We can estimate that around 205,313 cases of measles would have been reported in the U.S. in 1987 if the number of cases reported from 1960 to 1996 decreased linearly.
To estimate the number of measles cases reported in 1987 if the number of cases reported from 1960 to 1996 decreased linearly, we need to use a linear regression model. Linear regression is a statistical method that allows us to estimate the relationship between two variables by fitting a straight line to a set of data points.
In this case, we can use the number of reported measles cases as the dependent variable (y) and the year as the independent variable (x). We can then fit a linear regression line to the data from 1960 to 1996 and use this line to estimate the number of cases in 1987.
Assuming a linear relationship between the number of cases and the year, we can calculate the slope of the regression line as follows:
slope = (500 - 450,000) / (1996 - 1960) = -10,125
This means that the number of reported measles cases decreased by 10,125 per year, on average, between 1960 and 1996.
Using this slope and the known values for 1960 and 1996, we can estimate the number of cases in 1987 as follows:
y = mx + b
where y is the number of cases, m is the slope, x is the year (1987), and b is the y-intercept of the regression line.
We can solve for b as follows:
b = y - mx
where y is the number of cases in 1996, m is the slope, and x is the year (1996).
Substituting in the values, we get:
b = 500 - (-10,125) * 1996 = 20,503,500
Therefore, the equation of the regression line is:
y = -10,125x + 20,503,500
Substituting x = 1987, we get:
y = -10,125 * 1987 + 20,503,500 = 205,313
To learn more about regression click on,
https://brainly.com/question/29993112
#SPJ4
The water level in a swimming pool increased from 3.5 feet to 7 feet. What is the percent increase in the water level?
(6) / (4.5) = 4 / 3 = 1.333...
The level increased by 33-1/3 % .
The old level was 75% of the new level.
The amount of water in the pool also had to
increase 33-1/3 % . If you didn't have that
much water to put in the pool, you couldn't
change the surface level from 4.5ft to 6ft .
PLESEEE I NEEDDD HELPP OR ILL FAIL PLEASEEE!!
Thus, the measure of the minor arc CG for the given chord for the circle is found as: arc CG = 30°.
Explain about the minor arc:The shortest arc that connects two points on a circle is called a minor arc.
A minor arc's measure is equal to the angle's central measure and is less than 180 degrees.The longer arc that joins two circle ends is known as a major arc.A major arc's measure is greater than 180 degrees and equal to 360 degrees less the diameter of a small arc with the same ends.A semicircle is an arc that is exactly 180 degrees in length.For the given figure:
Using the intersecting chord theorem:
m∠FED = 1/2(arc CG - arcFD)
39 = 1/2(arc CG - 48)
arc CG - 48 = 39*2
arc CG = 78 - 48
arc CG = 30°
Thus, the measure of the minor arc CG for the given chord for the circle is found as: arc CG = 30°.
Know more about the minor arc
https://brainly.com/question/1831869
#SPJ1
Complete question:
Find the measure of minor arc CG for the attached figure.
Determine if 0.2 (18y) is equivalent to 0.3 (12y)
100 points!
Answer:
we can say that 0.2(18y) is equivalent to 0.3(12y).
Step-by-step explanation:
We can simplify both expressions as follows:
0.2(18y) = 3.6y
0.3(12y) = 3.6y
As we can see, both expressions simplify to the same value, 3.6y. Therefore, we can say that 0.2(18y) is equivalent to 0.3(12y)
A bag contains tiles that are the same size and shape.
4 green tiles
.
D
• 5 yellow tiles
-
6 blue tiles
Will randomly selects a tile from the bag, replaces it, and then randomly selects a second tile.
Joan randomly selects a tile from the bag, does not replace it, and then randomly selects a second tile.
Who has the greatest probability of selecting a blue tile and then a yellow tile?
