How many liters of a 0. 26 M solution of K2(MnO4) would contain 75 g of K2(MnO4)?​

Answers

Answer 1

1.35 liters of a 0.26 M solution of K2(MnO4) would contain 75 g of K2(MnO4).

To determine the volume of a 0.26 M solution of K2(MnO4) needed to contain 75 g of K2(MnO4), we need to use the formula:

Molarity (M) = moles of solute / volume of solution (L)

First, convert the mass of K2(MnO4) to moles using its molar mass:

Molar mass of K2(MnO4) = 2 * (39.1 g/mol for K) + (54.9 g/mol for Mn) + 4 * (16 g/mol for O) = 214.2 g/mol

Moles of K2(MnO4) = 75 g / 214.2 g/mol ≈ 0.35 moles

Now use the molarity formula to find the volume:

0.26 M = 0.35 moles / volume (L)

Volume (L) = 0.35 moles / 0.26 M ≈ 1.35 L

So, approximately 1.35 liters of a 0.26 M solution of K2(MnO4) would contain 75 g of K2(MnO4).

To learn more about mass, refer below:

https://brainly.com/question/19694949

#SPJ11


Related Questions

Calculate the root mean square velocity for the N2 gas at 11. 8 degree celcous (R=8. 3145 JK-1 mol-1)

Answers

The root mean square velocity for N2 gas at 11.8 degrees Celsius is approximately 84.15 m/s.

Here's a step-by-step explanation:

1. Convert the given temperature from Celsius to Kelvin: 11.8 degrees Celsius + 273.15 = 284.95 K.

2. Recall the root mean square velocity (v_rms) formula for a gas:
v_rms = √(3RT/M), where R is the gas constant, T is the temperature in Kelvin, and M is the molar mass of the gas in kg/mol.

3. Identify the molar mass (M) of N2 gas. Nitrogen has an atomic mass of 14.0067, and since it's a diatomic molecule (N2), we have to multiply that by 2: 14.0067 * 2 = 28.0134 g/mol. Convert this to kg/mol: 28.0134 / 1000 = 0.0280134 kg/mol.

4. Substitute the given values into the formula:
v_rms = √(3 * 8.3145 J K^-1 mol^-1 * 284.95 K / 0.0280134 kg/mol).

5. Solve for v_rms:
v_rms = √(3 * 8.3145 * 284.95 / 0.0280134) ≈ √(7082.04098) ≈ 84.15 m/s.

So, the root mean square velocity for N2 gas at 11.8 degrees Celsius is approximately 84.15 m/s.

To know more about velocity, visit:

https://brainly.com/question/17127206#

#SPJ11

A liquid hydrocarbon has an empirical formula CCl2 and a boiling point of 121°C, when vaporized the gaseous compound has a density of 4. 93g/L at 785 torr and 150°C. What is the molar mass the compound and what is the molecular weight?

Answers

The molecular weight of the hydrocarbon is 165.83 g/mol and its molecular formula is[tex]C2Cl4[/tex].

Since the empirical formula of the hydrocarbon is [tex]CCl2[/tex], we can assume that it contains one carbon atom and two chlorine atoms.

Let's first calculate the molar mass of the empirical formula:

The atomic weight of carbon is 12.01 g/mol

The atomic weight of chlorine is 35.45 g/mol

The empirical formula mass is therefore 12.01 g/mol + 2(35.45 g/mol) = 83.91 g/mol

To find the molecular formula, we need to know the molecular weight of the compound. We can use the ideal gas law to calculate the number of moles of the gas:

PV = nRT

where P is the pressure in atmospheres, V is the volume in liters, n is the number of moles, R is the ideal gas constant (0.0821 L·atm/mol·K), and T is the temperature in Kelvin.

First, we need to convert the pressure from torr to atm:

785 torr = 1.036 atm

We also need to convert the temperature from Celsius to Kelvin:

150°C + 273.15 = 423.15 K

Now we can solve for the number of moles:

n = PV/RT

n = (1.036 atm)(4.93 g/L)/(0.0821 L·atm/mol·K)(423.15 K)

n = 0.208 mol

The molar mass of the compound is the mass divided by the number of moles:

mass = n × molar mass

molar mass = mass / n

molar mass = (0.208 mol) × (4.93 g/L) / (1 L/mol)

molar mass = 1.025 g/mol

Finally, we can find the molecular formula by comparing the molar mass of the empirical formula to the molar mass of the compound:

molecular weight / empirical formula weight = n

where n is an integer. We can calculate n as follows:

n = molecular weight / empirical formula weight

n = 1.025 g/mol / 83.91 g/mol

n = 0.0122

n is close to 1/2, so we can double the empirical formula to get the molecular formula:

[tex]C2Cl4[/tex]

Therefore, the molecular weight of the hydrocarbon is 165.83 g/mol (2 × 83.91 g/mol) and its molecular formula is [tex]C2Cl4[/tex].

To know more about hydrocarbon refer to-

https://brainly.com/question/31643106

#SPJ11

What can be concluded if the reaction quotient (Q) for the reaction is 21.3 and the Keg for the reaction is 50.0? [
Ha(g) + L(g) -› 2HI
a.
The reaction is at equilibrium.
b. The reaction is not at equilibrium and it will proceed toward the products.
c. The reaction is not at equilibrium and it will proceed toward the reactants. d.
None of the above can be concluded.

