V = I R or I = V / R
I = 25 / 45 amps = .56 amps
What is the wavelength of this graph? *
A. 1
B.2
C.3
D.4
The wavelength of the graph is 2 m (option B)
How do i determine the wavelength of the graph?Wavelength is defined as the distance between two successive crest or trough of a wave.
However, a crest is the point of maximum value of upward displacement while the trough is the minimum or lowest point in the wave displacement.
Now, we shall determine the wavelength of the graph. Details below:
Trough 1 = 1 mTrough 2 = 3Wavelength =?Wavelength = Trough 2 - trough 1
Wavelength = 3 - 1
Wavelength = 2 m
Thus, the wavelength is 2 m (option B)
Learn more about wavelength:
https://brainly.com/question/30859618
#SPJ1
Example 1
What is the power delivered to a light bulb when the circuit has a voltage drop of
120 V and produces a current of 3.0 ampere?
Answer:
360 watts
Explanation:
P =V × I
= 120×3.0
= 360
Suppose the input piston of a hydraulic jack has a diameter of 3 cm and the load piston a diameter of 24 cm. The jack is being used to lift a car with a mass of 1700 kg.
(a) What is the area of the input and load piston in square centimeter? (A = πr^2)
(b) What is the ratio of the area of the load to the area of the input piston?
(c) What is the weight of the car in newtons? (W = mg)
(d) What force must be applied to the input piston to support the car?
The area of the input and load piston is [tex]7.07 cm^2[/tex] and [tex]452.16 cm^2[/tex], the ratio of the area of the load to the input piston is 63.95, the weight of the car is 16,660N, the force must be applied to the input is 260.15N.
Given the diameter of hydraulic jack (d1) = 3cm
The diameter of load piston of jack (d2) = 24cm
The mass of jack that is being used to lift a car (m) = 1700 kg.
We know that pressure is calculated as force per unit area such that: P = F/A where F is force applied and A is area
(a)Let The area of the input piston is = A1
Then [tex]A1 = \pi r1^2 = \pi * (d1/2 cm)^2 = \pi * (1.5)^2 = 7.07 cm^2.[/tex]
Let The area of the load piston is = A2
Then [tex]A2 = \pi r2^2 = \pi * (d2/2)^2 = \pi * (12 cm)^2 = 452.16 cm^2.[/tex]
(b) The ratio of the area of the load to the area of the input piston = A2/A1
ratio = 452.16 / 7.07 = 63.95
(c) The weight of the car in newtons is W = mg
[tex]W = 1700 kg * 9.81 m/s^2 = 16,660N.[/tex]
(d) The force must be applied to the input piston to support the car = F1
The force applied at the load piston = F2 = W
We know that pressure exerted at both ends of piston is same, so P1 = P2 such that P1 = F1/A1 and P2 = F2/A2
F1 = F2 * A1/A2 = 16,660/63.95 = 260.15N
To learn more about pressure click here https://brainly.com/question/29341536
#SPJ1
when the pressure of a fixed of gas is increase to 10 atmosphere, the temperature increases from o.c to 73.c ? what is the ratio of the initial pressure to the final pressure
The initial pressure to final pressure ratio is 0.789.
What happens if an ideal gas's pressure is 10% higher at constant temperature?An ideal gas's volume must fall by if its pressure is raised by 10% at constant temperature. If an ideal gas's pressure is raised at constant temperature. At constant temperature, when a gas's pressure is increased by 5%.
P1V1/T1 = P2V2/T2
Since the volume of the gas is fixed in this problem, we can simplify the equation to:
P1/T1 = P2/T2
We are given that P1 = 1 atmosphere and T1 = 0°C = 273.15 K, and we need to find the ratio P1/P2. We can rearrange the equation to solve for P2:
P2 = P1 × T2 / T1
We are also given that T2 = 73°C = 346.15 K and P2 = 10 atmospheres, so we can substitute these values into the equation and solve for P1/P2:
P1/P2 = T1/T2 × P2/P1
P1/P2 = 273.15 K / 346.15 K × 10 atm / 1 atm
P1/P2 = 0.789
To know more about pressure ratio visit:-
https://brainly.com/question/30032664
#SPJ9
a standing wave is formed by waves of frequency 256hz.the speed of the wave is 128m/s.what is the distance between the nodes
Answer:
V = f * λ Velocity = frequency * wavelength
λ = V / f = 128 m/s / 256 / s= .5 m is the wavelength
There will be nodes at o, λ/2, λ, 3λ/2 or at intervals of λ/2
The distance between nodes is ".25 m"
define dispersion light
Answer:
Explanation:"The phenomenon of splitting of visible light into its component colours is called dispersion". Dispersion of light is caused by the change of speed of light.
Someone who fears their actions or behaviors Will support negative ideas about a group to which they belong is experiencing.
A) cognitive dissonance
B) group polarization
C) misperception
D) stereotypes threat
Please help! Its due date is in 10 minutes!!