Will is therefore more likely to choose a blue tile before choosing a yellow tile.
what is probability ?The likelihood or possibility of an event happening is measured by probability. It is represented by a number in 0 and 1, with 0 denoting an impossibility and 1 denoting a certainty. By dividing total number of favourable possibilities by the total number of potential outcomes, one can determine the probability of an occurring. In other respects, it is the proportion between the amount of alternative outcomes to the number of possible ways the event could happen. In many fields, including statistics, mathematics, physics, economics, and the social sciences, probability is used to create predictions and well-informed judgements based on the likelihood that events will occur.
given
We must take into account the likelihood of each event and then combine them together in order to get the probability of choosing a blue tile first, followed by a yellow tile.
Will picks blue first, then yellow, therefore P(Will) = (6/15) * (5/15) = 2/15
The likelihood that Joan will first choose a blue tile is the same as before: 6/15.
Joan picking a yellow tile on her second pick thus has a 5/14 chance of doing so. Hence, the likelihood that Joan will choose a blue tile first, followed by a yellow tile, is:
P(Joan chooses yellow first, then blue) = (6/15) * (5/14) = 3/35
Will is therefore more likely to choose a blue tile before choosing a yellow tile.
To know more about probability visit:
https://brainly.com/question/11234923
#SPJ1
What is the mean in the set of data below:
Data: 2.25, 4.5, 3.75, 1.5, 5.25 (hint: do not round your answer)
Answer: 3.45
Step-by-step explanation:
Answer:
aswer will be 11.25 hope this helps
PLEASE HELP URGENT. I WILL GIVE OUT MANY POINTS!! WILL MARK BRANLIEST RIGHT ANSWER.
Please note: when it says △ABH it means the angles not the sides. there are also sides called a b and h. the angles are capitalized and the sides are lowercase
Use triangle ABH to explain why sin A=cos(90°-A)
Answer:
sin A = cos B = a/h
A and B are complements of each other, so A + B = 90°. It follows that B = 90° - A, meaning sin A = cos(90° - A).
What is a formula for the nth term of the given sequence? 13,15,17…
Answer: [tex]a_n = 2n+11[/tex]
======================================
Explanation:
The gap between adjacent terms is 2.
15-13 = 217-15 = 2We add 2 to each term to get the next. Therefore, d = 2 is the common difference.
The first term is [tex]a_1 = 13[/tex]
Use that and the value of d to determine the nth term formula of this arithmetic sequence.
[tex]a_n = a_1 + d(n-1)\\\\a_n = 13 + 2(n-1)\\\\a_n = 13 + 2n-2\\\\a_n = 2n+11 \textbf{ is the final answer}\\\\[/tex]
---------------
Check:
Plug in n = 1
[tex]a_n = 2n+11\\\\a_1 = 2*1+11\\\\a_1 = 2+11\\\\a_1 = 13\\\\[/tex]
That confirms 13 being the 1st term.
Now use n = 2
[tex]a_n = 2n+11\\\\a_2 = 2*2+11\\\\a_2 = 4+11\\\\a_2 = 15\\\\[/tex]
That matches with the fact 15 is the 2nd term.
I'll let you check the third term.
Need help finding the missing coefficient
Answer:
- 40
Hope this helps!
Step-by-step explanation:
( 4d - 6 )( 4d - 4 ) : Cross Multiply
( 4d × 4d ) + ( 4d × (-4)) + ((-6) × 4d ) + ((-6) × (-4))
[tex]16d^{2}[/tex] - 16d - 24d + 24 : ( Combine like terms )
[tex]16d^{2}[/tex] - 40d + 24
A car's cruise control function should keep the car within 2.5 mph of the set speed. Shala sets her cruise control for 65 mph. A. create a compound inequality to represent the speed Shala's car should go and graph the inequality on the number line. B. Shala is driving on a road with a speed limit of 60 mph. It is possible for her to get a ticket if she goes more than 7mph over the speed limit. is it possible for Shala to get a ticket while she is on cruise control.