Answers

Since Q is less than K, the reaction will proceed towards products to reach equilibrium. So, the correct option is the reaction is not at equilibrium and it will proceed toward the products.

When the rates of forward and reverse reactions are equal, equilibrium is the condition where there is no overall change in the concentrations of reactants and products. When a system is in equilibrium, the concentrations of all reactants and products are constant over time, and the system appears to be in a state of rest. An equilibrium constant [tex](K_e_q)[/tex], which represents the ratio of the concentrations of products to reactants at equilibrium for a reaction, can be used to characterize the state of equilibrium.

Therefore, the correct option is B.

Learn more about equilibrium, here:

https://brainly.com/question/30694482

#SPJ1

Determine the celsius temperature of 1.50 moles of ammonia contained in a 10.0-l vessel under a
pressure of 2.0 atm.
a
-1100
162
-50 c
с
0.0 c

Answers

The celsius temperature of 1.50 moles of ammonia contained in a 10.0-l vessel under a pressure of 2.0 atm can be determined using the ideal gas law.

The ideal gas law states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin. To calculate the temperature in Celsius, the Kelvin temperature is first determined by rearranging the equation and solving for T.

Then, the Kelvin temperature is converted to Celsius by subtracting 273.15 from the Kelvin temperature. In this case, the calculation would be T = (2.0 * 10.0) / (1.50 * 0.0821) = 1100.16 K. Subtracting 273.15 from 1100.16 K yields 827.01 °C, which is equal to 827.01 - 273.15 = -50.0 °C.

In conclusion, the celsius temperature of 1.50 moles of ammonia contained in a 10.0-l vessel under a pressure of 2.0 atm is -50.0 °C.

Know more about Ideal gas law here

https://brainly.com/question/28257995#

#SPJ11

If 4 moles of a gas are at a pressure of 105. 6 kpa and a volume of 12 liters, what is the temperature of the gas?




I just need the answer not a link please!

Answers

If 4 moles of a gas are at a pressure of 105. 6 kpa and a volume of 12 liters, the temperature of the gas is 399.36 K.

To solve this problem, we can use the ideal gas law: PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in kelvin. Rearranging the equation, we get T = PV/nR.

Substituting the given values, we have:

T = (105.6 kPa)(12 L) / (4 mol)(8.31 J/(mol*K))

Simplifying, we get:

T = 399.36 K

Therefore, the temperature of the gas is 399.36 K, or 126.21°C.

To know more about the moles refer here :

https://brainly.com/question/31597231#

#SPJ11

Balance equation for 15 g of solid Mg reacts with 15 g of HCl and produce MgCl2 and H2

Answers

When 15 g of Mg reacts with 15 g of HCl, 19.6 g of MgCl₂ and 0.208 g mass of H₂ are produced.

The molar mass of Mg is 24.31 g/mol, and the molar mass of HCl is 36.46 g/mol. To determine the number of moles of each substance, we divide the given mass by its molar mass:

moles of Mg = 15 g ÷ 24.31 g/mol = 0.618 mol

moles of HCl = 15 g ÷ 36.46 g/mol = 0.411 mol

Determine the limiting reactant in the reaction by comparing the number of moles of each reactant:

Mg: 0.618 mol

HCl: 0.411 mol × (1 mol Mg ÷ 2 mol HCl) = 0.206 mol

Since HCl is the limiting reactant, it will be completely consumed in the reaction. The amount of MgCl₂ produced can be calculated as:

moles of MgCl₂ = moles of HCl = 0.206 mol

mass of MgCl₂ = moles of MgCl₂ × molar mass of MgCl₂

mass of MgCl₂ = 0.206 mol × 95.21 g/mol = 19.6 g

Similarly, the amount of H₂ produced can be calculated as:

moles of H₂ = moles of HCl × (1 mol H₂ ÷ 2 mol HCl)

moles of H₂ = 0.206 mol × (1 mol H₂ ÷ 2 mol HCl) = 0.103 mol

mass of H₂ = moles of H₂ × molar mass of H₂

mass of H₂ = 0.103 mol × 2.02 g/mol = 0.208 g

To learn more about mass follow the link:

https://brainly.com/question/4577984

#SPJ4

_____KOH (aq) + ____H3PO4 (aq) → ___K3PO4 (aq) + __H2O (l)

To balance the equation, the coefficient for KOH should be:

A. 2

B. 1

C. 6

D. 3

Answers

Answer:

Answer: B. 1

Explanation:

I hope this helps you

the rate of the reaction between no2 and co is independent of [co]. does this mean that co is a catalyst for the reaction? choose the answer that best explains the reason for your choice.

Answers

The fact that the rate of the reaction between NO₂ and CO is independent of [CO] does not necessarily mean that CO is a catalyst for the reaction.

A catalyst is a substance that increases the rate of a reaction without being consumed in the reaction itself. In this case, if CO were a catalyst, it would be expected that the rate of the reaction would increase with increasing CO concentration. However, the fact that the rate of the reaction is independent of [CO] suggests that CO is not acting as a catalyst.

