HELP !!!!
Circle A has center of (4, 5), and a radius of 3 and circle B has a center of (1, 7), and a radius of 9. What steps will help show that circle A is similar to circle B? (6 points)

Group of answer choices

Translate circle A using the rule (x + 3, y − 2).

Dilate circle A by a scale factor of 3.

Rotate circle A 90° about the center.

Reflect circle A over the x-axis.

Answers

Answer 1

Answer:

Dilation if not then translation

Step-by-step explanation:


Related Questions

Huilan is 7 years older than Thomas. The sum of their ages is 79. What is Thomas’s age?

Answers

Answer:

To solve this problem, we can set up the following equation:

Huilan's age + Thomas's age = 79

Let H be Huilan's age and T be Thomas's age. We can then rewrite the equation as:

H + T = 79

We are told that Huilan is 7 years older than Thomas, so we can write the following equation:

H = T + 7

Substituting the second equation into the first equation, we get:

(T + 7) + T = 79

Combining like terms, we get:

2T + 7 = 79

Subtracting 7 from both sides, we get:

2T = 72

Dividing both sides by 2, we get:

T = 36

Therefore, Thomas's age is 36 years.

Step-by-step explanation:

Answer:

let Thomas age be a

there fore, hullans age is a+7

(a+7)+a=79

2a=79-7

2a=72

a=36

(-3 squared +3) divided by
(10 – 6)

Answers

Answer:

research it many my answer will be wrong

3

Step-by-step explanation:

-3 square is 9, adding 3 you will have 12. 10-6 is 4. so dividing 12 by 4 would give you 3.

what is the area of 12 1/2 feet long and 11 3/4 feet wide

Answers

now, we're assuming this is some rectangular area, and thus is simply the product of both quantities, let's change all mixed fractions to improper fractions firstly.

[tex]\stackrel{mixed}{12\frac{1}{2}}\implies \cfrac{12\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{25}{2}} ~\hfill \stackrel{mixed}{11\frac{3}{4}} \implies \cfrac{11\cdot 4+3}{4} \implies \stackrel{improper}{\cfrac{47}{4}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{25}{2}\cdot \cfrac{47}{4}\implies \cfrac{1175}{8}\implies 146\frac{7}{8}~ft^2[/tex]

Evaluate the following expression 12xy=2,y=4

Answers

Answer:

1/24

Step-by-step explanation:

Solve for y =4

48x=2

a geometry class has a total of 25 students. the number of males is 5 more than the number of females. how many males and how many females are in the class

Answers

Answer:

10 females, 15 males

Step-by-step explanation:

Let the number of females in the class be x. As the number of males is 5 more than the number of females, which is x, the number of males would be shown as x+5.

The number of females plus the number of males equal 25, so we get this equation:

x + (x+5) = 25

x + x + 5 = 25

2x + 5 = 25

2x = 20

x = 10.

So, there are 10 females, and since there are 5 more males than females, there are 10 + 5 = 15 males.

Find the distance between the points
(-5/2, 9/4) and(-1/2,-3/4)

Give the exact distance and an approximate distance rounded to at least 2 decimal places.
Make sure to fully simplify any radicals in first answer

Answers

Answer:

Step-by-step explanation:

distance = [tex]\sqrt{(-5/2+1/2)^{2} +(9/4+3/4)^{2} }=\sqrt{13}[/tex]=3.61

1. Five-sixths of the students in a math class passed the first test. If there are 36 students in the class, how many did not pass the test? *

Answers

Answer:

(1/6) of the students did not pass.

Ans: (1/6)30 = 5 of the students did not pass

To solve this question, we need to first figure out, in fractional form, the number of students who did not pass. The problem tells us that 5/6 of the students passed. Therefore, we know that 1/6 of the students did not pass, because 5/6 + 1/6 = 1. So, all we need to do is multiply 1/6 by the total number of students:

1/6 * 36 = 6

So, 6 students did not pass.