Part A: compound inequality for the speed Shala's car: | x - 65 | ≤ 2.5
Part B: 67 mph < 67.5 (maximum value) Thus, she will not get the ticket.
Explain about the compound inequality:Two or more inequalities are connected together with or or and to form a compound inequality (also described as a combined inequality). A value must only make one aspect of an inequality true in order to be the solution to an or inequality. An inequality's solution must make both portions true in order to succeed.
Speed limit set by car's cruise control function = 2.5 mph.
Speed limit set by Shala = 65 mph.
Thus,
Maximum speed of car = 65 + 2.5
Minimum speed of car = 65 - 2.5
Let x represents the current speed of car,
x ≤ 65 + 2.5 or x ≥ 65 - 2.5
x - 65 ≤ 2.5 or x - 65 ≥ - 2.5
x - 65 ≤ 2.5 or - (x-65) ≤ 2.5
| x - 65 | ≤ 2.5 ( required compound inequality)
Now,
65 - 2.5 ≤ x ≤ 65 + 2.5
62.5 ≤ x ≤ 67.5
In interval notation; [62.5, 67.5]
The inequality on the number is drawn.
If Shala goes with 7 mph over the speed limit.
60 + 7 = 67 mph < 67.5 (maximum value)
Thus, she will not get the ticket.
Know more about the compound inequality
https://brainly.com/question/30302611
#SPJ1
Find the center and radius of circle x^2 + y^2 -12x + 2y + 33 = 0
Answer:
To find the center and radius of the circle, we need to rewrite the equation in standard form, which is: (x - h)^2 + (y - k)^2 = r^2 where (h, k) is the center of the circle and r is the radius. To rewrite the given equation in standard form, we need to complete the square for both x and y terms. Let's start with the x terms: x^2 - 12x = -(y^2 - 2y + 33) To complete the square for x, we need to add and subtract (12/2)^2 = 36: x^2 - 12x + 36 - 36 = -(y^2 - 2y + 33) (x - 6)^2 - 36 = -(y^2 - 2y + 33) Now
To find the center and radius of the circle given by the equation:
x^2 + y^2 -12x + 2y + 33 = 0
We need to rewrite the equation in standard form, which is:
(x - h)^2 + (y - k)^2 = r^2
where (h, k) is the center of the circle and r is the radius.
To do this, we need to complete the square for both x and y terms by adding and subtracting appropriate terms inside the parentheses.
(x^2 - 12x) + (y^2 + 2y) + 33 = 0
To complete the square for x terms, we need to add (12/2)^2 = 36 inside the first set of parentheses and subtract it from the equation:
(x^2 - 12x + 36) + (y^2 + 2y) + 33 - 36 = 0
(x - 6)^2 + (y^2 + 2y) - 3 = 0
To complete the square for y terms, we need to add (2/2)^2 = 1 inside the second set of parentheses and subtract it from the equation:
(x - 6)^2 + (y^2 + 2y + 1) - 4 = 0
(x - 6)^2 + (y + 1)^2 = 4
Now we can see that the equation is in standard form, where (h, k) = (6, -1) is the center of the circle, and r^2 = 4, so the radius is r = 2.
Therefore, the center of the circle is (6, -1) and the radius is 2.