Instead, this result suggests that the reaction is not dependent on the concentration of CO, and that the reaction is likely to be a second-order reaction with respect to NO₂. This means that the rate of the reaction is determined by the concentrations of both NO₂ and CO, but the rate is not affected by the concentration of CO itself. Therefore, CO is not acting as a catalyst in this reaction.

To know more about the Reaction, here

https://brainly.com/question/13196831

#SPJ4

2. What factors determine the rate at which a substance dissolves?

Answers

Answer:

Temperature

Agitation

Particle size

Explanation:

How much heat is required to warm 400. g of ethanol from 25.0°c to 40.0°c

Answers

To calculate the amount of heat required to warm 400 g of ethanol from 25.0°C to 40.0°C, we need to use the following formula:

Q = m * c * ΔT

where Q is the amount of heat required, m is the mass of the substance, c is the specific heat capacity of ethanol, and ΔT is the change in temperature.

The specific heat capacity of ethanol is 2.44 J/(g·°C), and the change in temperature is:

ΔT = 40.0°C - 25.0°C = 15.0°C

Now we can use the formula to calculate the amount of heat required:

Q = 400 g * 2.44 J/(g·°C) * 15.0°C = 18360 J

Therefore, 18,360 J of heat is required to warm 400 g of ethanol from 25.0°C to 40.0°C.

To know more about required refer here

https://brainly.com/question/2929431#

#SPJ11

A 983. 6 g sample of antimony undergoes a temperature change of +31. 51 °C. The specific heat capacity of antimony is 0. 049 cal/(g·°C). How many calories of heat were transferred by the sample?

Answers

The calories of heat transferred by the sample were 1526.06.

The amount of heat transferred by the sample can be calculated using the equation
Q = m x c x ΔT

where:
Q = heat transferred (in calories)
m = mass of the sample (in grams)
c = specific heat capacity of antimony (in cal/(g·°C))
ΔT = temperature change of the sample (in °C)

Substituting the values:
Q = 983.6 g x 0.049 cal/(g·°C) x 31.51 °C
Q = 1526.06 calories

So, the heat transferred by the 983.6 g sample of antimony with a temperature change of +31.51 °C is approximately 1526.06 calories. Specific heat capacity is a property of a material that describes the amount of heat required to raise the temperature of one gram of the material by one degree Celsius. This property can be used to calculate the amount of heat transferred during temperature changes.

To learn more about specific heat capacity visit:

https://brainly.com/question/27991746

#SPJ11

A 12.6 g sample of glass goes from an initial temperature of 20.2°C to a final temperature of
45.3°C. Calculate how much heat was transferred, and state whether heat was gained or lost
based on the sign of your answer.

Answers

For calcule A 45.3 You need are secure When You came a 12.3 the answer is 20.c

2As2O3+3C=3C02+4As; if 8.00g of As2O3 reacts with 1.00 g of C, how many grams of carbon dioxide can be produced?

Answers

Answer:

The balanced chemical equation is:

2As2O3 + 3C → 3CO2 + 4As

To find out how many grams of carbon dioxide can be produced, we need to use stoichiometry.

First, we need to determine which reactant is limiting. We can do this by calculating the amount of carbon that reacts with As2O3:

1.00 g C × (1 mol C / 12.01 g) × (2 mol As2O3 / 3 mol C) × (197.84 g As2O3 / 1 mol As2O3) = 2.60 g As2O3

This means that only 2.60 g of the As2O3 will react, and the rest will be in excess.

Now we can use the balanced equation to calculate the amount of CO2 that will be produced:

2 mol As2O3 : 3 mol CO2

2.60 g As2O3 × (1 mol As2O3 / 197.84 g) × (3 mol CO2 / 2 mol As2O3) × (44.01 g CO2 / 1 mol CO2) = 3.56 g CO2

Therefore, 3.56 grams of carbon dioxide can be produced.

When oxygen accepts electrons, water is produced as a byproduct.

Answers

When oxygen accepts electrons, water is not always produced as a byproduct. It depends on the specific chemical reaction that is occurring.

In some reactions, such as the process of respiration in living organisms, oxygen accepts electrons and combines with hydrogen ions (protons) to form water as a byproduct. This reaction can be written as:

[tex]O2 + 4e- + 4H+ → 2H2O[/tex]

In this reaction, oxygen accepts four electrons  and four hydrogen ions  to form two molecules of water.

However, in other reactions, oxygen can accept electrons and form other byproducts. For example, in combustion reactions, oxygen reacts with hydrocarbons to form carbon dioxide and water. The specific reaction that occurs depends on the reactants and conditions involved.

To know more about chemical reaction refer to-

https://brainly.com/question/29039149

#SPJ11

What is the mass in grams are in 3. 45 x 10E24 atoms of carbon

Answers

The mass in grams of 3.45 x 10E24 atoms of carbon is 68.93 g.

To find the mass in grams of 3.45 x 10E24 atoms of carbon, we need to use the concept of atomic mass and Avogadro's number. The atomic mass of carbon is 12.01 g/mol, which means that one mole of carbon contains 6.022 x 10E23 atoms. This is known as Avogadro's number.

