1 = V2/T2
Where:
V1 = initial volume = 2.5 L
T1 = initial temperature = 273 K (since STP is 0°C, which is 273 K)
V2 = final volume (what we need to find)
T2 = final temperature = 373 K
Rearrange the formula to find V2:
V2 = V1 * (T2 / T1)
Substitute the known values:
V2 = 2.5 L * (373 K / 273 K)
V2 ≈ 3.42 L
So, the new volume of the gas when the temperature is raised to 373 K and the pressure remains constant will be approximately 3.42 L.
For more questions on: combined
https://brainly.com/question/25290815
#SPJ11
Question 1 (3 points)
Fe +
Cl₂ -->
FeCl3
Answer:
2Fe + 3Cl_2 → 2FeCl 3
Explanation:
To balance the equation, we need to make sure that the number of atoms of each element is the same on both sides of the equation. In this case, we have two iron atoms and six chlorine atoms on the left-hand side, and two iron atoms and six chlorine atoms on the right-hand side. To balance the equation, we can add a coefficient of 2 in front of FeCl3 to get:
2Fe + 3Cl_2 → 2FeCl 3
Now we have two iron atoms and six chlorine atoms on both sides of the equation, and the equation is balanced.
2. Dragonflies can travel at speeds up to 35 miles perhour. How many meters per second is that? (1 mile = 1609 meters)
3. The Hyperion is the tallest redwood tree in the worldat 379. 7 feet. How many centimeters is that? (1 inch = 2. 54 cm)
4. How many atoms are in 2. 35 moles sulfur?
5. How many molecules are in 3. 45 moles sucrose?
Pls Help ASAP!
2. To convert miles per hour to meters per second, we need to divide by 2.237.
Thus, 35 miles per hour is equal to (35/2.237) meters per second.
Simplifying, we get:
= 15.646 m/s
3. To convert feet to centimeters, we need to multiply by 30.48.
Thus, 379.7 feet is equal to (379.7 x 30.48) centimeters.
Simplifying, we get:
= 1158.754 centimeters
4. To calculate the number of atoms in 2.35 moles of sulfur, we need to use Avogadro's number, which is 6.022 x 10^23 atoms per mole.
Therefore, the number of atoms in 2.35 moles of sulfur is:
2.35 moles x 6.022 x 10^23 atoms/mole = 1.41 x 10^24 atoms
5. To calculate the number of molecules in 3.45 moles of sucrose, we need to use Avogadro's number, which is 6.022 x 10^23 molecules per mole.
Therefore, the number of molecules in 3.45 moles of sucrose is:
3.45 moles x 6.022 x 10^23 molecules/mole = 2.08 x 10^24 molecules
to know more about Avogadro's number refer here:
https://brainly.com/question/28812626#
#SPJ11
Using Mendeleev's table, predict the formula, using subscripts to denote the number of each atom in the formula, for oxides of carbon ( C
C
) and aluminum ( Al
A
l
).
Mendeleev's periodic table allows us to predict the chemical properties of elements and their compounds. Let's start with oxides of carbon, which are compounds of carbon and oxygen.
Carbon can form two common oxides: carbon monoxide (CO) and carbon dioxide (CO2). In carbon monoxide, there is one carbon atom and one oxygen atom, so the formula would be written as CO with a subscript of 1 for carbon and a subscript of 1 for oxygen. In carbon dioxide, there is one carbon atom and two oxygen atoms, so the formula would be written as CO2 with a subscript of 1 for carbon and a subscript of 2 for oxygen.
Moving on to aluminum, it also forms oxides. The most common oxide of aluminum is aluminum oxide (Al2O3). In this compound, there are two aluminum atoms and three oxygen atoms. So the formula would be written as Al2O3 with a subscript of 2 for aluminum and a subscript of 3 for oxygen.
For more questions on: elements
https://brainly.com/question/18096867
#SPJ11
Let say that I want to get my mixture to a certain pH but I add too much water to my solution.Can I just add the same volume of my substance as the water I added back into the mixture to get my initial pH?