If 5/6 passed, then 1/6 did not pass. So, 1/6 of 36 students
1/6 x 36=
Cross cancel, 6 goes into 6, 1 time and 6 goes into 36, 6 times. 1 x 6 = 6
6 students did not pass.

In baseball, each time a player attempts to hit the ball, it is recorded. The ratio of hits compared to total attempts is their batting average. Each player on the team wants to have the highest batting average to help their team the most. For the season so far, Jana has hit the ball 12 times out of 15 attempts. Tasha has hit the ball 9 times out of 10 attempts. Which player has a ratio that means they have a better batting average? Tasha, because she has the lowest ratio since 0.9 > 0.8
B) Tasha, because she has the highest ratio since 27 over 30 is greater than 24 over 30
C) Jana, because she has the lowest ratio since 0.9 > 0.8
D) Jana, because she has the highest ratio since 27 over 30 is greater than 24 over 30

Answers

Step-by-step explanation:

as the description says, the higher the ratio the better.

9/10 = 0.9

12/15 = 4/5 = 0.8

so, Tasha has the better batting average, as she has the higher ratio.

9/10 = 27/30

12/15 = 24/30

27/30 is higher than 24/30.

a store has a sale where all jackets are sold at a discount of 40%. If the regular price of the jackets is $80, how many jackets could be bought at the sale if a shopper spent $576​

Answers

Answer:

The shopper can but 12 jackets.

Step-by-step explanation:

80*.6 (100% - 40% = paying 60% or .6) = 48

576 / 48 = 12

Here we have a problem of percentage discounts, such that we need to find how much a given price decreases, and how many jackets we can buy considering the decreased price.

We will find that the number is 12.

Now let's see how we can get that result:

If something has an original price P, and we discount an x% of that price, the new price will be:

[tex]np = P\cdot(1 - x\%/100\%)[/tex]

Here we know that the regular price of a jacket is $80

And we have a discount of 40%

This means that the new price of these jackets will be:

[tex]np = \$80\cdot (1 - 40\%/100\%) = \$80\cdot (1 - 0.4) = \$80\cdot 0.6 = \$48[/tex]

Now we want to know how many of these jackets we can buy with $576

This will be equal to the quotient between the money we have and the new price of each jacket:

[tex]N = \$576/\$48 = 12[/tex]

This means that we can buy exactly 12 jackets at the sale.

If you want to learn more, you can read:

https://brainly.com/question/2730006

Write the equation of a line that is parallel to {y=-0.75x}y=−0.75xy, equals, minus, 0, point, 75, x and that passes through the point {(8,0)}(8,0)left parenthesis, 8, comma, 0, right parenthesis.

Answers

Answer:

[tex]y = 0.75x - 6[/tex]

Step-by-step explanation:

Given

Parallel to:

[tex]y = 0.75x[/tex]

Passes through

[tex](8,0)[/tex]

Required

The equation

The slope intercept form of an equation is:

[tex]y = mx + b[/tex]

Where:

[tex]m \to[/tex] slope

So, by comparison:

[tex]m = 0.75[/tex]

For a line parallel to [tex]y = 0.75x[/tex], it means they have the same slope of:

[tex]m = 0.75[/tex]

The equation of the line is then calculated using:

[tex]y = m(x - x_1) + y_1[/tex]

Where:

[tex]m = 0.75[/tex]

[tex](x_1,y_1) = (8,0)[/tex]

So, we have:

[tex]y = 0.75(x - 8) + 0[/tex]

Open bracket

[tex]y = 0.75x - 6 + 0[/tex]

[tex]y = 0.75x - 6[/tex]