So, to find the mass of 3.45 x 10E24 atoms of carbon, we first need to convert the number of atoms to moles. We do this by dividing the given number of atoms by Avogadro's number:

3.45 x 10E24 atoms / 6.022 x 10E23 atoms/mol = 5.74 moles

Next, we can use the molar mass of carbon to find the mass of 5.74 moles of carbon:

5.74 moles x 12.01 g/mol = 68.93 g

Therefore, the mass in grams of 3.45 x 10E24 atoms of carbon is 68.93 g.

To know more about mass in grams refer here: https://brainly.com/question/4220551#

#SPJ11

How many moles of products would you make if you added 10. 0 g of Calcium


Chloride to 10. 0 g of Sodium Hydroxide?

Answers

Add 10.0 g of calcium chloride to 10.0 g of sodium hydroxide, we will produce 0.0901 moles of calcium hydroxide.

What is Moles?

Moles (mol) is a unit of measurement in chemistry that represents the amount of a substance. One mole of a substance contains the same number of entities, such as atoms, molecules, or ions, as there are atoms in exactly 12 grams of carbon-12.

to calculate the number of moles of calcium chloride present in 10.0 g of the compound. The molar mass of calcium chloride is 111 g/mol, so:

10.0 g Ca[tex]Cl_2[/tex] × (1 mol / 111 g) = 0.0901 mol Ca[tex]Cl_2[/tex]

Similarly, we need to calculate the number of moles of sodium hydroxide present in 10.0 g of the compound. The molar mass of sodium hydroxide is 40 g/mol, so:

10.0 g NaOH × (1 mol / 40 g) = 0.25 mol NaOH

According to the balanced equation, 1 mole of Ca[tex]Cl_2[/tex]reacts with 2 moles of NaOH, so if we have 0.0901 moles of Ca[tex]Cl_2[/tex] and 0.25 moles of NaOH, then the limiting reagent is Ca[tex]Cl_2[/tex]. Therefore, all of the Ca[tex]Cl_2[/tex]will react and the number of moles of products formed will be determined by the amount of Ca[tex]Cl_2[/tex]:

0.0901 mol Ca[tex]Cl_2[/tex] × (1 mol Ca(OH)2 / 1 mol Ca[tex]Cl_2[/tex]) = 0.0901 mol Ca(OH)2

Therefore, if we add 10.0 g of calcium chloride to 10.0 g of sodium hydroxide, we will produce 0.0901 moles of calcium hydroxide.

To know more about  Moles, visit;

https://brainly.com/question/29367909

#SPJ4

This reaction will  produce 0.125 moles of Ca(OH)2

How many moles are produced?

To determine the number of moles of products formed when 10.0 g of calcium chloride (CaCl2) is added to 10.0 g of sodium hydroxide (NaOH), we need to first determine which chemical reaction takes place and the limiting reagent.

The chemical equation for the reaction between calcium chloride and sodium hydroxide is:

CaCl2 + 2 NaOH → Ca(OH)2 + 2 NaCl

From the balanced equation, we can see that 1 mole of calcium chloride reacts with 2 moles of sodium hydroxide to produce 1 mole of calcium hydroxide and 2 moles of sodium chloride.

The molar masses of calcium chloride and sodium hydroxide are:

Calcium chloride (CaCl2): 40.08 g/mol + 2 x 35.45 g/mol = 110.98 g/molSodium hydroxide (NaOH): 22.99 g/mol + 15.99 g/mol + 1.01 g/mol = 40.00 g/mol

Using the molar masses, we can convert the masses of calcium chloride and sodium hydroxide to moles:

Moles of CaCl2 = 10.0 g / 110.98 g/mol = 0.090 molesMoles of NaOH = 10.0 g / 40.00 g/mol = 0.250 moles

We can see that there is an excess of sodium hydroxide, so it is the limiting reagent. Using the stoichiometry of the balanced equation, we can determine the number of moles of products formed:

2 moles of NaOH react with 1 mole of CaCl2 to produce 1 mole of Ca(OH)2

Therefore, 0.250 moles of NaOH will react with 0.125 moles of CaCl2 to produce 0.125 moles of Ca(OH)2

Learn more about moles at:

https://brainly.com/question/29367909

#SPJ1

3 Zn + 2 H3PO4 → 3 H2 + Zn3(PO4)2



How many grams of Zn are needed in order to produce 0. 15 g of H2?

Answers

4.85 grams of Zn are needed to produce 0.15 grams of H2.

The balanced chemical equation for the reaction between zinc and phosphoric acid is:

[tex]3 Zn + 2 H_3PO_4[/tex] → [tex]3 H_2 + Zn_3(PO4)2[/tex]

Step 1: Calculate the number of moles of [tex]H_2[/tex] produced

We can use the molar mass of hydrogen gas ([tex]H_2[/tex]) to calculate the number of moles produced:

n([tex]H_2[/tex]) = mass of [tex]H_2[/tex] / molar mass of [tex]H_2[/tex]

n([tex]H_2[/tex]) = 0.15 g / 2.016 g/mol = 0.0743 mol

Step 2: Calculate mass  [tex]Z_2[/tex] needed

We can use the molar mass of zinc to convert moles of Zn to grams of Zn:

mass of Zn = n(Zn) x molar mass of Zn

mass of Zn = 0.0743 mol x 65.38 g/mol

mass of Zn = 4.85 g

To know more about molar mass , here

brainly.com/question/22997914

#SPJ4

By law, a gallon of ice cream, sold in stores in the US, must have a

weight of at least 4. 5 pounds. Cheap ice cream has a weight of 4. 5

pounds. More expensive ice creams have a mass of 9. 0 pounds. If a

kilogram is about 2. 2 pounds and a gallon is about 3785 milliliters,

what are the densities of the cheap and expensive ice creams?

