Total, 0.77 g of I2 is the amount of the excess reagent that remains after the reaction.
To determine the excess reagent remaining, we first need to find the limiting reagent.
The balanced equation tells us that 2 moles of Al react with 3 moles of I₂ to form 2 moles of AlI₃. We can use this information to calculate the theoretical yield of AlI3 based on the amount of each reactant;
moles of Al = 1.80 g / 26.98 g/mol = 0.067 moles
moles of I₂ = 2.30 g / 253.81 g/mol = 0.009 moles
Since the stoichiometry of the reaction is 2:3 for Al and I₂ , respectively, we can see that I₂ is the limiting reagent. Thus, all of the Al will react, while some of the I₂ will be left over.
The amount of AlI₃ that can be formed from the limiting reagent (I2) is:
moles of AlI₃ = 0.009 moles I₂ × (2 moles AlI₃ / 3 moles I₂ )
= 0.006 moles AlI₃
The mass of AlI₃ that can be formed is;
mass of AlI₃ = 0.006 moles × 407.82 g/mol
= 2.47 g
Since we know that only 2.30 g of I₂ was present initially, we can calculate the amount of excess I₂ remaining after the reaction;
excess I₂ = 2.30 g - (0.009 moles I₂ × 253.81 g/mol)
= 0.77 g
Therefore, 0.77 g of reagent that remains after the reaction.
To know more about theoretical yield here
https://brainly.com/question/14966377
#SPJ4
What volume of 10% (w/v) solution of Na2CO3 will be required to neutralise 100 mL of HCI Solution containing 3.63
g of HCl?
468.5 mL of 10% Na2CO3 solution is required to neutralize 100 mL of HCl solution containing 3.63 g of HCl.
To solve this problemCalculating the amount of HCl in moles is the first step.
mol = 3.63 g / 36.46 g/mol
moles = 0.0995
mol mass HCl = mass HCl / molar mass HCl
The chemical equation for the neutralization of HCl and Na2CO3 is as follows:
2HCl + Na2CO3 → 2NaCl + CO2 + H2O
The equation states that 2 moles of HCl and 1 mole of Na2CO3 react. As a result, the amount of Na2CO3 needed to neutralize the HCl, in moles, is:
moles Na2CO3 = moles HCl / 2
moles Na2CO3 = 0.0995 mol / 2
moles Na2CO3 = 0.0498 mol
The volume of 10% Na2CO3 solution needed to produce 0.0498 mol of Na2CO3 may now be calculated using the definition of molarity:
moles Na2CO3 = (Na2CO3 concentration) x (Na2CO3 volume).
0.1 g/mL x (volume Na2CO3 / 1000 mL) x (105.99 g/mol) = 0.0498 mol
Na2CO3's volume = (0.0498 mol x 1000 mL) / (0.1 g/mL x 105.99 g/mol).
Na2CO3 = 468.5 mL of volume
Therefore, 468.5 mL of 10% Na2CO3 solution is required to neutralize 100 mL of HCl solution containing 3.63 g of HCl.
Learn more about molarity here : brainly.com/question/14469428
#SPJ1
Stalactites-the long, icicle-like formations that hang from the ceilings of caves-are formed from recrystallizing minerals such as calcite (calcium carbonate). The Ksp of calcium carbonate is 4. 5 x 10-9. What is the concentration of a saturated calcium carbonate
The concentration of a saturated calcium carbonate solution is 5.9 x 10⁻⁵ M.
To find the concentration, first write the balanced chemical equation for the dissolution of calcium carbonate:
CaCO₃(s) ⇌ Ca²⁺(aq) + CO₃²⁻(aq)
The Ksp expression for this reaction is:
Ksp = [Ca²⁺][CO₃²⁻]
Given the Ksp of calcium carbonate is 4.5 x 10⁻⁹, let the concentration of Ca²⁺ and CO₃²⁻ both be "x". So, Ksp = x². Now, solve for x:
4.5 x 10⁻⁹ = x²
x = √(4.5 x 10⁻⁹)
x = 5.9 x 10⁻⁵ M
Thus, the concentration of a saturated calcium carbonate solution is 5.9 x 10⁻⁵ M.
To know more about balanced chemical equation click on below link:
https://brainly.com/question/28294176#
#SPJ11
What is the molar solubility of ag2cr04 in water? (ksp of ag2cro4 is 8.0 x 10-12)
The molar solubility of Ag₂CrO₄ in water is approximately 1.24 x 10^-4 mol/L.