A company employing 10,000 workers offers deluxe medical coverage (D), standard medical coverage (S) and economy medical coverage (E) to its employees. Of the employees, 30% have D, 60% have 5 and 10% have E. From past experience, the probability that an employee with D, will submit no claims during next year is 0.1. The corresponding probabilities for employees with S and E are 0.4 and 0.7 respectively. If an employee is selected at random;

a) What is the probability that the selected employee has standard coverage and will submit no

claim during next year? b) What is the probability that the selected employee will submit no claim during next year?

c) If the selected employee submits no claims during the next year, what is the probability that the employee has standard medical coverage (S)?
please give full answer

Answers

To answer these questions, we can use the information given about the proportions of employees with each type of coverage and the probability of no claims for each type of coverage.

a) The probability that the selected employee has standard coverage is 60%, and the probability that they will submit no claims is 0.4. Therefore, the probability that the selected employee has standard coverage and will submit no claims is 0.4 * 0.6 = 0.24.

b) To find the probability that the selected employee will submit no claims, we can add up the probabilities for each type of coverage. The probability that the selected employee will submit no claims is 0.1 * 0.3 + 0.4 * 0.6 + 0.7 * 0.1 = 0.33.

c) To find the probability that the selected employee has standard coverage given that they have no claims, we can use Bayes' Theorem. The probability that the selected employee has standard coverage given that they have no claims is:

P(S|N) = P(N|S) * P(S) / P(N)

Plugging in the values from the problem, we get:

P(S|N) = 0.4 * 0.6 / 0.33 = 0.73

Therefore, the probability that the selected employee has standard coverage given that they have no claims is 0.73.

Ian is taking a true/false quiz that has four questions on it. The correct sequence of answers
is T, T, F, T. Ian has not studied and yet guesses all answers correctly- He decides he wants
to determine how likely this is to happen using a simulation. He decides to use a fair coin to
do the simulation.
Describe the design of a simulation that would allow Ian to determine how likely it would
be to guess all answers correctly on this quiz.

Answers

The design of a simulation that would allow Ian to determine how likely it would

be to guess all answers correctly on this quiz can be Illustrated through a coin.

How to design the simulation?

Ian can design a simulation to determine the likelihood of guessing all answers correctly on the quiz by using a fair coin. He can flip the coin four times, with each flip representing a guess on the quiz. If the coin lands heads up, he marks it as a true answer, and if it lands tails up, he marks it as a false answer.

He can repeat this process a large number of times (e.g. 1000) and count the number of times that the sequence T, T, F, T is generated. The proportion of times that this sequence is generated out of the total number of simulations will be an estimate of the probability of guessing all answers correctly on the quiz by chance.

Learn more about simulation on:

https://brainly.com/question/15892457

#SPJ1

Question 5(Multiple Choice Worth 2 points)
(Sample Spaces LC)

A paper bag has seven colored marbles. The marbles are pink, red, green, blue, purple, yellow, and orange. List the sample space when choosing one marble.

A s= (1, 2, 3, 4, 5, 6

B s=(purple, pink, red, blue, green, orange, yellow}

C s=(g. r, b. y. o, p)

D s= (green, blue, yellow, orange, purple, red)

Answers

The sample space when choosing one marble will be B s=(purple, pink, red, blue, green, orange, yellow}

What is sample space?

A sample space is a set of potential results from a random experiment. The letter "S" is used to denote the sample space. Events are the subset of possible experiment results. Depending on the experiment, a sample space may contain a variety of outcomes.

A paper bag has seven colored marbles. The marbles are pink, red, green, blue, purple, yellow, and orange. The sample space when choosing one marble will be all the colors. The correct option is B.

Learn more about sample space on:

https://brainly.com/question/10558496

#SPJ1

2) Insert the smallest
digit to make the
number divisible by 8
.
1039_​

Answers

Answer:

it would be 10392

Step-by-step explanation:

10392÷8=1299

Answer:

10392

Step-by-step explanation:

10391 ÷ 8 = 1298.875

Not divisible by 8

10392 ÷ 8 = 1299

Divisible by 8

If 4 people share a 1/2 pound chocolate bar, how much chocolate will each person receive?