Answers

The volume of the expensive ice cream is: 0.

Densities of the cheap and expensive ice creams, we need to first convert the weights of the ice creams from pounds to kilograms.

1 pound = 0.453592 kilograms

Therefore, the weight of the cheap ice cream in kilograms is:

5 pounds * 0.453592 kilograms/pound = 2. 027 kilograms

The weight of the expensive ice cream in kilograms is:

0 pounds * 0.453592 kilograms/pound = 3. 903 kilogram

The volume of a gallon of ice cream is approximately 3785 milliliters. Therefore, the volume of the cheap ice cream is:

027 kilograms / 3785 milliliters = 0.000557 cubic meters

The volume of the expensive ice cream is:

903 kilograms / 3785 milliliters = 0.00091 cubic meters

The densities of the cheap and expensive ice creams, we can use the following formula:

density = mass / volume

The densities of the cheap and expensive ice creams can then be calculated using the following formula:

density = mass / volume

The mass of the cheap ice cream is:

027 kilograms

The volume of the cheap ice cream is:

0.000557 cubic meters

Therefore, the density of the cheap ice cream is:

027 kilograms / 0.000557 cubic meters = 35. 14 kilograms/cubic meter

The mass of the expensive ice cream is:

903 kilograms

The volume of the expensive ice cream is: 0.

Learn more about volume Visit: brainly.com/question/27710307

#SPJ4

An unidentified gas a density of 2. 40 g/L when measured at 45°C and 820 torr pressure. Calculate

the molar mass of this gas

Answers

The molar mass of the unidentified gas is 40.06 g/mol.

To calculate the molar mass of the gas, we can use the ideal gas law, PV=nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

We can rearrange this equation to solve for the number of moles:

n = PV/RT

We can then use the definition of density, d = m/V, where m is the mass, to solve for the mass of the gas:

m = dV

We can substitute these expressions into the equation for n:

n = (dV)P/RT

We can then use the definition of molar mass, M = m/n, to solve for the molar mass:

M = m/n = (dV)P/RT

Substituting the given values, we have:

M = (2.40 g/L)(0.820 atm)(22.4 L/mol)/(0.0821 L·atm/mol·K)(318 K) = 40.06 g/mol

To know more about molar mass, refer here:

https://brainly.com/question/22997914#

#SPJ11

Solution A Solution B


Particle Size of Salt large clumps tiny grains


Temperature of Solvent cold water hot water


Level of Agitation slow stirring fast stirring




What conclusion can be drawn from these solutions?



A.


Solution A will take less time to dissolve, because gently stirring will allow it to combine more evenly.



B.


Solution B will take longer to dissolve and might have some undissolved salt remaining at the bottom of the solution due to the high temperature.



C.


Solution B will take less time to dissolve, because hot water will cause some of the salt to evaporate.



D.


Solution A will take longer to dissolve and might have some undissolved salt remaining at the bottom of the solution due to the low temperature

Answers

D. Solution A will take longer to dissolve and might have some undissolved salt remaining at the bottom of the solution due to the low temperature.

In Solution A, the salt is in large clumps, the solvent is cold water, and the agitation is slow stirring. These factors contribute to a slower dissolution process. Large clumps have less surface area exposed to the solvent, cold water has less energy to break the ionic bonds between salt ions, and slow stirring provides less agitation to promote dissolution.

Consequently, it will take longer for the salt to dissolve in Solution A, and there might be undissolved salt remaining at the bottom.

to know more about temperature refer here

https://brainly.com/question/11464844#

#SPJ11

what conclusions can you draw about the relationship between the structure of the fabric molecule and the intensity with which the azo dyes color the fabric?

Answers

apart from being used in dying, it’s used as a indicator

When you measure current, you are measuring the number of:


a. Neutrons that pass a point in one second.


b. Protons that pass a point in one second.


c. Electrons that pass a point in one second.


d. Atoms that pass a point in one second.

Answers

When you measure current, you are measuring the number of: c. Electrons that pass a point in one second.

When measuring current, you are measuring the number of electrons that pass a point in one second.

Current is defined as the flow of electric charge, which is typically the flow of electrons through a conducting material. The unit of current is the ampere (A), which is defined as the flow of one coulomb of charge per second.

In a circuit, current flows from the negative terminal of the battery (where electrons are pushed out) to the positive terminal (where electrons are absorbed). The amount of current in a circuit is determined by the voltage applied (potential difference) and the resistance of the circuit, according to Ohm's Law (I = V/R).

Therefore, measuring current is a way of quantifying the amount of electric charge that is flowing through a circuit per unit time, and it is directly related to the movement of electrons in the circuit.

To know more about Ohms law:

https://brainly.com/question/14296509

#SPJ11

Problems with understanding what happens when things burn

Answers

Problems with understanding what happens when things burn can be attributed to various factors, such as lack of knowledge about the combustion process, the role of oxygen, and the production of heat and light energy.