The solubility of a salt in water can be calculated using its solubility product constant (Ksp) value. The Ksp expression for Ag₂CrO₄ is:
[tex]Ag_2CrO_4[/tex](s) ⇌ [tex]2Ag^+(aq)[/tex] + [tex]CrO_4^{2-}(aq)[/tex]
The Ksp expression for this equilibrium is:
Ksp = [Ag+]^2[[tex]CrO_4^{2-[/tex]]
where [Ag+] and [CrO₄²-] are the concentrations of Ag+ and CrO₄²- ions in the equilibrium, respectively.
Let's assume that the molar solubility of [tex]Ag_2CrO_4[/tex] in water is x mol/L. Since the Ag₂CrO₄ dissociates into 2 Ag+ ions and 1 [tex]CrO__4^2-[/tex] ion, the concentration of Ag+ ions and [tex]CrO_4^{2-}[/tex] ions in the equilibrium will be 2x and x, respectively. Substituting these values into the Ksp expression, we get:
Ksp = (2x)^2(x) = 4x^3
Now, we can solve for x:
Ksp = [tex]4x^3[/tex]
8.0 x [tex]10^-12[/tex] = [tex]4x^3[/tex]
[tex]x^3[/tex] = (8.0 x [tex]10^-12[/tex])/4
[tex]x^3[/tex] = 2.0 x [tex]10^{-12}[/tex]
x = (2.0 x [tex]10^{-12}[/tex])^(1/3)
x = 1.24 x [tex]10^{-4[/tex] mol/L
Therefore, the molar solubility of Ag₂CrO₄ in water is approximately 1.24 x [tex]10^{-4[/tex] mol/L.
To know more about molar solubility
https://brainly.com/question/28170449
#SPJ4
All strong acids and bases appear equally strong in h2o. this is because in water the strongest acid possible is _______, while the strongest base possible is _______. in both cases the equilibrium favors the dissociation products, and water is said to exert a effect on any strong acid or base.
The statement that "all strong acids and bases appear equally strong in H₂O" is not entirely accurate. However, it is true that in water, the strongest acid possible is H₃O⁺ (hydronium ion), while the strongest base possible is OH⁻ (hydroxide ion).
In both cases, the equilibrium favors the dissociation products, meaning that the acids and bases fully ionize in water. Water also exerts an effect on any strong acid or base, as it can stabilize the charged ions produced by dissociation. Overall, the strength of an acid or base in water is determined by its dissociation constant (Ka for acids and Kb for bases). Stronger acids and bases have higher dissociation constants, meaning that they will ionize more readily and appear more "strong" in water.
To know more about strong acids and bases :
https://brainly.com/question/13263329
#SPJ11
A student measured out 10. 0 mL of a 8. 0M sodium sulfide stock solution. The student then diluted the stock solution adding 20. 0 mL of distilled water. What is the concentration of the diluted solution?
The concentration of the diluted solution is 2.67 M. The student diluted the stock solution by adding 20 mL of distilled water to the 10 mL of 8.0 M sodium sulfide solution.
To find the concentration of the diluted solution, we can use the equation:
M1V1 = M2V2
Where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume.
Substituting the values given, we get:
M1 = 8.0 M
V1 = 10.0 mL
V2 = 10.0 mL + 20.0 mL = 30.0 mL
M2 = ?
Using the equation and solving for M2, we get:
M2 = (M1V1) / V2
M2 = (8.0 M x 10.0 mL) / 30.0 mL
M2 = 2.67 M
Therefore, the concentration of the diluted solution is 2.67 M.
To know more about the stock solution refer here :
https://brainly.com/question/25256765#
#SPJ11
A system starts with a multiplicity of 2000. two kj of heat are transferred into the system reversibly at 298 k. what is the multiplicity now
In statistical mechanics, multiplicity refers to the number of microstates corresponding to a given macrostate of a system. Microstates represent the different ways in which the system's particles can be arranged while still satisfying the constraints imposed by the macrostate (e.g., total energy, volume, etc.).
To determine the change in multiplicity due to the transfer of heat, we typically need to know more about the system's properties, such as the number of particles, the energy levels available to those particles, and any other relevant information about the system's configuration.
Without further information, it is not possible to calculate the precise change in multiplicity resulting from the transfer of two kilojoules of heat at 298 Kelvin. Multiplicity is a system-specific property that depends on the unique characteristics and constraints of the system under consideration.