Answers

Answer:

1/8 pound per person

Step-by-step explanation:

Evaluate 3a for a = 5

Answers

Answer:

Hello There!!

Step-by-step explanation:

The answer is 15 as 3a=3×a so 3×5=15.

hope this helps,have a great day!!

~Pinky~

What is the growth factor of the following example? Assume time is measured in the units given.

A forest shrinks 80% per century.

a. 20 per century c. 80 per century
b. 0.20 per century d. 0.80 per century

Please select the best answer from the choices provided

Answers

Answer:

B. 0.20 per century

Step-by-step explanation:

I calculated it logically

Evaluate the indefinite integral.
integar x4/1 + x^10 dx

Answers

Answer:

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx = \frac{1}{5}( \arctan(x^5)) + c[/tex]

Step-by-step explanation:

Given

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx[/tex]

Required

Integrate

We have:

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx[/tex]

Let

[tex]u = x^5[/tex]

Differentiate

[tex]\frac{du}{dx} = 5x^4[/tex]

Make dx the subject

[tex]dx = \frac{du}{5x^4}[/tex]

So, we have:

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx[/tex]

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, \frac{du}{5x^4}[/tex]

[tex]\frac{1}{5} \int\ {\frac{1}{1 + x^{10}}} \, du[/tex]

Express x^(10) as x^(5*2)

[tex]\frac{1}{5} \int\ {\frac{1}{1 + x^{5*2}}} \, du[/tex]

Rewrite as:

[tex]\frac{1}{5} \int\ {\frac{1}{1 + x^{5)^2}}} \, du[/tex]

Recall that: [tex]u = x^5[/tex]

[tex]\frac{1}{5} \int\ {\frac{1}{1 + u^2}}} \, du[/tex]

Integrate

[tex]\frac{1}{5} * \arctan(u) + c[/tex]

Substitute: [tex]u = x^5[/tex]

[tex]\frac{1}{5} * \arctan(x^5) + c[/tex]

Hence:

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx = \frac{1}{5}( \arctan(x^5)) + c[/tex]

What is the name for a polygon with 4 sides

Answers

Answer: A. Quadrilateral

Step-by-step explanation:

The name for a polygon with 4 sides is a quadrilateral. Quadrilateral is a two-dimensional shape with four straight sides and four angles. The most common type of quadrilateral is the rectangle, which has four right angles. Other types of quadrilaterals include squares, parallelograms, trapezoids, and rhombuses.

Answer:

quadrilateral!!

Step-by-step explanation:

look at the beginning of the word, quad. Quad means 4 and is referring to a 4 sided figure.

WILL MARK BRAINLIEST

Calculate the value of X in square DCBA

Answers

Answer:

45 degree , bc the ends are all 90 degree so divide 90 by two since the line crosses right in between

Answer:

45°

That looks like an Isosceles triangle so two sides are equal

The angle near O would be 90° cause that looks like an right angle

180-90=90

To find each angle divide by 2

90÷2=45

convert logx8=2 to exponential form​

Answers

Answer:

8 = x²

Step-by-step explanation:

Logarithmic form: logₓ(8) = 2

Exponential form: 8 = x²

X = ?°
please help :)​

Answers

Answer:

x=17 degrees

Step-by-step explanation:

We know that a right angle is equal to 90 degrees. Therefore, two angles between a right angle have to equal 90. Therefore, 73+x=90. Isolate x and get x=90-73. x=17. Therefore, x=17 degrees.

If this helps please mark as brainliest

X=17 degrees hope this helped you :)))

The expressions A, B, C, D, and E are left-hand sides of trigonometric identities. The expressions 1, 2, 3, 4, and 5 are right-hand side of identities. Match each of the left-hand sides below with the appropriate right-hand side.