Answer:
the circle on left shows the needle to the right (north pole). the circle on the right shows the needle to the right again.
Explanation:
the needle always goes to north
Find the y-component of this
vector:
12.1 m
48.4°
The y-component of the vector is approximately 9.029 m.
How to find the y-component?In order to determine the y-component of this vector, we must first acknowledge that the information provided is a polar form of the vector, with 12.1 m representing its magnitude and 48.4° representing its angle with the positive x-axis.
The formula for this vector's y-component is as follows:
y = r sin θ
where r is the magnitude of the vector and θ is the angle that the vector makes with the positive x-axis.
In this case, r = 12.1 m and θ = 48.4°, so we have:
y = 12.1 m * sin(48.4°)
y ≈ 9.029 m
Therefore, the y-component of the vector is approximately 9.029 m.
know more about vector visit:
https://brainly.com/question/29740341
#SPJ1
if vector A and B has equal magnitude and A+B is 3 times larger than A-B what is the angle of A and B Search instead for if vector A and B has equal magnitude and A+B is three times larger than A-B what must be the angle of A and B
Answer:
Let's represent the magnitude of both vectors A and B using the variable "m".
According to the problem statement, we have:
|A| = |B| = m
|A+B| = 3|A-B|
Squaring both sides, we get:
|A+B|^2 = 9|A-B|^2
Expanding the left-hand side using the dot product formula, we have:
(A+B)·(A+B) = A·A + 2A·B + B·B
Similarly, expanding the right-hand side, we have:
9(A-B)·(A-B) = 9A·A - 18A·B + 9B·B
Substituting the given magnitudes, we have:
(A+B)·(A+B) = 2m^2 + 2(A·B)
9(A-B)·(A-B) = 18m^2 - 18(A·B)
Substituting these expressions back into the original equation, we get:
2m^2 + 2(A·B) = 9(18m^2 - 18(A·B))
Simplifying and rearranging, we get:
20(A·B) = 323m^2
Dividing by |A|·|B| = m^2, we have:
20(cosθ) = 323
where θ is the angle between vectors A and B. Solving for θ, we get:
θ = cos⁻¹(323/20)/π * 180
θ ≈ 83.4 degrees
A car slows down at -5.00m/s^2 until it comes to a stop traveling 15.0m. How much time did it take to stop? (Unit=s)
40 points!!!!1
if vector A and B has equal magnitude and A+B is three times larger than A-B what is the angle of A and B Search instead for if vector A and B has equal magnitude and A+B is 3 times larger than A-B what is the angle of A and B
The vectors are defined as an object containing both magnitude and direction. Vector describes the movement of an object from one point to another.the angle of A and B is θ = cos⁻¹ ((n²- 1)/(n²+ 1) ).
A vector's magnitude is defined as the length of a segment of a directed line, and the vector's direction is indicated by the angle at which the vector is inclined. A vector has a "Tail" (the point from which it begins) and a "Head" (the point from which it ends).A mathematical structure is known as a vector. In the fields of physics and geometry, it has numerous applications. We are aware that an ordered pair, like (x, y). In the process of simplifying three-dimensional geometry, the vector is a very helpful tool.
∣A+B∣=n∣A−B∣
⟹(A² + B² +2AB cos θ)=n2 (A² + B² - 2AB cos θ )
It is given that A+B
Hence cos θ= (n²- 1)/(n²+ 1)
θ = cos⁻¹ ((n²- 1)/(n²+ 1) )
learn more about vectors here:
https://brainly.com/question/29740341
#SPJ1
PLEASE HELP ME! Which statement is the best interpretation of the ray diagram shown?
A) A convex lens forms a larger, virtual image.
B) A convex lens forms a larger, real image.
C) A convex mirror forms a larger, real image.
D) A convex mirror forms a larger, virtual image.
Some zinc (density = 7100kgm³) is mixed with twice its volume of copper(density= 8900kgm³) to make brass. What is the density of brass?
The density of brass is approximately 8300 kg/m³.
What is density ?
To find the density of brass, we need to first determine the total mass and volume of the mixture.
Let's assume that we have 1 cubic meter of zinc (since the exact volume is not given, we can use any convenient value as long as we are consistent with units).
The mass of this zinc would be:
mass_zinc = density_zinc * volume_zinc = 7100 kg/m³ * 1 m³ = 7100 kg
Since we are adding twice the volume of copper, we have 2 cubic meters of copper.
The mass of this copper would be:
mass_copper = density_copper * volume_copper = 8900 kg/m³ * 2 m³ = 17800 kg
The total mass of the mixture would be:
mass_total = mass_zinc + mass_copper = 7100 kg + 17800 kg = 24900 kg
The total volume of the mixture would be:
volume_total = volume_zinc + volume_copper = 1 m³ + 2 m³ = 3 m³
Finally, we can calculate the density of brass:
density_brass = mass_total / volume_total = 24900 kg / 3 m³ ≈ 8300 kg/m³
Therefore, the density of brass is approximately 8300 kg/m³.