If you can provide additional details about the system, its properties, or the specific problem you are working on, I'll be happy to assist you further in understanding or calculating the multiplicity.
Learn more about heat transfer: https://brainly.com/question/16055406
#SPJ11
Is the hypothesis that a particular trait evolved by natural selection falsifiable? That is, if you thought a particular trait didn't evolve by natural selection, could you test that our for yourself, given sufficient time, resources, an an organism that isn't too difficult to study?
Group of answer choices
Yes, the hypothesis that a particular trait evolves by natural selection is falsifiable
No, the hypothesis that a particular trait evolved by natural selection is intrinsic to a modern understanding of biology and the *theory* of evolution by Natural Selection. Therefore in order to disprove that a particular trait evolved by natural selection, you would need to accumulate so much evidence that you could overturn that entire theory,.
It's impossible to tell - unlike other scientific theories, the idea that a trait evolved by natural selection is more of a philosophical position - you can't really test it
Yes, but to do that you would be required to show that the trait isn't heritable, and that it doesn't provide a fitness advantage, and that it doesn't vary in your population.
The hypothesis that a particular trait evolved by natural selection is indeed falsifiable. In fact, this is one of the foundational principles of the scientific method.
researchers must also consider alternative hypotheses and rule out alternative explanations before concluding that a trait evolved by natural selection.
The hypothesis that a particular trait evolved by natural selection is indeed falsifiable. In fact, this is one of the foundational principles of the scientific method.
To test whether a particular trait evolved by natural selection, researchers can design experiments or observational studies to investigate the trait's function and potential selective pressures. For example, they could manipulate the trait in question to see how it affects the organism's fitness, or compare the trait's frequency or variation across populations with different environmental conditions.
However, it's important to note that demonstrating that a trait evolved by natural selection does not necessarily mean that it is the only possible explanation for the trait's existence. Other evolutionary mechanisms such as genetic drift, gene flow, or mutation could also play a role in shaping the trait. Therefore, researchers must also consider alternative hypotheses and rule out alternative explanations before concluding that a trait evolved by natural selection.
Visit to know more about hypothesis:-
https://brainly.com/question/606806
#SPJ11
Translate the following balanced chemical equation into words.
Ba3N2(aq) + 6H2O(l) → 3Ba(OH)2(s) + 2NH3(g)
A. Barium nitrogen reacts with water to yield barium hydroxide and nitrogen hydrogen.
B. Barium nitrate reacts with water to yield barium oxide and nitrogen hydride.
C. Boron nitride reacts with water to yield boron hydroxide and nitrogen trihydride.
D. Barium nitride reacts with water to yield barium hydroxide and nitrogen trihydride.
How many moles are in 1. 25 x 10^20 molecules of HF? Show your work
There are 0.0208 moles in 1.25 x 10^20 molecules of HF.
To determine the number of moles in 1.25 x 10^20 molecules of HF, we need to use Avogadro's number. Avogadro's number is the number of particles in one mole of a substance, and it is equal to 6.022 x 10^23 particles/mol.
So, first we need to convert the number of molecules of HF into the number of moles:
1.25 x 10^20 molecules HF x (1 mol HF/6.022 x 10^23 molecules HF) = 0.0208 mol HF
Therefore, there are 0.0208 moles in 1.25 x 10^20 molecules of HF.
Know more about Avogadro's number here:
https://brainly.com/question/28812626
#SPJ11
You are given 10. 34 grams of C7H14O7. How many moles of the compound do you have?
There are 0.0492 moles of the compound C7H14O7 when given 10.34 grams.
To determine how many moles of the compound C7H14O7 you have when given 10.34 grams, you need to follow these steps:
1. Calculate the molar mass of the compound C7H14O7:
- For carbon (C), there are 7 atoms, each with a molar mass of 12.01 g/mol.
- For hydrogen (H), there are 14 atoms, each with a molar mass of 1.01 g/mol.
- For oxygen (O), there are 7 atoms, each with a molar mass of 16.00 g/mol.
2. Add up the molar masses:
- Molar mass of C7H14O7 = (7 * 12.01) + (14 * 1.01) + (7 * 16.00) = 84.07 + 14.14 + 112.00 = 210.21 g/mol.
3. Use the formula to convert grams to moles:
- Moles = mass (grams) / molar mass (g/mol)
4. Plug in the values and solve for moles:
- Moles of C7H14O7 = 10.34 grams / 210.21 g/mol = 0.0492 moles.