To get the initial pH, you need to calculate the new concentration of the substance in the diluted solution and add the required amount of substance to achieve the desired pH.
pH is a measure of the acidity or basicity of a solution. It is a logarithmic scale ranging from 0 to 14, where a pH of 7 is considered neutral, below 7 is acidic, and above 7 is basic.
If you add too much water to your solution, it will dilute the concentration of the substance in the mixture and may change the pH. To get the initial pH, you cannot simply add the same volume of the substance as the water you added back into the mixture.
This is because the amount of substance required to achieve the desired pH is dependent on the concentration of the substance in the mixture.
To determine the amount of substance required to achieve the desired pH, you need to calculate the new concentration of the substance in the diluted solution. This can be done using the formula:
C1V1 = C2V2
Where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume.
Once you have calculated the new concentration, you can then add the required amount of substance to the diluted solution to achieve the desired pH.
In summary, adding too much water to a solution can change the pH, and adding the same volume of substance as the water added will not restore the initial pH. To get the initial pH, you need to calculate the new concentration of the substance in the diluted solution and add the required amount of substance to achieve the desired pH.
To know more about pH, visit:
https://brainly.com/question/15289741#
#SPJ11
The molar heat of fusion for Iodine is 16. 7 kJ/mol. The specific heat capacity liquid Iodine is 0. 054 J/g degrees C.
Calculate the amount of energy (in KJ) required to melt 352 g of solid Iodine and then heat the liquid to 180 degrees C? The melting point of Iodine is 114 degrees C
The total amount of energy required to melt 352 g of solid Iodine and heat the resulting liquid to 180°C is 29.63 kJ.
The amount of energy required to melt 1 mol of Iodine is given as the molar heat of fusion, which is 16.7 kJ/mol. Therefore, the amount of energy required to melt 352 g of solid Iodine can be calculated as follows:
Number of moles of Iodine = Mass ÷ Molar mass
= 352 g ÷ 126.90 g/mol
= 2.78 mol
Energy required to melt 352 g of Iodine = Number of moles × Molar heat of fusion
= 2.78 mol × 16.7 kJ/mol
= 46.43 kJ
After the solid Iodine has melted, the resulting liquid must be heated from its melting point of 114°C to the final temperature of 180°C. The specific heat capacity of liquid Iodine is given as 0.054 J/g°C. Therefore, the amount of energy required to heat the liquid can be calculated as follows:
Energy required to heat the liquid Iodine = Mass × Specific heat capacity × Temperature change
= 352 g × 0.054 J/g°C × (180°C - 114°C)
= 1.67 kJ
The total amount of energy required to melt 352 g of solid Iodine and heat the resulting liquid to 180°C is therefore:
Total energy required = Energy required to melt the solid Iodine + Energy required to heat the liquid Iodine
= 46.43 kJ + 1.67 kJ
= 29.63 kJ
To know more about heat of fusion, refer here:
https://brainly.com/question/30403515#
#SPJ11
If you perform this reaction with 5. 00 g of MnO2 and 5. 00 g of H2SO4, how many grams of Mn(SO4)2 will form?
MnO2 + 2H2SO4 → Mn(SO4)2 + 2H2O
Molar Masses
MnO2= 86. 9368 g/mol
H2SO4= 98. 0785 g/mol
Mn(SO4)2= 247. 0632 g/mol
H2O= 18. 015 g/mol
a)6. 30 g
b)2. 50 g
c)14. 2 g
d)9. 81 g
When, we perform a reaction with 5. 00 g of MnO₂ and 5. 00 g of H₂SO₄, then, 6.30 g of Mn(SO₄)₂ will be formed. Option, A is correct.
To solve this problem, we need to use stoichiometry to calculate the amount of Mn(SO₄)₂ formed from the given amount of MnO₂ and H₂SO₄.
First, we calculate number of moles of each reactant;
moles of MnO₂ =5.00 g / 86.9368 g/mol
= 0.0574 mol
moles of H₂SO₄ = 5.00 g / 98.0785 g/mol
= 0.0509 mol
From the balanced chemical equation, we can see that 1 mole of MnO₂ reacts with 2 moles of H₂SO₄ to produce 1 mole of Mn(SO₄)₂. Therefore, the limiting reactant is H₂SO₄, since it is present in a smaller amount than what is required to react with all of the MnO₂.