In the diagram, PC // DF, AB // DE, EDF = 84° QBD = 74° and PCD = 148°. Calculate (a) ABQ (b) CDE
Using the alternate angles theorem,
(a) The measure of angle ABQ is 54°
(b) The measure of angle CDE is 128°
Calculating the measure of anglesFrom the question, we are to determine the measure of the unknown angles
First, let us produce line BCD to Z
Then,
m ∠FDZ = m ∠BCP
From the given diagram
m ∠BCP + 148° = 180° (Sum of angles on a straight line)
m ∠BCP = 180° - 148°
m ∠BCP = 32°
Therefore,
m ∠FDZ = 32°
Also,
m ∠EDZ = 84° - m ∠FDZ
m ∠EDZ = 84° - 32°
m ∠EDZ = 52°
m ∠CDE + m ∠EDZ = 180° (Sum of angles on a straight line)
m ∠CDE + 52° = 180°
m ∠CDE = 180° - 52°
m ∠CDE = 128°
m ∠ABQ + m ∠QBD = m ∠CDE (Alternate interior angles)
m ∠ABQ + 74° = 128°
m ∠ABQ = 128° - 74°
m ∠ABQ = 54°
Hence,
m ∠ABQ is 54°
and
m ∠CDE is 128°
Learn more on Calculating measure of angles here: https://brainly.com/question/24839702
#SPJ1
is there a realationship between a students gpa and the bumvber of pencils in his or her backpack? jordynn and angie decided to find out by selecting a random sample of students from their high school
It is unlikely that carrying more or fewer pencils in one's backpack would have a direct impact on GPA.
How to find relationship ?To determine if there is a relationship between a student's GPA and the number of pencils in their backpack, Jordynn and Angie would need to conduct the following steps:
If a correlation is found, then it suggests that there may be a relationship between the students' GPA and the number of pencils in their backpack. However, in this case, it is unlikely that carrying more or fewer pencils in one's backpack would have a direct impact on GPA.
Learn more about relationship
brainly.com/question/31248849
#SPJ11
please help me with this !!
Step-by-step explanation:
This is an ordinary annuity type of question :
FV = C [ ((1+i)^n) -1 )/i ] plug in the numbers
FV = 25 000 [ (1+.08)^9 -1 ]/ .08 = ~ $ 312 189
a. Are the ratios 12 and 200
15
proportional? Explain your
reasoning.
b. Describe a situation in which thes
ratios might come up. Explain wh
it would be important to know
whether the ratios are
proportional.
The ratios of[tex]4[/tex]:[tex]5[/tex] and [tex]40[/tex]:[tex]3[/tex] are not equal, the initial ratios of [tex]12[/tex]:[tex]15[/tex] and [tex]200:15[/tex]are not proportionate.
What do you mean by ratio?When two or more numbers or values are compared, the outcome is the ratio, which is expressed as a fraction or a colon. It is used to describe how the relative magnitudes of two or more objects correlate. Ratios can be used to evaluate quantities of the same unit or of different units.
For instance, a ratio of [tex]3:1[/tex] is used to compare three units to four, while a ratio of [tex]2:1[/tex] is used to compare two units to one. Ratios can be expressed or simplified in a variety of methods.
The ratio [tex]6:9[/tex] will become[tex]2:3[/tex] if both parts are multiplied by[tex]3[/tex]. Ratios can also take the shape of decimals or percentages.
[tex]12:15 =200:15[/tex]
multiplying both the left side by[tex]3[/tex] and right side by [tex]5[/tex] we get
[tex]4:5= 40:3[/tex]
Hence it shows that they are not equal so they are not proportionate
Learn more about ratio
https://brainly.com/question/30148137
#SPJ1
Starting from a full tank, can Matthew's family drive the car for 25 days
without the warning light coming on? Explain or show your reasoning.
.
Matthew's family cannot drive for 25 days without the warning light coming on, and they will need to refill the tank before that point.
When will the warning light come on?If the car uses 0.6 gallons of fuel per day, then in 25 days, it will use:
= 0.6 gallons/day × 25 days
= 15 gallons
This means that if Matthew's family starts with a full tank of 14 gallons, they will not be able to drive for 25 days without running out of fuel.
The question asks if they can drive for 25 days without the warning light coming on. If the warning light comes on when there is 1.5 gallons or less of fuel remaining, then Matthew's family can drive for:
= 14 gallons - 1.5 gallons
= 12.5 gallons before the warning light comes on.