So, you have 0.0492 moles of the compound C7H14O7 when given 10.34 grams.
To know more about compound, visit:
https://brainly.com/question/13516179#
#SPJ11
A student ran the following reaction in the laboratory at 581 K: COCl2(g) CO(g) + Cl2(g) When he introduced COCl2(g) at a pressure of 0. 872 atm into a 1. 00 L evacuated container, he found the equilibrium partial pressure of Cl2(g) to be 0. 390 atm. Calculate the equilibrium constant, Kp, he obtained for this reaction. Kp =
The equilibrium constant, Kp, for this reaction at 581 K is 0.107.
The first step in solving this problem is to write the balanced chemical equation for the reaction and the corresponding equilibrium expression in terms of partial pressures:
[tex]COCl_2[/tex](g) ⇌ [tex]CO(g) +[/tex] [tex]Cl_2(g)[/tex]
Kp = (P_CO × P_[tex]Cl_2[/tex]) / [tex]P\ COCl_2[/tex]
Next, we can use the given equilibrium partial pressures of [tex]COCl_2[/tex] and Cl2 to find the equilibrium partial pressure of CO using the ideal gas law:
[tex]P\ {CO} = (P\ COCl_2 - P\ Cl_2) / 2[/tex]
Substituting the values given in the problem, we get:
P_CO = (0.872 atm - 0.390 atm) / 2 = 0.241 atm
Now we can plug in these values into the equilibrium expression and solve for Kp:
[tex]Kp = (0.241\ atm * 0.390\ atm) / 0.872\ atm = 0.107[/tex]
To know more about equilibrium constant, here
brainly.com/question/10038290
#SPJ1
When 1367 J of heat energy is added to 40. 1 g of ethanol, C2H6O, the temperature increases by 13. 9 ∘C.
Calculate the molar heat capacity of C2H6O.
P= J/(mol⋅∘C)
The molar heat capacity of ethanol is 103 J/(mol⋅K).
First, we need to calculate the amount of heat energy absorbed by 1 mole of ethanol:
The molar mass of ethanol, C2H6O, is 46.07 g/mol
The amount of ethanol used is: 40.1 g / 46.07 g/mol = 0.870 mol
The heat energy absorbed by 0.870 mol of ethanol is: 1367 J / 0.870 mol = 1570 J/mol
Now, we can calculate the molar heat capacity of ethanol:
The temperature increase is 13.9 °C = 13.9 K
The formula for heat capacity is: q = nCΔT, where q is the heat energy absorbed, n is the number of moles, C is the molar heat capacity, and ΔT is the temperature change.
Rearranging the formula, we get: C = q/(nΔT) = 1570 J/mol / (0.870 mol x 13.9 K) = 103 J/(mol⋅K)
Learn more about molar heat capacity, here:
https://brainly.com/question/28302909
#SPJ1
In the late eighteenth century Priestley prepared ammonia by reacting HNO3(g) with hydrogen gas. The thermodynamic equation for the reaction is
HNO3(g) + 4H2(g) → NH3(g) + 3H2O(g) ΔH = –637 kJ
Calculate the amount of energy released when one mole of hydrogen gas reacts. Consider this to be a positive value
The thermodynamic equation for the reaction is:
[tex]HNO_3(g) + 4H_2(g)[/tex] → [tex]NH_3(g) + 3H_2O(g) \Delta H = -637 kJ[/tex]
This means that the reaction releases 637 kJ energy per mole ammonia produced. The amount of energy released when one mole of hydrogen gas reacts is 159.25 kJ,
However, the amount of energy released when one mole of hydrogen gas reacts. From the balanced equation, we can see that one mole of ammonia is produced for every 4 moles of hydrogen gas that react. Therefore, the amount of energy released :
ΔH/4 = -637 kJ / 4 = -159.25 kJ
So, the amount of energy released when one mole hydrogen gas reacts is 159.25 kJ, and we consider this to be a positive value because the reaction is exothermic.
To know more about thermodynamic equations, here
brainly.com/question/30267158
#SPJ4
What is the least number of electrons this atom must have in order to have a negative charge?
An atom becomes negatively charged when it gains electrons. The number of electrons an atom needs to gain to become negatively charged depends on the number of protons in its nucleus, which determines its atomic number and the number of electrons it normally has in its neutral state.
In general, if an atom gains n electrons, it will have a negative charge of -n. For example, if an oxygen atom (atomic number 8) gains two electrons, it will have a negative charge of -2.