A. tan(x)
B. cos(x)
C. sec(x)csc(x)
D. 1â(cos(x))^2/ cos(x)
E. 2sec(x)

1. sin(x)tan(x)
2. sin(x)sec(x)
3. tan(x)+cot(x)
4. cos(x)/1âsin(x)+1âsin(x)/cos(x)
5. sec(x)âsec(x)(sin(x))2

Answers

Answer:

[tex]A.\ \tan(x) \to 2.\ \sin(x) \sec(x)[/tex]

[tex]B.\ \cos(x) \to 5. \sec(x) - \sec(x)\sin^2(x)[/tex]

[tex]C.\ \sec(x)csc(x) \to 3. \tan(x) + \cot(x)[/tex]

[tex]D. \frac{1 - (cos(x))^2}{cos(x)} \to 1. \sin(x) \tan(x)[/tex]

[tex]E.\ 2\sec(x) \to\ 4.\ \frac{\cos(x)}{1 - \sin(x)} +\frac{1-\sin(x)}{\cos(x)}[/tex]

Step-by-step explanation:

Given

[tex]A.\ \tan(x)[/tex]

[tex]B.\ \cos(x)[/tex]

[tex]C.\ \sec(x)csc(x)[/tex]

[tex]D.\ \frac{1 - (cos(x))^2}{cos(x)}[/tex]

[tex]E.\ 2\sec(x)[/tex]

Required

Match the above with the appropriate identity from

[tex]1.\ \sin(x) \tan(x)[/tex]

[tex]2.\ \sin(x) \sec(x)[/tex]

[tex]3.\ \tan(x) + \cot(x)[/tex]

[tex]4.\ \frac{cos(x)}{1 - sin(x)} + \frac{1 - \sin(x)}{cos(x)}[/tex]

[tex]5.\ \sec(x) - \sec(x)(\sin(x))^2[/tex]

Solving (A):

[tex]A.\ \tan(x)[/tex]

In trigonometry,

[tex]\frac{sin(x)}{\cos(x)} = \tan(x)[/tex]

So, we have:

[tex]\tan(x) = \frac{\sin(x)}{\cos(x)}[/tex]

Split

[tex]\tan(x) = \sin(x) * \frac{1}{\cos(x)}[/tex]

In trigonometry

[tex]\frac{1}{\cos(x)} =sec(x)[/tex]

So, we have:

[tex]\tan(x) = \sin(x) * \sec(x)[/tex]

[tex]\tan(x) = \sin(x) \sec(x)[/tex] --- proved

Solving (b):

[tex]B.\ \cos(x)[/tex]

Multiply by [tex]\frac{\cos(x)}{\cos(x)}[/tex] --- an equivalent of 1

So, we have:

[tex]\cos(x) = \cos(x) * \frac{\cos(x)}{\cos(x)}[/tex]

[tex]\cos(x) = \frac{\cos^2(x)}{\cos(x)}[/tex]

In trigonometry:

[tex]\cos^2(x) = 1 - \sin^2(x)[/tex]

So, we have:

[tex]\cos(x) = \frac{1 - \sin^2(x)}{\cos(x)}[/tex]

Split

[tex]\cos(x) = \frac{1}{\cos(x)} - \frac{\sin^2(x)}{\cos(x)}[/tex]

Rewrite as:

[tex]\cos(x) = \frac{1}{\cos(x)} - \frac{1}{\cos(x)}*\sin^2(x)[/tex]

Express [tex]\frac{1}{\cos(x)}\ as\ \sec(x)[/tex]

[tex]\cos(x) = \sec(x) - \sec(x) * \sin^2(x)[/tex]

[tex]\cos(x) = \sec(x) - \sec(x)\sin^2(x)[/tex] --- proved

Solving (C):

[tex]C.\ \sec(x)csc(x)[/tex]

In trigonometry

[tex]\sec(x)= \frac{1}{\cos(x)}[/tex]

and

[tex]\csc(x)= \frac{1}{\sin(x)}[/tex]