The amount of Mn(SO₄)₂ formed is limited by the amount of H₂SO₄, so we can calculate the amount of Mn(SO₄)₂ formed based on the number of moles of H₂SO₄;
moles of Mn(SO₄)₂ = 0.0509 mol H₂SO₄ × (1 mol Mn(SO₄)₂ / 2 mol H₂SO₄) = 0.0255 mol Mn(SO₄)₂
Finally, we can calculate the mass of Mn(SO₄)₂ formed using its molar mass;
mass of Mn(SO₄)₂ = 0.0255 mol × 247.0632 g/mol
= 6.307 g
Therefore, total 6.30 g of Manganese(II) sulfate will form.
Hence, A. is the correct option.
To know more about Manganese(II) sulfate here
https://brainly.com/question/8695145
#SPJ4
Dams change the flow of water on earth's surface. how could you model the way this change in flow affects earth's rocks and soil? what would you expect the model to show?
The change in water flow caused by dams can have a significant impact on the erosion and deposition of rocks and soil on Earth's surface.
To model the way this change in flow affects Earth's rocks and soil, we could use a computer simulation that takes into account the topography and geological features of a particular area, as well as the flow rates and patterns of the water before and after the construction of the dam.
The model could simulate the erosion and deposition of rocks and soil by modeling the movement of sediment and the transport of materials downstream.
For example, the model could show how the reduction in water flow downstream of the dam can cause sediment to accumulate and form deltas or other landforms, while the increase in flow upstream of the dam can cause increased erosion and instability of the riverbank.
The model could also show how the change in flow affects the distribution of nutrients and minerals in the soil, which can have implications for plant growth and ecosystem health.
For example, the reduced water flow downstream of the dam could result in lower nutrient levels in the soil, which could impact the growth of crops and other plants.
Overall, the model would likely show that the construction of a dam can have complex and far-reaching effects on the landscape and ecosystem of the surrounding area.
These effects can vary depending on the specific characteristics of the river, the The change in water flow caused by dams can have a significant impact on the erosion and deposition of rocks and soil on Earth's surface.
To model the way this change in flow affects Earth's rocks and soil, we could use a computer simulation that takes into account the topography and geological features of a particular area, as well as the flow rates and patterns of the water before and after the construction of the dam.
The model could simulate the erosion and deposition of rocks and soil by modeling the movement of sediment and the transport of materials downstream.
For example, the model could show how the reduction in water flow downstream of the dam can cause sediment to accumulate and form deltas or other landforms, while the increase in flow upstream of the dam can cause increased erosion and instability of the riverbank.
The model could also show how the change in flow affects the distribution of nutrients and minerals in the soil, which can have implications for plant growth and ecosystem health.
For example, the reduced water flow downstream of the dam could result in lower nutrient levels in the soil, which could impact the growth of crops and other plants.
Overall, the model would likely show that the construction of a dam can have complex and far-reaching effects on the landscape and ecosystem of the surrounding area.
These effects can vary depending on the specific characteristics of the river, the topography of the area, and the design and operation of the dam. of the area, and the design and operation of the dam.
To know more about flow refer here
https://brainly.com/question/28494347#
#SPJ11
Determine the number of moles of c2o4 in a sample with 0.48 moles of mno4 at endpoint
There are 2.4 moles of C2O4^2- in the given sample
To determine the number of moles of C2O4 in the given sample, we need to use the balanced chemical equation of the reaction between MnO4 and C2O4. The equation is:
MnO4- + 5C2O4^2- + 8H+ → Mn2+ + 10CO2 + 4H2O
From the equation, we can see that 1 mole of MnO4- reacts with 5 moles of C2O4^2-. Therefore, if we have 0.48 moles of MnO4- at the endpoint, we can calculate the number of moles of C2O4^2- as follows:
0.48 moles MnO4- x (5 moles C2O4^2-/1 mole MnO4-) = 2.4 moles C2O4^2-
Therefore, there are 2.4 moles of C2O4^2- in the given sample.