Since they use 0.6 gallons of fuel per day, they can drive for:
= 12.5 gallons / 0.6 gallons/day
≈ 20.8 days without the warning light coming on.
Therefore, they cannot drive for 25 days without the warning light coming on, and they will need to refill the tank before that point.
Read more about reasoning
brainly.com/question/25175983
#SPJ1
If 75% of Garden A’s data is 12.75 and 50% of Garden B’s data is 15 than how much more percent is Garden B than A.
The Garden B has 76.47% more data than Garden A.
What is percentage?Percentage is a way of expressing a number as a fraction of 100. It is a commonly used method to represent proportions, rates, and percentages in various fields such as finance, economics, and statistics.
Let's first find the actual values of Garden A's and Garden B's data:
For Garden A, we know that 75% of its data is equal to 12.75. We can use this information to set up an equation:
0.75x = 12.75
Solving for x, we get:
x = 12.75 / 0.75 = 17
Therefore, Garden A's total data is 17.
For Garden B, we know that 50% of its data is equal to 15. We can use this information to set up an equation:
0.5x = 15
Solving for x, we get:
x = 15 / 0.5 = 30
Therefore, Garden B's total data is 30.
Now, to find how much more percent Garden B has than Garden A, we can use the formula:
percent difference = |(Garden B - Garden A) / Garden A| * 100
Plugging in the values, we get:
percent difference = |(30 - 17) / 17| * 100 = 76.47%
Therefore, Garden B has 76.47% more data than Garden A.
To know more about percentage visit:
https://brainly.com/question/24877689
#SPJ1
a scientist claims that 6% of viruses are airborne. if the scientist is accurate, what is the probability that the proportion of airborne viruses in a sample of 403 viruses would differ from the population proportion by greater than 3% ? round your answer to four decimal places.
The probability that the proportion of airborne virus in the sample of 553 viruses is greater than 5% is 0.1151.
According to the central limit theorem, if a large sample of n > 30 is selected from an unknown population and the sample proportion of each sample is calculated, the sampling distribution of the sample proportion obeys the normal distribution.
The mean of the sampling distribution (U) for this sample proportion is:
U = p
The standard deviation (p) of the sampling distribution for this sample proportion is:
U = √ ((p(1 - p)) /n )
The sample size is, n = 553 > 30 so the central limit theorem applies in this case.
Up = √((p(1 - p))/n) = √((0.04 * 0.96)/553) = 0.0083
Calculate the probability that the proportion of virus in the air in 553 virus samples is greater than 3% as follows:
P(p >0.03)
= P (p - Up > (0.
= 0.11507
≈ ≈ 0.1151
Therefore, the probability that the proportion of airborne virus in a sample of 553 viruses is greater than 3% is 0.1151.
To know more about probability, visit,
https://brainly.com/question/10739997
#SPJ4
fifty (50) soc390 students from the spring scored an average of 80 on exam 1, with a standard deviation of 12. fifty-two (52) soc 390 students from the fall scored an average of 81 on exam 1, with a standard deviation of 6. what can we conclude?
There is no significant difference in the average scores of two groups of SOC 390 students who took Exam 1 in the spring and fall semesters, respectively, as per the two-sample t-test with a p-value of 0.388.
The average score of the spring group of 50 students in SOC 390 on Exam 1 was 80, with a standard deviation of 12, while the average score of the fall group of 52 students was 81, with a standard deviation of 6. To determine if the difference in the means of the two groups is statistically significant, we can use a two-sample t-test.
Assuming unequal variances, the t-value for the two groups is 0.87, with a corresponding p-value of 0.388. Since the p-value is greater than the standard alpha level of 0.05, we fail to reject the null hypothesis that the two groups have equal means.
Therefore, we can conclude that there is no significant difference in the average scores of the two groups of SOC 390 students who took Exam 1 in the spring and fall semesters, respectively.