So, we have:

[tex]\sec(x)csc(x) = \frac{1}{\cos(x)}*\frac{1}{\sin(x)}[/tex]

Multiply by [tex]\frac{\cos(x)}{\cos(x)}[/tex] --- an equivalent of 1

[tex]\sec(x)csc(x) = \frac{1}{\cos(x)}*\frac{1}{\sin(x)} * \frac{\cos(x)}{\cos(x)}[/tex]

[tex]\sec(x)csc(x) = \frac{1}{\cos^2(x)}*\frac{\cos(x)}{\sin(x)}[/tex]

Express [tex]\frac{1}{\cos^2(x)}\ as\ \sec^2(x)[/tex] and [tex]\frac{\cos(x)}{\sin(x)}\ as\ \frac{1}{\tan(x)}[/tex]

[tex]\sec(x)csc(x) = \sec^2(x)*\frac{1}{\tan(x)}[/tex]

[tex]\sec(x)csc(x) = \frac{\sec^2(x)}{\tan(x)}[/tex]

In trigonometry:

[tex]tan^2(x) + 1 =\sec^2(x)[/tex]

So, we have:

[tex]\sec(x)csc(x) = \frac{\tan^2(x) + 1}{\tan(x)}[/tex]

Split

[tex]\sec(x)csc(x) = \frac{\tan^2(x)}{\tan(x)} + \frac{1}{\tan(x)}[/tex]

Simplify

[tex]\sec(x)csc(x) = \tan(x) + \cot(x)[/tex]  proved

Solving (D)

[tex]D.\ \frac{1 - (cos(x))^2}{cos(x)}[/tex]

Open bracket

[tex]\frac{1 - (cos(x))^2}{cos(x)} = \frac{1 - cos^2(x)}{cos(x)}[/tex]

[tex]1 - \cos^2(x) = \sin^2(x)[/tex]

So, we have:

[tex]\frac{1 - (cos(x))^2}{cos(x)} = \frac{sin^2(x)}{cos(x)}[/tex]

Split

[tex]\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) * \frac{sin(x)}{cos(x)}[/tex]

[tex]\frac{sin(x)}{\cos(x)} = \tan(x)[/tex]

So, we have:

[tex]\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) * \tan(x)[/tex]

[tex]\frac{1 - (cos(x))^2}{cos(x)} = \sin(x) \tan(x)[/tex] --- proved

Solving (E):

[tex]E.\ 2\sec(x)[/tex]

In trigonometry

[tex]\sec(x)= \frac{1}{\cos(x)}[/tex]

So, we have:

[tex]2\sec(x) = 2 * \frac{1}{\cos(x)}[/tex]

[tex]2\sec(x) = \frac{2}{\cos(x)}[/tex]

Multiply by [tex]\frac{1 - \sin(x)}{1 - \sin(x)}[/tex] --- an equivalent of 1

[tex]2\sec(x) = \frac{2}{\cos(x)} * \frac{1 - \sin(x)}{1 - \sin(x)}[/tex]

[tex]2\sec(x) = \frac{2(1 - \sin(x))}{(1 - \sin(x))\cos(x)}[/tex]

Open bracket

[tex]2\sec(x) = \frac{2 - 2\sin(x)}{(1 - \sin(x))\cos(x)}[/tex]

Express 2 as 1 + 1

[tex]2\sec(x) = \frac{1+1 - 2\sin(x)}{(1 - \sin(x))\cos(x)}[/tex]

Express 1 as [tex]\sin^2(x) + \cos^2(x)[/tex]

[tex]2\sec(x) = \frac{\sin^2(x) + \cos^2(x)+1 - 2\sin(x)}{(1 - \sin(x))\cos(x)}[/tex]

Rewrite as:

[tex]2\sec(x) = \frac{\cos^2(x)+1 - 2\sin(x)+\sin^2(x)}{(1 - \sin(x))\cos(x)}[/tex]