To know more about density, visit:
https://brainly.com/question/2041970
#SPJ1
Two equal and opposite charges are placed 40mm apart,if the force between them is found to be 0.5N Calculate the magnitude of the charge
Which of the following provides the best evidence that waves can pass each
other and remain unaffected?
A) Light scatters in multiple directions when it strikes a rough, uneven surface.
B) A pebble dropped into a still pond will create evenly spaced ripples that radiate
outward.
C)The speed of sound increases in proportion to the medium through which it travels.
D) Radio broadcasts at many frequencies can be sent and received at the same time.
The solution is D It is possible to simultaneously send and receive radio broadcasts on a variety of frequencies.
This is so that electromagnetic wavelengths, such as radio waves, can flow through one another without interfering with one another.
Electromagnetic waves: what are they?
A type of wave called an electromagnetic wave is made up of oscillating electric and magnetic fields that move through space.
They are sometimes referred to as electromagnetic radiation or EM waves.
What other instances of electromagnetic energy?
Electromagnetic waves, for instance, include:
the gamma rays
Waves of light
- Radio waves (which are used in communications)
- X-rays
- Infrared and ultraviolet rays (accompanied by Sun rays)
- Waves used in radio and television.
To know more about electromagnetic waves visit:
brainly.com/question/3101711
#SPJ1
Question 1
Given an object's momentum and velocity, which equation can be used to
calculate the object's mass?
V
○ A. m-p
B. m=
vp
1
C. m-P
D. m-pv
Answer:
Explanation:
m=p/v
where m is mass, p is momentum and v is velocity
Use the law of the conservation of energy and the formulas for one-dimensional projectile motion, gravitational potential energy. and kinetic energy to solve the problems below. Neglect friction. air resistance, and other dissipative forces in all problems.
Use g = 9.8 m/s.
1. A metal ball bearing with mass 5.0 g falls out of a factory machine and drops to the concrete floor 3.0 m below. It bounces back up to its starting point. Find the changes in the bearing's potential and kinetic energies as it a) travels from the machine down to the floor, and b) travels up from the floor back to its starting point.
Answer:
First, let’s convert the mass of the ball bearing from grams to kilograms: 5.0 g = 0.005 kg.
a)
As the ball bearing falls from the machine to the floor, its gravitational potential energy is converted into kinetic energy. The change in potential energy can be calculated using the formula for gravitational potential energy: PE = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height of the object above some reference point.
In this case, the change in potential energy is ΔPE = mgh = (0.005 kg)(9.8 m/s²)(3.0 m) = 0.147 J.
Since energy is conserved, this means that the change in kinetic energy is equal to the change in potential energy: ΔKE = ΔPE = 0.147 J.
b)
As the ball bearing bounces back up from the floor to its starting point, its kinetic energy is converted back into potential energy. Since energy is conserved and there are no dissipative forces, the changes in potential and kinetic energies are the same as in part a): ΔPE = 0.147 J and ΔKE = 0.147 J
3. A 0.060 kg tennis ball traveling at 12 m/s is[returned by Venus. It leaves her racket with a velocity of
35 m/s in the opposite direction from which it came.
a) what is the change in momentum of the tennis ball?
b) if the 0.060 kg ball is in contact with the racket for 0.02 s, what force was applied to the ball?
The initial momentum of the ball is p₁ = m₁v₁ = (0.060 kg)(12 m/s) = 0.72 kg•m/s, and the final momentum of the ball is p₂ = m₂v₂ = (0.060 kg)(-35 m/s) = -2.1 kg•m/s. Therefore, the change in momentum is Δp = p₂ - p₁ = -2.1 kg•m/s - 0.72 kg•m/s = -2.82 kg•m/s.
What is the law of conservation of momentum and how is it related to this problem?The law of conservation of momentum states that the total momentum of a closed system is conserved if there are no external forces acting on the system.
In this problem, the system consists of the tennis ball and Venus' racket, and since there are no external forces acting on the system, the initial momentum of the ball must be equal to the final momentum of the ball and racket system.
Why is the force calculated in part b negative?The force calculated in part b is negative because it is in the opposite direction to the motion of the ball. The negative sign indicates that the force is acting in the direction opposite to the motion of the ball.
To know more about momentum,visit:
https://brainly.com/question/30677308
#SPJ1
find the magnetic filed strength at acenter of a soleneind with 500 turns and acurrent of 5A the permability of free space 4× 10-7n/m
Answer:
The magnetic field strength at the center of a solenoid can be found using the formula:
B = u_0 * N * I / L
where B is the magnetic field strength, u_0 is the permeability of free space (4π × 10^-7 T·m/A), N is the number of turns in the solenoid, I is the current flowing through the solenoid, and L is the length of the solenoid.
Given:
N = 500 turns
I = 5 A
u_0 = 4π × 10^-7 T·m/A
Since we don't know the length of the solenoid, we can't calculate the magnetic field strength.