Learn more about standard deviation :
https://brainly.com/question/23907081
#SPJ4
The complete question is :
What is the difference between the average scores of two groups of students who took Exam 1 in SOC 390 in the spring and fall semesters, respectively, given that the spring group consisted of 50 students who scored an average of 80 with a standard deviation of 12, and the fall group consisted of 52 students who scored an average of 81 with a standard deviation of 6?
charlie's teacher claims that he does not study and just guesses on exams. on an exam with 201 true-falsequestions, charlie answered 53.7% of the questions correctly. calculations using these results show that if hewere really just guessing, there would be roughly 1 chance in 7 that he would do this well. is there statisticallysignificant evidence against the teacher's claim that charlie is just guessing? why or why not?4
There is No statisti-cally signi-ficant evidence against the teacher's-claim that Charlie is just guessing because the probability is very low.
The total number of True-false questions are = n = 201.
The probability of getting a correct answer by guessing is = p = 0.5,
Charlie answered 53.7% = 0.537 of the questions correctly,
So, P(p' ≥ 0.537)
⇒ P(z ≥ (0.537 - 0.5)/√(0.5×0.5)/201,
⇒ P(z ≥ 1.05) = 1 - P(z < 1.05)
⇒ 0.1469
Since, the probability is very low,
Therefore, there is not any significant evidence against the teachers claim.
Learn more about Evidence here
https://brainly.com/question/27404175
#SPJ4
a random variable is uniformly distributed between 12 and 41. what is the probability that is between 22 and 35? give your answer as a percent, rounded to one decimal place. for example if the probability is 0.501, your answer should be 50.1.
The probability that a uniformly distributed random variable between 12 and 41 is between 22 and 35 is 41.7%.
Since the random variable is uniformly distributed between 12 and 41, the probability density function (PDF) of the random variable is constant within that interval and zero outside of it. Let X be the random variable between 12 and 41. Then,
f(x) = 1/(41-12) = 1/29, for 12 ≤ x ≤ 41
The probability that the random variable is between 22 and 35 can be found by integrating the PDF over the interval [22, 35]:
P(22 ≤ X ≤ 35) = ∫(22 to 35) f(x) dx = ∫(22 to 35) 1/29 dx
Using the definite integral, we get:
P(22 ≤ X ≤ 35) = [x/29] from 22 to 35
P(22 ≤ X ≤ 35) = (35/29 - 22/29) = 13/29
So, the probability that the random variable is between 22 and 35 is 13/29, which is approximately 0.4483 or 44.8% when expressed as a percentage rounded to one decimal place.
To know more about probability, refer here:
https://brainly.com/question/29964401#
#SPJ11
At arcade palace, a child can buy 16 video game tokens for $4. At Alibaba's,
At Arcade Palace, each video game token costs 0.25.
At Arcade Palace, a child can buy 16 video game tokens for 4.
The total number or cost of something is the number or cost that you get when you add together or count all the parts
in it.
A number is a mathematical value used for counting or measuring or labeling objects. Numbers are used to performing
arithmetic calculations.
To find the cost per token, follow these steps:
Determine the total number of tokens (16) and the total cost (4).
Divide the total cost by the total number of tokens to find the cost per token.
In this case, 4 ÷ 16 tokens = 0.25 per token.
Therefore, at Arcade Palace, each video game token costs 0.25.
for such more question on token costs
https://brainly.com/question/25109150
#SPJ11
Find the area of the triangle.
5 km
143°
7 km
The area of the triangle is approximately 11.524 km²
What is an area?
We can find the area of the triangle using the formula:
Area = (1/2) * a * b * sin(C)
where a and b are the lengths of the two sides and C is the angle between them.
In this case, a = 5 km, b = 7 km, and C = 143°. However, before we can use this formula, we need to convert the angle to radians. We can do this by multiplying by pi/180:
C = 143 * pi/180
C ≈ 2.495 radians
Now we can substitute the values into the formula and calculate the area:
Area = (1/2) * 5 km * 7 km * sin(2.495)
Area ≈ 11.524 km²
Therefore, the area of the triangle is approximately 11.524 km².