When things burn, a chemical reaction called combustion takes place. During this process, a fuel reacts with oxygen, resulting in the release of energy in the form of heat and light. The products of combustion are usually water, carbon dioxide, and sometimes other gases or particles, depending on the fuel and the burning conditions.

One issue in understanding this process is grasping the importance of oxygen. Oxygen is required for combustion to occur, and the presence of more or less oxygen affects the burning process. For example, in a well-ventilated area, the combustion is more efficient, whereas limited oxygen can result in incomplete combustion and the production of harmful byproducts like carbon monoxide.

Another problem in understanding combustion is the role of heat. Heat is both a product of and a catalyst for combustion. As a fuel gets heated, it may reach its ignition temperature, at which point it spontaneously ignites. Heat also contributes to the spread of fire, as it can cause nearby objects to reach their ignition temperature.

The production of light during combustion is another aspect that can cause confusion. The light emitted during burning is a result of excited atoms and molecules in the flame that release energy in the form of light when they return to their original state. This is what makes flames visible and gives them their characteristic colors.

In summary, problems with understanding what happens when things burn stem from a lack of knowledge about the combustion process, the role of oxygen, and the production of heat and light energy. Gaining a deeper understanding of these factors can help individuals better comprehend the complex nature of combustion and fire safety.

To know more about things burn refer here

brainly.com/question/29886555#

#SPJ11

Zn (s) + 2Ag(NO3) (aq) → 2 Ag (s) + Zn(NO3)2 (aq)


How many grams of zinc are needed to fully react with 8. 0 moles of silver nitrate?

Answers

261.52 grams of zinc are needed to fully react with 8.0 moles of silver nitrate.

To answer this question, we first need to determine the balanced chemical equation for the reaction given. The equation shows that one mole of zinc reacts with two moles of silver nitrate to produce two moles of silver and one mole of zinc nitrate. This means that the stoichiometric ratio between zinc and silver nitrate is 1:2.

Next, we can use the given amount of silver nitrate (8.0 moles) to determine how much zinc is needed to react completely with it. Since the ratio between zinc and silver nitrate is 1:2, we know that we need half as many moles of zinc as there are moles of silver nitrate.

Therefore, we can calculate the number of moles of zinc needed as follows:

Number of moles of zinc = (1/2) x Number of moles of silver nitrate
Number of moles of zinc = (1/2) x 8.0 mol
Number of moles of zinc = 4.0 mol

Finally, we can use the molar mass of zinc to convert the number of moles into grams:

Mass of zinc = Number of moles of zinc x Molar mass of zinc
Mass of zinc = 4.0 mol x 65.38 g/mol
Mass of zinc = 261.52 g

Therefore, 261.52 grams of zinc are needed to fully react with 8.0 moles of silver nitrate.

To know more about silver nitrate, visit:

https://brainly.com/question/8071605#

#SPJ11

How many molecules of acetyl-CoA result from complete catabolism of the following compounds?

Answers

In the complete catabolism of glucose, two molecules of acetyl-CoA are produced. In the complete catabolism of fatty acids, the number of acetyl-CoA molecules produced varies depending on the length of the fatty acid chain.

For example, a 16-carbon fatty acid would produce eight molecules of acetyl-CoA. In the complete catabolism of amino acids, the number of acetyl-CoA molecules produced varies depending on the specific amino acid being catabolized.

Overall, the production of acetyl-CoA is an important step in the cellular respiration process, as it enters the Krebs cycle and eventually leads to the production of ATP.

Understanding the different ways in which acetyl-CoA is produced can provide insight into the metabolism of different types of nutrients and the importance of maintaining a balanced diet.

To know more about fatty acid click on below link:

https://brainly.com/question/30712004#

#SPJ11

At what volume will 22.4l of oz (p) at 303k and 1.2atm have the same number of molecules as neon gas at 303k and 12 atm?

Answers

When the volume of neon gas is 2.07 L, 22.4 L of ounce (p) at 303 K and 1.2 atm will have the same number of molecules as neon gas at 303 K and 12 atm.

To solve this problem, we can use the ideal gas law equation:

PV = [tex]nRT[/tex], where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

First, we need to find the number of moles of neon gas at 303K and 12 atm. We can use the equation PV = [tex]nRT[/tex] and rearrange it to solve for n: n = PV/RT. Plugging in the values, we get:
[tex]n = (12 atm)(22.4 L)/(0.0821 L*atm/mol*K)(303 K)[/tex]
n = 12.04 mol

So, neon gas at 303K and 12 atm has 12.04 moles.
Now, we need to find the volume of oz (p) at 303K and 1.2 atm that has the same number of molecules. We can use the equation n = N/NA, where N is the number of molecules and NA is Avogadro's number (6.022 x 10^23). Rearranging the equation to solve for V, we get:

V = [tex]nRT[/tex]/P
[tex]V = (12.04 mol)(0.0821 L*atm/mol*K)(303 K)/(1.2 atm)[/tex]
V = 249.5 L

Therefore, at 303K and 1.2 atm, 22.4 L of oz (p) has the same number of molecules as neon gas at 303K and 12 atm when the volume is 249.5 L.

To solve this problem, we'll use the Ideal Gas Law equation, PV=[tex]nRT[/tex], where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature.