Expand

[tex]2\sec(x) = \frac{\cos^2(x)+1 - \sin(x)- \sin(x)+\sin^2(x)}{(1 - \sin(x))\cos(x)}[/tex]

Factorize

[tex]2\sec(x) = \frac{\cos^2(x)+1(1 - \sin(x))- \sin(x)(1-\sin(x))}{(1 - \sin(x))\cos(x)}[/tex]

Factor out 1 - sin(x)

[tex]2\sec(x) = \frac{\cos^2(x)+(1- \sin(x))(1-\sin(x))}{(1 - \sin(x))\cos(x)}[/tex]

Express as squares

[tex]2\sec(x) = \frac{\cos^2(x)+(1-\sin(x))^2}{(1 - \sin(x))\cos(x)}[/tex]

Split

[tex]2\sec(x) = \frac{\cos^2(x)}{(1 - \sin(x))\cos(x)} +\frac{(1-\sin(x))^2}{(1 - \sin(x))\cos(x)}[/tex]

Cancel out like factors

[tex]2\sec(x) = \frac{\cos(x)}{1 - \sin(x)} +\frac{1-\sin(x)}{\cos(x)}[/tex] --- proved

Find, rounded to the nearest hundredth, the diagonal of a rectangle whose sides are 6 and 11.

WHAT IS THE ANSWER. I NEED IT ASAP

Answers

Answer:

The length of the diagonal is 12.53

Step-by-step explanation:

Since we have a rectangle, the diagonal is the hypotenuse of a right triangle. So we can use Pythagorean Theorem.

a^2 + b^2 = c^2

We know the two legs are 6 and 11, so we can find the hypotenuse (which is the diagonal) see image.

See image.

What is the equation of the line that passes through the point (-4,-4) and has a
slope of -3/4?

Answers

[tex](\stackrel{x_1}{-4}~,~\stackrel{y_1}{-4})\hspace{10em} \stackrel{slope}{m} ~=~ - \cfrac{3}{4} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-4)}=\stackrel{m}{- \cfrac{3}{4}}(x-\stackrel{x_1}{(-4)}) \implies y +4= -\cfrac{3}{4} (x +4) \\\\\\ y+4=-\cfrac{3}{4}x-3\implies {\Large \begin{array}{llll} y=-\cfrac{3}{4}x-7 \end{array}}[/tex]

Answer:

y = -3/4x - 7

Step-by-step explanation:

Given: slope = m = -3/4

Plug this value into the standard slope-intercept equation of y = mx + b.

y = -3/4x + b

To find b, we want to plug in a value that we know is on this line: in this case, point (-4, -4). Plug in the x and y values into the x and y of the standard equation.

-4 = -3/4(-4) + b

To find b, multiply the slope and the input of x(-4)

-4 = 3 + b

Now, subtract 3 from both sides to isolate b.

-7 = b

Plug this into your standard equation.

y = -3/4x - 7

This is your equation.

Learn more with another example:

https://brainly.com/question/27643891

In a school containing 360 children, 198 are girls. What percent of all children are girls? What percent of the children are boys? The number of girls is what percent of the number of boys? The number of boys is what percent of the number of girls?
the number of girls is _____% of the number of boys.

Answers

Answer:

1st question :55%

2nd ":122.22%

3rd ":81.82%

Please pleaseeeee help me outtt, I need it quickkk will give brainliest

Answers

Answer:

-132

Step-by-step explanation:

Split the summation to make the starting value of  

k equal to 1.

Answer:S6 = - 132

Step-by-step explanation:

Activity: Factor Theorem
Use the Remainder Theorem and Factor Theorem to determine whether the given
binomial is a factor of P(x).
P(x) = 9x³+ 6x - 40 - 2x² + 2x4; binomial: x + 5
the given problem.