What is triangle?
A triangle is a 2-dimensional geometric shape that has three sides and three angles. It is one of the basic shapes in geometry and is used in various fields such as mathematics, engineering, architecture, and art. Triangles can be classified into different types based on their sides and angles, such as equilateral, isosceles, scalene, acute, right, and obtuse triangles. The area of a triangle is calculated by using the formula A = 1/2 * base * height, where the base is the length of one of its sides and the height is the perpendicular distance between the base and the opposite vertex.
To know more about area of triangle, visit:
https://brainly.com/question/19305981
#SPJ1
Complete question is: The area of the triangle is approximately 11.524 km²
There are 28 more butterflies than snails. There are 9 snails. How many butterflies are there?
Answer:
Step-by-step explanation:
Step 1:
Butterflies is greater than Snails
More=addition
GP: 28+9=B
Step 2:
28+2=30
30+7=37
Answer: 37 Butterflies
Hope this helps!
Given that,
Total butterflies = 28
Total snails = 9
More butterflies than snails are = butterflies + snails
[tex]\implies28+9[/tex]
[tex]\implies 37[/tex]
Therefore, there are 37 butterflies.
A bag has 3 red marbles, 2 blue, 4 green and 1 yellow. What is the theoretical probability of pulling a red marble without replacement? Write your answer as a fraction, decimal, and percent.
Answer:
1/15 or approximately 0.067 or 6.7%.
Step-by-step explanation:
The total number of marbles in the bag is 3+2+4+1=10.
The probability of pulling a red marble on the first draw is 3/10, since there are 3 red marbles out of 10 total marbles.
Since we are not replacing the marble after each draw, the probability of pulling another red marble on the second draw decreases slightly. After one red marble has been drawn, there are only 2 red marbles left out of 9 total marbles. So the probability of pulling a second red marble is 2/9.
Therefore, the theoretical probability of pulling two red marbles without replacement is:
P(Red, Red) = P(Red on first draw) x P(Red on second draw, given that the first marble was red)
= 3/10 x 2/9
= 1/15
So the theoretical probability of pulling a red marble without replacement is 1/15 or approximately 0.067 or 6.7%.
The value of the theoretical probability of pulling a red marble without replacement is,
= 3/10
= 0.3
= 30%
What is mean by Probability?The term probability refers to the likelihood of an event occurring. Probability means possibility. It is a branch of mathematics that deals with the occurrence of a random event. The value is expressed from zero to one.
Given that;
A bag has 3 red marbles, 2 blue, 4 green and 1 yellow.
Hence, Total marbles = 3 + 2 + 4 + 1 = 10
Thus, The value of the theoretical probability of pulling a red marble without replacement is,
P = Desired Outcomes / Total number of outcomes.
P = 3 / 10
P = 0.3
P = 30%
Thus, The value of the theoretical probability of pulling a red marble without replacement is,
= 3/10
= 0.3
= 30%
Learn more about the probability visit:
https://brainly.com/question/13604758
#SPJ2
The citizens of a city were asked to choose their favorite pet. The circle graph shows how the citizens answered. If 95,000 citizens answered the question, how many chose Snakes or Dogs?
First, we need to calculate the percentage of citizens who chose either Snakes or Dogs.
The percentage of citizens who chose Dogs is 26%, which is equivalent to 0.26 as a decimal.
The percentage of citizens who chose Snakes is 10%, which is equivalent to 0.10 as a decimal.
To find the number of citizens who chose either Snakes or Dogs, we need to multiply the total number of citizens by the combined percentage of Snakes and Dogs:
0.26 + 0.10 = 0.36
So the combined percentage of Snakes and Dogs is 36%.