First, let's find the number of moles of the given gas, oz (p):
P1 = 1.2 atm
V1 = 22.4 L
T1 = 303 K
R = 0.0821 L atm/mol K (Ideal Gas Constant)

1.2 atm * 22.4 L = n * 0.0821 L atm/mol K * 303 K
n = (1.2 * 22.4) / (0.0821 * 303) = 1 mol

Now, let's find the volume (V2) of neon gas at the given conditions:
P2 = 12 atm
T2 = 303 K
n2 = 1 mol (since we want the same number of molecules)

12 atm * V2 = 1 mol * 0.0821 L atm/mol K * 303 K
V2 = (1 * 0.0821 * 303) / 12 = 2.07 L

Thus, 22.4 L of oz (p) at 303 K and 1.2 atm will have the same number of molecules as neon gas at 303 K and 12 atm when the volume of neon gas is 2.07 L.

For more question on volume

https://brainly.com/question/29796637

#SPJ11

A mixture of 33. 6 g of Cr(NO3)2 and 60. 5 g of CuSO4 is dissolved in sufficient water to make 98 mL of solution, where the cations react. In the reaction, copper metal is formed and each chromium ion loses one electron. How many electrons are transferred in the balanced net ionic equation with the smallest whole-number coefficients?


1. 5e-


2. 2e-


3. 7e-


4. 4e-


5. 1e-


(Part 2) What is the molar concentration of SO4^2- anions in the solution? Answer in units of M

Answers

The molar concentration of SO4^2- anions in the solution is about 3.867 M.

To answer your question, first we need to write the balanced net ionic equation:

Cr^2+(aq) + Cu^2+(aq) → Cr^3+(aq) + Cu(s)

Now, we need to determine the number of moles of Cr(NO3)2 and CuSO4:

Cr(NO3)2: 33.6 g / (130.87 g/mol) = 0.257 moles
CuSO4: 60.5 g / (159.61 g/mol) = 0.379 moles

From the balanced net ionic equation, we can see that 1 mole of Cr^2+ reacts with 1 mole of Cu^2+. Since we have more moles of Cu^2+ than Cr^2+, Cr^2+ is the limiting reagent.

Now, let's calculate the number of electrons transferred:

Since each Cr^2+ ion loses one electron, the number of electrons transferred is equal to the number of moles of Cr^2+ ions:
0.257 moles * 1e- = 0.257e-

Since we need the smallest whole-number coefficients, we'll multiply by the lowest common denominator (LCD) to make the number of electrons a whole number. The LCD for 0.257 is 7, so we'll multiply the entire equation by 7:

7Cr^2+(aq) + 7Cu^2+(aq) → 7Cr^3+(aq) + 7Cu(s)

Therefore, the number of electrons transferred is:
0.257e- * 7 = 1.799e- ≈ 2e-
So the correct answer is 2e-.

(Part 2) To find the molar concentration of SO4^2- anions in the solution, we need to use the moles of CuSO4 and the volume of the solution:

0.379 moles / 0.098 L = 3.867 M

The molar concentration of SO4^2- anions in the solution is approximately 3.867 M.

To learn more about electrons, refer below:

https://brainly.com/question/1255220

#SPJ11

Potassium superoxide (ko2, 71.10 g/mol) can be used to generate oxygen gas. what mass of o2 (32.00 g/mol) can be formed if 500.0 g ko2 reacts with excess h2o? (write the answer to one decimal place)


225.0 g

168.8 g

675.1 g

375.0 g

56.26 g

Answers

When 500 gm of KO2 reacts with excess H2O, 112.6 gm of O2 can be formed.

In order to determine the mass of O2 formed from the reaction of KO2 with excess H2O, we'll need to use stoichiometry. First, let's write down the balanced chemical equation:

2 KO2 + 2 H2O → 2 KOH + H2O2 + O2

Now, let's follow these steps:
1. Convert the given mass of KO2 (500.0 g) to moles using its molar mass (71.10 g/mol):
  (500.0 g KO2) × (1 mol KO2 / 71.10 g KO2) = 7.03 mol KO2


2. From the balanced equation, we can see that 2 moles of KO2 produce 1 mole of O2. So, we'll convert the moles of KO2 to moles of O2:
  (7.03 mol KO2) × (1 mol O2 / 2 mol KO2) = 3.52 mol O2


3. Convert the moles of O2 to mass using its molar mass (32.00 g/mol):
  (3.52 mol O2) × (32.00 g O2 / 1 mol O2) = 112.6 g O2

Therefore, when 500.0 g of KO2 reacts with excess H2O, 112.6 g of O2 can be formed.

Know more about Balanced Chemical Equation here:

https://brainly.com/question/28294176

#SPJ11

Please help
3) a student claims that the reaction of hydrogen and oxygen to form
water is evidence supporting the claim that mass is conserved in a
chemical reaction. the chemical equation the student uses for the reaction
is h2 + o2 --> h2o. does this evidence support the claim? why or why not?*

a.) yes, it supports the claim because all the elements in the reactants appear in the
product.

b.) no, it does not support the claim because it is not a closed system.

c.) yes, it supports the claim because the reaction equation is balanced.

d.) no, it does not support the claim because the reaction equation is not balanced.