Therefore, the least number of electrons an atom must have in order to have a negative charge would be one more than the number of protons in its nucleus, since adding one electron will give it a charge of -1. For example, if the atom has 6 protons, it would need 7 electrons to have a negative charge of -1.
This corresponds to the element carbon, which has atomic number 6 and normally has 6 electrons in its neutral state. Adding one electron to a carbon atom would give it a negative charge of -1.
bright, yellow-orange sunsets only occur when the atmosphere . a. is fairly clean b. contains a fair amount of suspended particulates c. contains small suspended salt particles and water molecules d. includes sulfuric acid droplets
Bright, yellow-orange sunsets only occur when the atmosphere is fairly clean. The correct option is a.
The sky above is the one aspect of the atmosphere. In the reality, the planet's atmosphere is made up of the numerous layers of the gases. The two gases that are the most prevalent in the Earth's atmosphere are by the far nitrogen and the oxygen. About the 78% of dry air will contains nitrogen, and about the 21% of it is the oxygen.
Fewer than the 1% of the atmosphere is made up of the combination of the gases, including the carbon dioxide and the argon, the Water vapor. Therefore, the correct option is a.
To learn more about atmosphere here
https://brainly.com/question/13129618
#SPJ4
Calculate the ph of the resulting solution when 85 mL of 0. 3 M nitric acid is mixed with 75 mL of 0. 2 magnesium hydroxide
What are alleles?
Responses
the basic unit of inheritance
two forms of single genes
a measurable factor
the decoders of the DNA message
its a k12 test btw
Answer:
One of two or more versions of a genetic sequence at a particular region of a chromosome.
G A saturated liquid-vapor mixture of water with a mass of 4. 2 kg is contained in a rigid tank at a pressure of 225 kPa. Initially, 80% of the mass is in the liquid phase. All of the liquid in the tank is then vaporized by an electric resistance heater such that the system now contains a saturated vapor. What is the total entropy change of the steam during this process
The total entropy change of the steam during this process is 24.885 kJ/K.
During this process, the system undergoes a phase change from a saturated liquid-vapor mixture to a saturated vapor. The initial state can be determined using a steam table, which shows that at 225 kPa, the saturation temperature of water is 120.23°C. Therefore, the initial state is a mixture of liquid water and steam at 120.23°C with 80% of the mass in the liquid phase.
When the electric resistance heater vaporizes all of the liquid, the system transitions to a state of saturated vapor at the same pressure of 225 kPa and temperature of 120.23°C. The total entropy change of the steam during this process can be calculated using the formula:
ΔS = m * s_final - m * s_initial
where ΔS is the total entropy change, m is the mass of the steam, s_final is the specific entropy of the final state, and s_initial is the specific entropy of the initial state.
At the initial state, using the steam table, the specific entropy of the saturated liquid-vapor mixture can be found to be 1.5875 kJ/kg-K. At the final state, the specific entropy of the saturated vapor can also be found to be 7.2925 kJ/kg-K.
Therefore, the total entropy change of the steam is:
ΔS = 4.2 kg * (7.2925 kJ/kg-K - 1.5875 kJ/kg-K)
ΔS = 24.885 kJ/K
Therefore, the total entropy change of the steam during this process is 24.885 kJ/K.
Know more about Total entropy change here:
https://brainly.com/question/30691597
#SPJ11
A truck weighs 7280 pounds. If the pressure exerted by its tires on the ground is 87. 5 pounds per square centimeter,what is the area of one tire that in contact with the road
Area of one tire is: 20.8 square centimeters.
To find the area of one tire in contact with the road, we need to first determine the total pressure exerted by all tires. Assuming the truck has 4 tires, we can use the following formula:
Total weight (in pounds) = Pressure exerted by each tire (in pounds per square centimeter) × Total area of contact of all tires (in square centimeters)
Let's denote the area of one tire in contact with the road as A (in square centimeters). Then, the total area of contact of all tires would be 4A.
We can now plug in the values given:
7280 pounds = 87.5 pounds/square centimeter × 4A
To find A, we first divide both sides by 4:
1820 pounds = 87.5 pounds/square centimeter × A
Now, divide both sides by 87.5 pounds/square centimeter:
A ≈ 20.8 square centimeters
The area of one tire in contact with the road is approximately 20.8 square centimeters.