It is important to note that moles are a unit of measurement used in chemistry to represent the amount of a substance, and it is equal to the mass of a substance in grams divided by its molar mass. In this case, we were able to determine the number of moles of C2O4^2- in the sample by using the stoichiometry of the balanced chemical equation.
To know more about moles, visit:
https://brainly.com/question/31597231#
#SPJ11
Which one of the following reactions is NOT a double replacement reaction?
A. CaSO3 (aq) + 2HCl (aq) CaCl2 (aq) + H2SO3 (aq)
B. 3Ca(OH)2 (aq) + 2H3PO4 (aq) Ca3(PO4)2 (aq) + 3H2O (l)
C. 3CuO (aq) + 2NH3 (g) 3Cu (s) + 3H2O (l) + N2 (g)
D. NaCl (aq) + AgNO3 (aq) AgCl (s) + NaNO3 (aq)
C. 3CuO (aq) + 2NH3 (g) 3Cu (s) + 3H2O (l) + N2 (g) one of the following reactions is NOT a double replacement reaction
What two kinds of double displacement reactions are there?
Double replacement reactions typically fall into two categories: precipitation reactions, and neutralisation reactions.
Aqueous metathesis with precipitation (precipitation reactions), counter-ion exchange, alkylation, neutralization, acid-carbonate reactions, and aqueous metathesis with double decomposition are a few categories into which double displacement processes may be divided. (double decomposition reactions).
When a portion of two ionic compounds is swapped, a double displacement reaction takes place, creating two new components.
learn more about Double replacement reactions
https://brainly.com/question/23918356
#SPJ1
The concentration of NO3- ions in 0. 25 M Ti(NO3)4(aq) is???
The compound Ti(NO3)4 dissociates in water as:
Ti(NO3)4 → Ti^4+ + 4 NO3^-
This means that each formula unit of Ti(NO3)4 produces 4 nitrate ions (NO3^-) in solution.
Therefore, the concentration of NO3^- ions in a 0.25 M solution of Ti(NO3)4 is:
0.25 M Ti(NO3)4 × 4 NO3^- ions / 1 Ti(NO3)4 formula unit = 1.00 M NO3^- ions
So, the concentration of NO3^- ions in a 0.25 M solution of Ti(NO3)4 is 1.00 M.
To know more about dissociates refer here
https://brainly.com/question/30983331#
#SPJ11
Will award you points!
Read the chemical equation. N2 + 3H2 – 2NH3 Using the volume ratio, determine how many liters of NH3 is produced if 3. 6 liters of H2 reacts with an excess of N2, if all measurements are taken at the same temperature and pressure? 5. 4 liters 2. 4 liters 1. 8 liters 1. 2 liters
Using this volume ratio, we can determine that (b) 2.4 liters of ammonia are produced when 3.6 liters of hydrogen reacts with an excess of nitrogen.
The given chemical equation represents the reaction between nitrogen and hydrogen to produce ammonia. The balanced equation shows that for every 3 volumes of hydrogen, 2 volumes of ammonia are produced.
According to the balanced chemical equation N₂ + 3H₂ → 2NH₃, for every 3 volumes of H₂, 2 volumes of NH₃ are produced.
Therefore, if 3.6 liters of H₂ reacts, the amount of NH₃ produced can be calculated as follows:
3.6 L H₂ * (2 L NH₃ / 3 L H₂) = 2.4 L NH₃
Therefore, 2.4 liters of NH₃ would be produced if 3.6 liters of H₂ reacts with an excess of N₂. The correct answer is option (b) 2.4 liters.
To know more about the NH₃ refer here :
https://brainly.com/question/28300774#
#SPJ11
NASA shipped 51,300 g of water (H₂O) to the space station. How many grams of Oxygen (0₂) w
at amount of water theoretically produce? Using the balanced equation for electrolysis and mol
asses from Part A and Part B determine how many grams of oxygen (0₂) you will be able to produc
eginning with 51,300 grams of water (H₂O) (3-step grams to moles to moles to grams conversion).
Answer:Starting with 51,300 grams of water, we can theoretically produce 45,592 grams of oxygen using electrolysis, based on the balanced equation 2H₂O → 2H₂ + O₂.
I need help doing a bond line angle, and naming them. Along with their function groups.