Answers

Yes, this evidence supports the claim that mass is conserved in a chemical reaction because the reaction equation is balanced.

This means that the same number of atoms of each element is present in the reactants as in the products. This is the fundamental principle of conservation of mass, which states that mass is neither created nor destroyed during a chemical reaction.

The conservation of mass can also be verified by calculating the total mass of the reactants and comparing it to the total mass of the products.

If the same amount of mass is present in both reactants and products, then the reaction equation is balanced and the conservation of mass is supported.

Know more about Chemical reaction here

https://brainly.com/question/29039149#

#SPJ11

How many grams is equivalent to 3.8 moles of kno3?
o 0.0376 grams kno3
0 26.61 grams kno3
o 384.23 grams kno3
o 232.23 grams kno3

Answers

384.23 grams KNO₃ is equivalent to 3.8 moles of KNO₃.

The molar mass of KNO₃ (potassium nitrate) can be calculated by adding the atomic masses of potassium (K), nitrogen (N), and three oxygen (O) atoms, which gives 101.1 g/mol.

To find the mass of 3.8 moles of KNO₃, we can use the following formula:

mass = moles x molar mass

Substituting the given values, we get:

mass = 3.8 mol x 101.1 g/molmass = 384.18 g

Therefore, 384.18 g of KNO₃ is equivalent to 3.8 moles of KNO₃.

However, the answer choices are given in grams, so we need to round off the answer to two decimal places, which gives 84.23 g KNO₃ (rounded to two decimal places) as the correct answer.

To learn more about moles, here

https://brainly.com/question/31597231

#SPJ4

Other Questions
Evaluate the iterated integral by converting to polar coordinates.8864x20(x2+y2) dy dx What is the strongest type of intermolecular forces present between the hydrocarbon chains of neighboring stearic acid molecules? I forgot please help me out here. Is 25 fl oz greater than 1 pint, or 1 pint greater than 25 fl oz. Please help me out thank you so much Problem List Previous Problem Next Problem = (1 point) An alternating current E(t)=120sin(12t) has been running through a simple circuit for a long time. The circuit has an inductance of L=0.31 henrys, a resistor of R=7ohms and a capacitor of capcitance C=0.029 farads. What is the amplitude of the current I? 4. A gas has a volume of 4 liters at 50 . What will its volume be (in liters) at 100? If g(q) = 2q-4 / q-Aand g(-3) = 2, what is the value of A? 9. What is the volume of a rectangular prism with a length of 11 meters, width of 26 meters, and height of 38 meters? How do you use the definition of a derivative to find f' given f(x)=4x+3 at x>-3/4? Help with math problems 3) Suppose that for a particular economy, investments (I) equal $100m, government expenditures (G) are $250m, exports (X) amount to 400m while imports (M) are $175m. The consumption function can be represented by the following equation:C = 300M + 0. 80Yda) Identify the following:(i) Autonomous consumption 1 mark(ii) The marginal propensity to consume 1 mark(iii) The value of the multiplier 2 marksb) Calculate the equilibrium level of GDP(Y) 5 marksc) Draw a Keynesian cross showing the equilibrium level of GDP (calculated in question 3b) and aggregate expenditure. 5 marks Which words convey the "burden Europeans had to bear? Check all that apply. Why is the krebs cycle so important if it only produces 2 atp molecules. The volume of a sample of hydrogen gas at 0. 997 atm is 5. 00 L. What will be the new volume if the pressure is decreased to 0. 977 atm? Ellen mixed 1over 4 kg of flour with 2 over 9 kg of sugar. Determine a reasonable estimate for the amount of flour and sugar combined 9.What is the solution set for this inequality?negative five D plus five and one over two symbol seventeen. Read this excerpt from When Birds Get Flu and Cows Go Mad! by John DiConsiglio. A Modern Pandemic During the past 25 years, AIDS has spread throughout the world. The first cases of AIDS were reported in 1981. Since then, the disease has become a pandemic. Now there are nearly 40 million people infected with HIV, the virus that causes AIDS. Africa is the hardest-hit continent. More than 60 percent of all the people in the world with HIV live there. But no region has been spared. Why does the author conclude the article with this passage? what is the radius of a circle if 24-meter chord is 5 meters from center Which point of view is the following excerpt told from?From Chapter 2 of Bullets and Billets by Bruce BainsfatherI stood in a queue of Gordons, Seaforihs, Worcesters, etc., slowly moving up one, until, finally arriving o the companion (nearly said staircase), I tobogganed down into the hold, and spent what WESoff of the night dealing out those rations. Having finished, at last, I came to the surface again, andholy as the transport glided along through the dirty waters of the river, and as I gazed at ine Motleycollection of Frenchmen on the various wharves, and saw a variety of soldiery, and a host of otherwarike "props," I felt acutely that now I was in the war at last the real thing!'"For some fime, I hadhen rehearsing in England; but that was over now, and here I was in the common or garden vernacular-"in the soup.A . first personB . third person omniscientC . third person limitedD . second person ______ reward employees for the behaviors they actually exhibit at work and for the results or goals they actually achieve.Select one:a.Traditional-pay programsb.Piecework plansc.Pay-for-performance programsd.Differential pay plans !!I NEEEDD HELPPP!! Please helppp :(