Answers

The given polynomial is a factor of P(x) because P(-5)=0.

From the remainder theorem, how do you derive the factor theorem?

The Remainder Theorem states that if a synthetic division of a polynomial by x = a results in a zero remainder, then x = an is a zero of the polynomial (thanks to the Remainder Theorem), and x an is also a factor of the polynomial (courtesy of the Factor Theorem).

How can you tell if P(x) is a factor of X C?

The Factor Theorem states that x - c is only a factor of P(x) when P(c) = 0.

To know more about Remainder Theorem visit:-

brainly.com/question/9160275

#SPJ1

800 miles in 5 hours miles per hour

Answers

To find the speed of an object that went 800 miles in 5 hours, you just need to divide the distance by the time. 800miles/5hours = 160mph
I would say it would be 160 mph

Which is the equivalent of 145.12° written in DMS form?
A. 145° 7' 2"
B. 145° 12' 0"
C. 145° 2'36"
D. 145° 7' 12"

Answers

Answer:

the answer is

B. 145° 12' 0"

Other Questions
Which sentence from the passage best demonstrates Nixon's bias? . The inevitable result of these charges has been to raise serious questions about the integrity of the White House itself On September 15, as you will recall, indictments were brought against seven defendants in the case. C. As the investigations went forward, I repeatedly asked those conducting the investigation whether there was any reason to believe that members of my Administration were in any way involved. D These include charges of illegal activity during and preceding the 1972 Presidential election and charges that responsible officials participated in efforts to cover up that illegal activity the mining of biology how does lightning occer in the sky A Serbian named Gavrilo Princip assassinated Archduke Franz Ferdinand of Austria-Hungary because: A. he was upset that he couldnt get the job he wanted, and he blamed the government for that. B.he believed the Archduke was a corrupt leaderC. he wanted Austria-Hungary to end its rule over Slavic people like him. Graph the image of square CDEF after a dilation with a scale factor of 2, centered at theorigin.pls help lol The Necklace By Guy de Maupassaunt 3. The storys ironic ending is part of what makes this tale so famous. The author, however, gives a few hints about the tragic twist. Look back over the story and find an element of foreshadowing. Paraphrase this element of the story and then explain why you believe it is a good example of foreshadowing. Find the missing point of the following parallelogram.(5, 3)(6, 5)(7, 5)(2, 4) PLEASE I NEES THIS TODAY WILL GIVE THANKS AND BRAINLIEST What ownership rights means? A box of weight 150 N is placed on an inclined plane. The component of the box's weight acting along the plane is given by W'. What would be the value of W", in Newtons? Question Completion Status:QUESTION 10Which sentence uses capital letters correctly?O a.We are going to the McDonald Observatory where we will try to see Mars and other planets.O b.We are going to the McDonald observatory where we will try to see mars and other planets.O c. We are going to the McDonald observatory where we will try to see Mars and other planets.O d. We are going to the McDonald Observatory where we will try to see Mars and other Planets.QUESTION 11Click here to read the passage before answering the question. Quadrilateral STUV is rotated 270 counterclockwise about the origin. If the coordinates of V were (3, -4), what are the coordinates of V? without using a calculatorcos 43 - sin 74 + cos 47 - Sin16 Assume you are a manager in the security department of a high-tech corporation. You are mentoring Mary, an entry-level network technician, who is considering a career change to specialize in security. She asks you for advice as to whether she should self-study to become a security professional or seek formal education, such as a bachelor's degree in information security. What is your advice to Mary Which sentence contains an allusion? Find the sum of all solutions to the equation $4x(x-3) = 23$.I NEED THIS ASAP I need some help with the problem from my math class (-4w - 7)5 whats the answer to this problem Please explain step by step I dont get it. PLEASE SOMEONE HELP MEEEE I AM LITERALLY FRYING NY BRAIN. NO LINKS OR I WILL REPORT YOU... PLEASE AND THANKS