To know more about area-pressure calculation:
https://brainly.in/question/20711424
#SPJ11
According to the following synthesis reaction determine how many grams of fe2o3 are formed when 16.7 g of fe reacts completely with excess o2. 4fe+3o2 —> fe2o3
23.88 grams of fe2o3 are formed when 16.7 g of fe reacts completely with excess o2.
According to the synthesis reaction 4Fe + 3O₂ → 2Fe₂O₃, we need to determine how many grams of Fe₂O₃ are formed when 16.7 g of Fe reacts completely with excess O₂.
Step 1: Determine the molar mass of Fe and Fe₂O₃.
Fe: 55.85 g/mol
Fe₂O₃: (2 × 55.85) + (3 × 16.00) = 159.69 g/mol
Step 2: Convert grams of Fe to moles of Fe.
moles of Fe = (16.7 g) / (55.85 g/mol) = 0.299 moles
Step 3: Use the stoichiometry of the reaction to determine moles of Fe₂O₃ produced.
The reaction shows that 4 moles of Fe produce 2 moles of Fe₂O₃. Therefore,
moles of Fe₂O₃ = (0.299 moles Fe) × (2 moles Fe₂O₃ / 4 moles Fe) = 0.1495 moles Fe₂O₃
Step 4: Convert moles of Fe₂O₃ to grams of Fe₂O₃.
grams of Fe₂O₃ = (0.1495 moles) × (159.69 g/mol) = 23.88 g
23.88 g of fe203 is formed.
To know more about synthesis reaction click on below link:
https://brainly.com/question/24905694#
#SPJ11
Use the information to answer the following question.
Ammonia (NH3) readily dissolves in water to yield a basic solution.
NH3 + H2O → NH4 + OH
How is this substance classified?
A.
Arrhenius Base
B.
Arrhenius Acid
C.
Bronsted-Lowry Base
D.
Bronsted-Lowry Acid
The substance ammonia (NH3) is classified as an Arrhenius base, option A is correct.
Arrhenius defined a base as a substance that produces hydroxide ions (OH⁻) in water. When ammonia dissolves in water, it reacts with water molecules to form ammonium ions (NH₄⁺) and hydroxide ions (OH⁻), as shown in the equation
NH₃ + H₂O → NH₄ + OH⁻
This reaction is characteristic of Arrhenius bases, which are substances that increase the concentration of hydroxide ions in solution. When ammonia dissolves in water, it yields hydroxide ions (OH-) which are responsible for increasing the pH of the solution, making it basic, option A is correct.
To learn more about Arrhenius follow the link:
brainly.com/question/9936252
#SPJ4
The complete question is:
Use the information to answer the following question.
Ammonia (NH₃) readily dissolves in water to yield a basic solution.
NH₃ + H₂O → NH₄ + OH⁻
How is this substance classified?
A. Arrhenius Base
B. Arrhenius Acid
C. Bronsted-Lowry Base
D. Bronsted-Lowry Acid
The graph shows the distribution of energy in the particles of two gas samples at different temperatures, T1 and T2. A, B, and C represent individual particles. The graph shows the distribution of energy in the particles of two gas samples at different temperatures, T1 and T2. A, B, and C represent individual particles.
More gas particles participate in the reaction at T2 than at T1. Option D
How does temperature affect the energy distribution of gases?The graphs are not shown here but I can explain the relationship between how temperature affect the energy distribution of gases.
According to the Maxwell-Boltzmann distribution, a gas's molecule energies are distributed according to temperature, and the most likely energy increases as the temperature rises.
As the temperature of a gas increases, the peak of the energy distribution shifts to higher energies, and an increase in the proportion of molecules with higher energies follows. The possibility of high-energy gas molecule collisions, which can lead to chemical reactions or other kinds of energy transfer, is increased by this.
Learn more about gases:https://brainly.com/question/19695466
#SPJ1
Missing parts;
The graph shows the distribution of energy in the particles of two gas samples at different temperatures, T1 and T2. A, B, and C represent individual particles.
Based on the graph, which of the following statements is likely to be true? (3 points)
Particle A is more likely to participate in the reaction than particle B.
Particle C is more likely to participate in the reaction than particle B.
The number of particles able to undergo a chemical reaction is less than the number that is not able to.
More gas particles participate in the reaction at T2 than at T1.
A 4. 0g sample of glass was heated from 5ᵒC to 45ᵒC after absorbing 32 J of heat. What is the specific heat of the glass?
Specific Heat of Glass is: 0.2 J/g°C.
To calculate the specific heat of the glass, you can use the formula:
Q = mcΔT
where Q represents the heat absorbed (32 J), m is the mass of the glass (4.0 g), c is the specific heat we need to find, and ΔT is the change in temperature (45°C - 5°C).
Rearranging the formula to find the specific heat (c):
c = Q / (mΔT)
First, calculate the change in temperature (ΔT):
ΔT = 45°C - 5°C = 40°C
Now, plug the values into the formula:
c = 32 J / (4.0 g × 40°C)
c = 32 J / 160 g°C
c = 0.2 J/g°C
So, the specific heat of the glass is 0.2 J/g°C.
To know more about specific heat:
https://brainly.com/question/27991746
#SPJ11
In an oxoacid such as h2so4, ionizable hydrogen atoms are those bonded to:.
In an oxoacid such as [tex]H2SO4[/tex], ionizable hydrogen atoms are those bonded to oxygen atoms.
In [tex]H2SO4[/tex], the two hydrogen atoms bonded to the oxygen atoms are ionizable, meaning they can dissociate from the molecule in water to form [tex]H+[/tex] ions. This makes[tex]H2SO4[/tex] a strong acid, as it can readily donate protons in solution.
The sulfur atom in [tex]H2SO4[/tex] is also bonded to four oxygen atoms, giving it a tetrahedral shape. The electronegativity difference between the sulfur and oxygen atoms in the molecule creates a polar covalent bond, which leads to the acidity of the molecule.
In general, oxoacids have ionizable hydrogen atoms bonded to oxygen atoms, and the number of ionizable hydrogen atoms is determined by the oxidation state of the central atom and the number of oxygen atoms bonded to it.
To know more about oxoacid refer to-
https://brainly.com/question/28306033
#SPJ11
Calculate the mass of ethanol produced if 500.0 grams of glucose reacts completely
Answer:
The chemical equation for the conversion of glucose to ethanol during fermentation is:
C6H12O6 → 2C2H5OH + 2CO2
From the equation, we can see that for every mole of glucose (C6H12O6) that reacts, two moles of ethanol (C2H5OH) are produced. The molar mass of glucose is 180.16 g/mol, while the molar mass of ethanol is 46.07 g/mol.
Therefore, to calculate the mass of ethanol produced from 500.0 grams of glucose, we need to convert the mass of glucose to moles, then use the mole ratio from the balanced chemical equation to calculate the moles of ethanol produced, and finally convert the moles of ethanol to mass.
Step 1: Convert the mass of glucose to moles
Number of moles of glucose = mass of glucose ÷ molar mass of glucose
Number of moles of glucose = 500.0 g ÷ 180.16 g/mol
Number of moles of glucose = 2.776 mol
Step 2: Use the mole ratio to calculate the moles of ethanol produced
From the balanced equation, 1 mol of glucose produces 2 mol of ethanol
Therefore, 2.776 mol of glucose will produce:
2.776 mol glucose × (2 mol ethanol / 1 mol glucose) = 5.552 mol ethanol
Step 3: Convert moles of ethanol to mass
Mass of ethanol = number of moles of ethanol × molar mass of ethanol
Mass of ethanol = 5.552 mol × 46.07 g/mol
Mass of ethanol = 255.2 g
Therefore, 500.0 grams of glucose will produce 255.2 grams of ethanol during fermentation.
I hope this helps you! :)))
幸運を!
すべてがうまくいくことを願っています!
˶ᵔ ᵕ ᵔ˶
if a compound has four degrees of unsaturation and shows signals in its 1h nmr spectrum between 7.0 - 8.0 ppm, what structural feature is likely to be present in the compound? select answer from the options below a cyclohexyl ring
The quantity of pi bonds and rings in a compound affects how many degrees of unsaturation are present. The presence of four pi bonds is suggested by combination of four degrees of unsaturation.
The chemical shift range of 7.0-8.0 ppm in 1H NMR spectra is typically associated with presence of aromatic protons. Therefore, if a compound with four degrees of unsaturation shows signals in its 1H NMR spectrum between 7.0-8.0 ppm, it is likely to contain an aromatic ring or multiple aromatic rings. It is important to note that other functional groups such as carbonyls, alkenes, and alkynes can also contribute to number of degrees of unsaturation, but these groups typically exhibit different chemical shift ranges in 1H NMR spectra.
To know more about pi bonds, here
brainly.com/question/30000552
#SPJ1
--The complete Question is, if a compound has four degrees of unsaturation and shows signals in its 1h nmr spectrum between 7.0 - 8.0 ppm, what structural feature is likely to be present in the compound? --
how does the “Law of Conservation of Matter” explain how to write nuclear equations?
A gas has a pressure of 801. 3Kpa at 40. 0°C. What is the temperature at 101. 3 kPa?
Please I just want the answer (number) no link pleaseee
Using the combined gas law, the temperature of a gas at 101.3 kPa is calculated to be 39.5°C, given its initial pressure and temperature of 801.3 kPa and 40.0°C, respectively.
To solve this problem, we can use the combined gas law which states that:
(P1V1/T1) = (P2V2/T2)
where P1 and T1 are the initial pressure and temperature, and P2 and T2 are the final pressure and temperature.
We are given P1 = 801.3 kPa and T1 = 40.0°C, and we want to find T2 at P2 = 101.3 kPa.
Let's assume that the volume (V1) of the gas is constant. Therefore, we can write:
(P1/T1) = (P2/T2)
Solving for T2, we get:
T2 = (P2 x T1)/P1
Substituting the given values, we get:
T2 = (101.3 kPa x 313.15 K)/801.3 kPa
T2 = 39.5°C (rounded to one decimal place)
Therefore, the temperature of the gas at 101.3 kPa is 39.5°C.
To know more about the combined gas law refer here :
https://brainly.com/question/30458409#
#SPJ11
Consider the following reaction:
4 NH3 + 3 O2 → 2 N2 + 6 H2O
If the rate of formation of N2 is 2.00 mol L-1 s-1, the rate at which NH3 reacts is:
The rate at which NH3 reacts in the given reaction is 4.00 mol L-1 s-1. This is determined by using the stoichiometry of the reaction and the given rate of formation of N2.
The given chemical reaction shows the stoichiometric relationship between the reactants and products, which is important in determining the rate of the reaction. The rate of formation of N2 is given as 2.00 mol L-1 s-1. This means that for every second, the concentration of N2 increases by 2.00 mol L-1.
To find the rate at which NH3 reacts, we need to look at the stoichiometry of the reaction. From the balanced equation, we can see that for every 4 moles of NH3 that react, 2 moles of N2 are formed. Therefore, the ratio of the rate of formation of N2 to the rate of consumption of NH3 is 2:4, or 1:2.
Using this ratio, we can calculate the rate at which NH3 reacts. If the rate of formation of N2 is 2.00 mol L-1 s-1, then the rate of consumption of NH3 is twice as much, or 4.00 mol L-1 s-1.
In summary, the rate at which NH3 reacts in the given reaction is 4.00 mol L-1 s-1. This is determined by using the stoichiometry of the reaction and the given rate of formation of N2.
To know more about stoichiometry, visit:
https://brainly.com/question/30215297#
#SPJ11
The temperature of sulfur dioxide is changed, causing a change in volume from 20. 923 L to 29. 508 L. If the new temperature is 260. 93 K,
what was its original temperature?
Your answer must include the following:
• The name of the law that applies to this problem
• The equation that you are going to use expressed in variables
• The answer with correct units
The law that applies to this problem is Charles's Law.
The equation for Charles's Law is [tex]\frac{V_{1} }{T_{1} }[/tex] = [tex]\frac{V_{2} }{T_{2} }[/tex]
The original temperature of sulfur dioxide was 185.12 K.
The law that applies to this problem is Charles's Law, which states that at constant pressure, the volume of a fixed amount of gas is directly proportional to its temperature in kelvin.
The equation for Charles's Law is [tex]\frac{V_{1} }{T_{1} }[/tex] = [tex]\frac{V_{2} }{T_{2} }[/tex], where [tex]V_{1}[/tex] is the initial volume, [tex]T_{1}[/tex] is the initial temperature, [tex]V_{2}[/tex] is the final volume, and [tex]T_{2}[/tex] is the final temperature.
Using the given values, we can plug them into the equation and solve for the initial temperature:
[tex]\frac{V_{1} }{T_{1} }[/tex] = [tex]\frac{V_{2} }{T_{2} }[/tex]
20.923/[tex]T_{1}[/tex] = 29.508/260.93
Multiplying both sides by [tex]T_{1}[/tex] and dividing by 29.508, we get:
[tex]T_{1}[/tex] = (20.923/29.508) x 260.93 = 185.02 K
Therefore, the original temperature of sulfur dioxide was 185.12 K.
The answer with correct units is 185.12 K.
To know more about Charles's Law visit:
https://brainly.com/question/16927784
#SPJ11