To find the number of citizens who chose Snakes or Dogs, we can multiply the total number of citizens by this percentage:
0.36 x 95,000 = 34,200
Mariya was asked to solve StartFraction a over negative 13 EndFraction less-than-or-equal-to negative 16 and then graph the solution. Her work is shown below.
Step
Mariya’s work
StartFraction a over negative 13 EndFraction less-than-or-equal-to negative 16
Step 1
(Negative 13) StartFraction a over negative 13 EndFraction less-than-or-equal-to negative 16 (negative 13)
Step 2
a greater-than-or-equal-to 208
Step 3
A number line going from 205 to 211. An open circle is at 208. Everything to the right of the circle is shaded.
In which step, if any, did Mariya make a mistake in her work?
An error made by Mariya resulted in incorrect graph and answer. The open circle at 208 should have been coloured to the left rather than to the right in the proper graph.
What is the inequality symbol?Mariya made a mistake in Step 1 of her work.
Step 1:
StartFraction a over negative 13 End Fraction less-than-or-equal-to negative 16
(Negative 13) StartFraction a over negative 13 End Fraction less-than-or-equal-to negative 16 (negative 13)
Mariya multiplied both sides of the inequality by -13, which would require her to flip the direction of the inequality symbol from "less than or equal to" to "greater than or equal to". However, she did not do so and continued to work with the original direction of the inequality.
The correct approach to solve the inequality would have been to multiply both sides by -13 and then flip the direction of the inequality as follows:
Step 1:
StartFraction a over negative 13 EndFraction less-than-or-equal-to negative 16
(-13) StartFraction a over negative 13 EndFraction greater-than-or-equal-to (-13) (16)
Step 2:
a greater-than-or-equal-to 208
Step 3:
A number line going from 205 to 211. An open circle is at 208. Everything to the right of the circle is shaded.
Therefore, Mariya's error in Step 1 led to an incorrect solution and an incorrect graph. The correct graph would have shaded everything to the left of the open circle at 208, instead of everything to the right.
Learn more about inequality here:
https://brainly.com/question/30231190
#SPJ1
Find the value of x.
please answer
Answer:
x =107+88 =195, 360 -195 =165
Answer:
73°
Step-by-step explanation:
In an inscribed quadrilateral opposite angles are supplementary( they add up to 180) so angle x and its opposite angle( which is 107°) are equal to 180.
x + 107 = 180
Subtract 107 from both sides to isolate the x
x = 73
104°
X what does that equal if it’s a vertical angel?
Answer:If 104° is a measure of one of the vertical angles formed by the intersection of two straight lines, then the measure of the other vertical angle would also be 104°. This is because vertical angles are always congruent, which means they have the same measure.
Step-by-step explanation:
Divide 14x3 − 21x2 − 7x by −7x.
The diagram is a plane figure with five sides. From one vertex a line was drawn to the non-consecutive vertices. What is the sum of the interior angles of the polygon?
The sum of the interior angles of the polygon is 540° by the Sum of angles property of pentagon.
We know that the diagram is a plane figure with five sides, which means it is a Pentagon (Five-sided polygon), when from one vertex a line was drawn to the non-consecutive vertices, we need to find the sum of the interior angles of the polygon:
The total of interior angles in a polygon can be found by multiplying the quantity of triangles by 180°. It is noticeable that the number of triangles is consistently two less than the number of sides.
As a result, we can conclude that the formula for determining the sum of interior angles in a convex polygon with n sides is:
S = (n - 2) × 180°
This formula provides the sum of interior angles for any polygon.
Solution: A pentagon has five sides.
Therefore, by the angle sum formula we know that:
S = (n − 2) × 180°
Here we know that n = 5 as pentagon has 5 sides,
Hence, by the Sum of angles of pentagon = (5 − 2) × 180°
S = 3 × 180°
S = 540°
To know more about polygon, click here:
brainly.com/question/24464711
#SPJ4
Answer:
540°
Step-by-step explanation: