Can someone help me ?
The problem requires the calculation of the volume of carbon dioxide produced at STP when 587 mol of octane combusts; ,therefore, the volume of CO₂ produced at 36.0 °C and 0.995 atm is approximately 124,700 L.
The ideal gas law is given by:
PV = nRT
P is the pressure in atm, V is the volume in L, n is the number of moles, R is the gas constant (0.0821 L·atm/mol·K), and T is the temperature in K.
587 mol octane × (16 mol CO₂/2 mol octane) = 4696 mol CO2
Next, one can use the ideal gas law to calculate the volume of CO₂ produced at 36.0 °C and 0.995 atm. Then one needs to convert the temperature to kelvin by adding 273.15:
T = 36.0 °C + 273.15 = 309.15 K
Substituting the values into the ideal gas law:
PV = nRT
V = nRT/P
V = (4696 mol)(0.0821 L·atm/mol·K)(309.15 K)/(0.995 atm)
V ≈ 124,700 L
Therefore, the volume of CO2 produced at 36.0 °C and 0.995 atm is approximately 124,700 L.
Learn more about the ideal gas law here.
https://brainly.com/question/30570365
#SPJ1
The Environmental Protection Agency was assigned which task? A. setting standards and governing the cleanliness of water used by Americans B. setting standards and governing the highways and interstates in the United States C. setting standards and governing the use of national parks and monuments in the United States. D. setting standards and governing the civil and commercial air transportation throughout America
Answer:
A. setting standards and governing the cleanliness of water used by Americans
Explanation:
The responsibilities of the Environmental Protection Agency (EPA) is to make sure that:
People in America should have clean air, water, and good quality soil so that land is fertile.Using Scientific information to come up with efforts on a national level and reduce risks to the environment.A fair and effective administration of federal laws centered around the protection of human health and our environment.A sample of air occupies 0.75 L at standard conditions. What is the pressure in atm if the volume is 100.0 mL at 25oC?
P1 = 760 mmHg P2 = ?
V1 = 0.750 L V2 = 100.0 mL
T1 = 273 K T2 = 25oC
According to the ideal gas law, a gas's pressure is inversely related to its volume and directly proportionate to its temperature. So, if a gas sample's volume is reduced, the gas sample's pressure must also increase.
As a result, in order to determine the pressure of the gas sample under the specified circumstances, we must first determine the ratio of the two volumes before multiplying the starting pressure of the sample by that ratio.
We may get the ratio of the two volumes using the ideal gas law as follows: V2/V1 = (100.0 mL/0.75 L) x (273 K/25oC) = 8.02 As a result, the gas sample's pressure at 25 oC with a volume of 100.0 mL is 8.02 times higher than the sample's original pressure.
Learn more about gas at:
https://brainly.com/question/3637358
#SPJ1
All changes saved
5. The head of matches contains an oxidizing agent such as potassium chlorate, KCIO3, together with tetraphosphorus trisulfide, P4S3.
glass, and binder. When struck either by an obect or on the side of a box of matches, the phosphorus sulfide compound is easily
ignited, causing the potassium chlorate to decompose into potassium chloride and oxygen. The oxygen in turn causes the
phosphorus sulfide to burn more vigorously.
Determine the oxidation number of chlorine in potassium chlorate.
The oxidation number of the unknown chlorine in the compound is + 5
What is oxidation number?The oxidation number of an element in a compound is determined by a set of rules based on its position in the periodic table, as well as the charges of other atoms in the compound
We know that the oxidation number of the chlorine which we want to obtain would be designated as x and the total of the oxidation numbers of the elements in the compound is zero.
Thus we have that;
1 + x + 3(-2) = 0
1 + x - 6 = 0
-5 + x = 0
x = 5
Learn more about oxidation number:https://brainly.com/question/29263066
#SPJ1
The volume of a sample of air in a cylinder with
a movable piston is 2.0 L at a pressure P1 , as
shown in the diagram above. The volume is
increased to 5.0 L as the temperature is held
constant. The pressure of the air in the cylinder is
now P2 . What effect do the volume and pressure
changes have on the average kinetic energy of the
molecules in the sample?
(A) The average kinetic energy increases.
(B) The average kinetic energy decreases.
(C) The average kinetic energy stays the same.
(D) It cannot be determined how the kinetic
energy is affected without knowing P1
and P2 .
Answer:
I used Chat GPT to answer the question here is the answer
Assuming the gas behaves ideally, the answer is (C) The average kinetic energy stays the same.
According to the ideal gas law, PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the ideal gas constant, and T is temperature. If the temperature is held constant, then nR is also constant. Therefore, for a given amount of gas, if V increases, P must decrease (and vice versa) to maintain the same value of PV.
The average kinetic energy of gas molecules is proportional to temperature, so if the temperature is held constant, the average kinetic energy of the gas molecules stays the same. The changes in volume and pressure only affect the density and distribution of the gas molecules, but not their average kinetic energy.
add a given instant what is the rate of appearance at this time
The rate of appearance of NOBr at the given time is 9.80 × [tex]10^-^4[/tex] M/s which is the second option as the question asks to determine the rate of appearance of NOBr, which is a product of the given chemical reaction, at the given time when the rate of disappearance of Br₂ is known.
For every 1 mole of Br₂ that disappears, 2 moles of NOBr appear. Thus, we can set up a proportion:
(2 mol NOBr / 1 mol Br₂) = (rate of appearance of NOBr / rate of disappearance of Br₂)
Substituting the given values,
(2 mol NOBr / 1 mol Br₂) = (rate of appearance of NOBr / 4.90 x [tex]10^-^4[/tex] M/s)
Solving for the rate of appearance of NOBr,
rate of appearance of NOBr = (2 mol NOBr / 1 mol Br₂) x (4.90 x [tex]10^-^4[/tex] M/s) = 9.80 × [tex]10^-^4[/tex]M/s
The rate of appearance of NOBr at the given time is 9.80 × [tex]10^-^4[/tex] M/s.
Learn more about the rate of reaction here.
https://brainly.com/question/28027767
#SPJ1
What is the difference between collecting and analysing data
Answer:
Data collection is the act of obtaining information from diverse sources, and data analytics is the process of processing that information to derive practical insights.
Explanation:
How many mL of a 0.75 N KOH solution
should be added to a 500 mL flask to make
500 mL of a 0.300 M KOH solution?
The amount of volume of KOH solution that should be added to make 500mL of a 0.300M solution is 200mL.
How to calculate volume?The volume of a solution given the concentration can be calculated using the following expression;
CaVa = CbVb
Where;
Ca = initial concentrationVa = initial volumeCb = final concentrationVb = final volumeAccording to this question, we are to calculate how many mL of a 0.75 M OH solution that should be added to a 500 mL flask to make 500 mL of a 0.300 M KOH solution.
0.75 × Va = 500 × 0.3
0.75Va = 150
Va = 150/0.75
Va = 200mL
Learn more about volume at: https://brainly.com/question/14710169
#SPJ1
If the average speed of an oxygen molecule is 4.37 ✕ 104 cm/s at 25°C, what is the average speed of a CO2 molecule at the same temperature?
The average speed of a gas molecule is proportional to the square root of its temperature and inversely proportional to the square root of its molar mass. Therefore, we can use the following equation to find the average speed of a CO2 molecule at the same temperature:
v2/v1 = sqrt(M1/M2)
where v1 and v2 are the average speeds of the oxygen and CO2 molecules, respectively, M1 and M2 are the molar masses of oxygen and CO2, respectively.
The molar mass of oxygen (O2) is 32 g/mol, and the molar mass of CO2 is 44 g/mol.
We are given that the average speed of an oxygen molecule is 4.37 × 10^4 cm/s at 25°C. We can convert the temperature to Kelvin by adding 273.15 to get:
T = 25°C + 273.15 = 298.15 K
Now we can solve for v2:
v2 = v1 * sqrt(M1/M2)
v2 = 4.37 × 10^4 cm/s * sqrt(32 g/mol / 44 g/mol)
v2 = 3.67 × 10^4 cm/s
Therefore, the average speed of a CO2 molecule at the same temperature is 3.67 × 10^4 cm/s.
What concentration results from the dilution of 500.0 mL of 4.267 M to a volume of 1.85 L?
To calculate the concentration resulting from the dilution of 500.0 mL of 4.267 M to a volume of 1.85 L, we can use the equation:
M1V1 = M2V2
where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume.
Plugging in the given values, we get:
4.267 M)(500.0 mL) = M2(1.85 L)
Simplifying this equation, we get:
M2 = (4.267 M)(500.0 mL) / (1.85 L)
M2 = 1.153 M
Therefore, the concentration resulting from the dilution is 1.153 M.
To calculate the concentration after dilution, you can use the dilution formula: C1V1 = C2V2, where C1 and V1 are the initial concentration and volume, and C2 and V2 are the final concentration and volume.
Given:
C1 = 4.267 M
V1 = 500.0 mL = 0.5 L (converted to liters)
V2 = 1.85 L
Now, find C2:
C2 = (C1 * V1) / V2
C2 = (4.267 M * 0.5 L) / 1.85 L
C2 ≈ 1.153 M
The concentration after dilution is approximately 1.153 M.
For more question on dilution
https://brainly.com/question/3089319
#SPJ11
To find the concentration resulting from the dilution, we can use the equation:
M1V1 = M2V2
where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume.
Plugging in the given values, we get:
(4.267 M)(500.0 mL) = M2(1.85 L)
Simplifying and converting units, we get:
M2 = (4.267 M)(500.0 mL) / (1.85 L)
M2 = 1.16 M
Therefore, the concentration resulting from the dilution is 1.16 M.
To find the concentration after dilution, you can use the dilution formula:
C1V1 = C2V2
where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume.
Given:
C1 = 4.267 M
V1 = 500.0 mL (0.5 L)
V2 = 1.85 L
Rearrange the formula to solve for C2:
C2 = (C1V1) / V2
Now, plug in the given values:
C2 = (4.267 M * 0.5 L) / 1.85 L
C2 ≈ 1.154 M
So, the resulting concentration after dilution is approximately 1.154 M.
For more question on dilution
https://brainly.com/question/24881505
#SPJ11
Balance:
2. K₂O + H₂O → KOH
3.F₂ +NaBr-NaF + Br₂
4.Ba(CIO3) → BaCl2 + O2
*
5.SrBr₂ + (NH4)2CO3 → SrCO3 + NH4Br
6. C8H18 + O₂ → CO₂ + H₂O
What is the reactions to these?
the balanced equation and there reactions are as follow:
K₂O + H₂O → 2KOH
The reaction between potassium oxide and water produces potassium hydroxide (KOH).
F₂ + 2NaBr → 2NaF + Br₂
The reaction between fluorine gas and sodium bromide produces sodium fluoride and bromine.
2Ba(CIO3)₂ → 2BaCl₂ + 3O₂
The decomposition of barium chlorate produces barium chloride and oxygen gas.
SrBr₂ + (NH₄)₂CO₃ → SrCO₃ + 2NH₄Br
The reaction between strontium bromide and ammonium carbonate produces strontium carbonate and ammonium bromide.
C₈H₁₈ + 12O₂ → 8CO₂ + 9H₂O
The combustion of octane with oxygen produces carbon dioxide and water.
To know more about strontium bromide, visit:
https://brainly.com/question/27791646
#SPJ1
Ocean water contains 3.3 % NaCl by mass.
How much salt can be obtained from 234g of seawater?
Answer:
Ans: 8.9 NaCl
Explanation:
Ocean water contains 3.5 nacl by mass how much salt can be obtained from 254 g of seawater
Question: Ocean water contains 3.5% NaCl by mass. How much salt can be obtained from 254g of seawater?
Help!!!!!!!!!!!!!!!!!!!!!!!
All of the equation-related claims are not entirely true. The appropriate chemical formula should be:
Fe(OH)3 + 3NH4Cl = FeCl3 + 3NH4OH
Because the total mass of the reactants and products are equal, as well as the number of each type of atom in each of the reactants and products, mass is conserved in this balanced equation. Depending on the stoichiometric coefficients in the balanced equation, there may or may not be an equal amount of molecules in the reactants and products.
Iron(III) hydroxide (Fe(OH)3) and ammonium chloride (NH4Cl) are the products of the chemical reaction between iron(III) chloride (FeCl3) and ammonium hydroxide (NH4OH).
The coefficients (the numbers in front of the chemical formulae) must be changed to make sure that the number of each type of atom is the same on both sides of the equation in order to ensure that the equation is balanced. The coefficients in this instance are:
Fe(OH)3 + 3NH4Cl = FeCl3 + 3NH4OH
Learn more about coefficients at :
https://brainly.com/question/29993529
#SPJ1
Strychnine, a deadly poison, has a molecular mass of 334 g/mol and a percentage composition of 75.45% carbon, 6.59% hydrogen, 8.38% nitrogen, and the balance oxygen. What is the molecular formula of strychnine?
The molecular formula of the strychnine, given that it is composed of 75.45% carbon, 6.59% hydrogen, 8.38% nitrogen, and the balance oxygen is C₂₁H₂₂N₂O₂
How do i determine the molecular formula?First, we shall obtain the empirical formula of compound. Details below:
Carbon (C) = 75.45%Hydrogen (H) = 6.59%Nitrogen (N) = 8.38%Oxygen (O) = 100 - (75.45 + 6.59 + 8.38) = 9.58%Empirical formula =?Divide by their molar mass
C = 75.45 / 12 = 6.2875
H = 6.59 / 1 = 6.59
N = 8.38 / 14 = 0.5986
O = 9.58 / 16 = 0.59875
Divide by the smallest
C = 6.2875 / 0.5986 = 10.5
H = 6.59 / 0.5986 = 11
N = 0.5986 / 0.5986 = 1
O = 0.59875 / 0.5986 = 1
Multiply through by 2 to express in whole number
C = 10.5 × 2 = 21
H = 11 × 2 = 22
N = 1 × 2 = 2
O = 1 × 2 = 2
Thus, we can conclude that the empirical formula is C₂₁H₂₂N₂O₂
Now, we shall determine the molecular formula of strychnine. Details below
Empirical formula = C₂₁H₂₂N₂O₂Molar mass of compound = 334 g/molMolecular formula =?Molecular formula = empirical × n = mass number
[C₂₁H₂₂N₂O₂]n = 140.22
[(12×21) + (1×22) + (14×2) + (16×2)]n = 334
334n = 334
Divide both sides by 334
n = 334 / 334
n = 1
Molecular formula = [C₂₁H₂₂N₂O₂]n
Molecular formula = [C₂₁H₂₂N₂O₂]1
Molecular formula = C₂₁H₂₂N₂O₂
Thus, we can conclude that the molecular formula of strychnine is C₂₁H₂₂N₂O₂
Learn more about molecular formula:
https://brainly.com/question/21568927
#SPJ1
Jeremiah is conducting an investigation about the water cycle. He is given the following materials:
a lamp
a glass jar that contains water
plastic wrap
Describe how Jeremiah can arrange these materials to create a model that shows the processes by which water is cycled from a lake into the atmosphere and back to the lake. Be sure to identify what each material represents in the model.
Input Field 1 of 1
Skip to input field
Jeremiah can arrange the materials in the following way to create a model that shows the processes by which water is cycled from a lake into the atmosphere and back to the lake
What is the water cycle?The following can be a representation of the water cycle;
Fill the glass jar with water to resemble the lake.
Put the lamp next to the jar to symbolize the sun.
Wrap the jar in plastic sheet to imitate the atmosphere.
Turn on the bulb to represent the sun warming the water.
When the water in the jar warms up and evaporates into water vapor, moisture will condense on the plastic wrap.
The water vapor will ascend and collect on the plastic wrap to represent the water vapor rising into the atmosphere.
Water vapor cools as it rises and condenses back into liquid form, as shown by the water droplets gathering on the plastic wrap.
Learn more about the water cycle:https://brainly.com/question/31195929
#SPJ1
Chemistry..... Reaction Rate
W → U + S Chemistry Reaction Rate use the table to find reaction rate
See reaction Rate Table Picture
The reaction rates for trial 1 is 8.22 x 10⁻² M⁻² s⁻¹ and 1.10 M⁻² s⁻¹ for trail 2 and 3
How to find reaction rate?Keep the concentration of W constant while varying the concentrations of U and S while measuring the reaction rate in order to determine the reaction rate with regard to U and S.
Select trial 1 as the reference trial and calculate the reaction's rate constant (k) with respect to U and S, assuming that the concentration of W is constant throughout all three trials.
For trial 1:
[W] = 0.13 M
Rate = 4.72 x 10⁻⁴ M/s
For trial 2:
[W] = 0.13 M
Rate = 1.18 x 10⁻² M/s
From the equation rate = k[U][S], set up the following ratio of rates:
Rate2/Rate1 = (k[U]2[S]2)/(k[U]1[S]1)
Simplifying:
k = (Rate2/Rate1) x (1/[U]2) x (1/[S]2) x ([U]1) x ([S]1)
Substituting the values from trials 1 and 2:
k = (1.18 x 10⁻² M/s) / (4.72 x 10⁻⁴ M/s) x (1/0.65 M) x (1/1 M) x (0.13 M) x (1 M)
k = 8.22 x 10⁻²M⁻² s⁻¹
Similarly, for trial 3:
[W] = 0.13 M
Rate = 2.95 x 10⁻¹ M/s
Again, using trial 1 as the reference trial, figure out the reaction's rate constant (k) in relation to U and S:
k = (Rate3/Rate1) x (1/[U]3) x (1/[S]3) x ([U]1) x ([S]1)
k = (2.95 x 10⁻¹ M/s) / (4.72 x 10⁻⁴ M/s) x (1/3.25 M) x (1/1 M) x (0.13 M) x (1 M)
k = 1.10 M⁻² s⁻¹
Therefore, the equation states the reaction rate in relation to U and S is k = 8.22 x 10⁻² M⁻² s⁻¹ and 1.10 M⁻² s⁻¹ for trials 2 and 3, respectively.
Find out more on Reaction Rate here: https://brainly.com/question/24795637
#SPJ1
How many hydrogen molecules (h2) are needed to convert the triacylglycerol shown to saturated fat
The triacylglycerol depicted may be converted to a saturated fat by adding two hydrogen atoms (H2) to each carbon-carbon double bond. Six hydrogen atoms (H2) are required to convert the three carbon-carbon double bonds in triacylglycerol into saturated fat.
This is so that the triacylglycerol may be converted to a saturated fat by using hydrogen molecules (H2) to saturate the double bonds.
Triacylglycerol's physical characteristics, such as its melting point, will similarly be altered by the addition of hydrogen molecules (H2), making it more solid at normal temperature.
Learn more about hydrogen at:
https://brainly.com/question/31018544
#SPJ1
The characteristics of two different types of reactions are shown below:
Reaction A: An atom loses electrons during the reaction.
Reaction B: An atom loses protons and neutrons during the reaction.
Which statement is true about the two reactions?
Both reactions retain the identity of the elements.
Both reactions change the identity of the elements.
Reaction A produces more energy than Reaction B.
Reaction B produces more energy than Reaction A.
The statement that is true about the reactions is
Both reactions retain the identity of the elements.How to identify the true statementIn Reactions A and B, the participating atoms preserve their elemental identity despite losing electrons (in Reaction A) or protons and neutrons (in Reaction B). This can give rise to distinct isotopes or ions of the same element while preserving its fundamental attributes.
The statements concerning energy production aren't necessarily accurate or linked with the reaction's traits. Energy output depends on many variables, such as specific reactants involved and their conditions during reactions.
Learn more about reactions at
https://brainly.com/question/25769000
#SPJ1
A 192 gram piece of copper was heated to 100.°C in a boiling water bath, then it was dropped into a beaker containing 850. mL of water at 4.00°C. What is the final temperature of the copper and water after they come to thermal equilibrium?
Note: The specific heat of copper is 0.385 J/g °C.
Do not round your answer in the middle of the problem. Round at the very end.
Round your answer to the correct number of sig figs. Your units should be degrees Celsius.
The final temperature of the copper and water after they come to thermal equilibrium is 109.8°C.
What is temperature?Temperature is a measure of the amount of thermal energy present in a substance or object. It is measured in degrees on a scale such as Fahrenheit, Celsius, or Kelvin. Temperature is important in determining the physical and chemical properties of a substance, such as its melting point, boiling point, and specific gravity. Temperature also affects the rate of a chemical reaction and the speed of diffusion.
The change in temperature of the copper can be calculated using the equation
ΔT = (Q/mc), where Q is the heat transferred, m is the mass of the copper, and c is the specific heat of copper.
Q = mcΔT = (192 g)(0.385 J/g °C)(100°C) = 74080 J
The heat transferred from the copper must equal the heat transferred to the water. Therefore,
(74080 J) = (0.85 L)(4.184 J/g°C)(ΔT)
ΔT = (74080 J)/[(0.85 L)(4.184 J/g°C)] = 109.8°C
The final temperature of the copper and water after they come to thermal equilibrium is 109.8°C.
To learn more about temperature
https://brainly.com/question/4735135
#SPJ1
PLEASE HELP!!
351.6g of Chromium-63 is allowed to decay for 128.8 years, how much Chromium-63
is left? (The half life of 63 Cr is 32.2 days.) Please, enter your answer as a one decimal
place number with no units.
A crucial trace mineral is chromium. Trivalent chromium, which is safe for people, and hexavalent chromium, which is toxic, are the two types.
Thus, Foods and dietary supplements both contain trivalent chromium. It might assist maintain normal blood sugar levels by enhancing the body's utilization of mineral.
Chromium is used by people to treat deficiencies. Additionally, it is used to treat bipolar disorder, diabetes, high cholesterol, and a variety of other conditions, but the majority of these uses are not well-supported by science.
Chromium by mouth doesn't help control blood sugar levels in people with prediabetes. Schizophrenia. Taking chromium by mouth doesn't affect weight or mental health in people with schizophrenia.
Thus, A crucial trace mineral is chromium. Trivalent chromium, which is safe for people, and hexavalent chromium, which is toxic, are the two types.
Learn more about Chromium, refer to the link:
https://brainly.com/question/681602
#SPJ1
Pleas help anyone!!!!!!!!!!!!!!!
The correct number of molecules of ammonium acetate used, given that the student uses 0.100 mole of ammonium acetate in the reaction is 6.022×10²² molecules
How do i determine the number of molecules of ammonium acetate?The following data were obtained from the reaction:
Number of mole ammonium acetate used = 0.100 moleNumber of molecules of ammonium acetate used =?The correct number of molecules of ammonium acetate used can be obtained as shown below:
From Avogadro's hypothesis,
1 mole of ammonium acetate = 6.022×10²³ molecules
Therefore,
0.1 mole of ammonium acetate = 0.1 × 6.022×10²³
0.1 mole of ammonium acetate = 6.022×10²² molecules
Thus, the number of molecules of ammonium acetate used is 6.022×10²² molecules
Learn more about number of molecules:
https://brainly.com/question/29046368
#SPJ1
Acetic acid has a molar mass of 60.05 g/mol. If 16.84 grams of acetic acid are present, how many moles of acetic acid does that correspond to?
Answer:
3.566 mol
Explanation:
Since 60.05 is grams divided by mol to cancel out the grams to get only mols it must be divided by 16.84 g
[tex]\frac{60.05 g}{mol} *\frac{1 }{16.84g} =3.566[/tex] mols acetic acid
A flexible container at an initial volume of 5.12 L
contains 8.51 mol
of gas. More gas is then added to the container until it reaches a final volume of 13.3 L.
Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container.
Step-by-step Explanation:
8.51 moles is to 5.12 L as 'x' moles is to (13.3-5.12) L
8.51 moles / 5.12 L = x / ( 13.3-5.12)
x = 13.6 moles
A 50.0-g sample of water at 25.0°C is mixed with 29.0 g of water at 65.0°C. The final temperature of the water is ________°C.
Answer:
39.7
Explanation:
Therefore, the final temperature of the water is 39.7°C.
Summarize the main challenges and constraints that engineers must overcome in the design of a low-cost, portable water purification system.
The primary difficulties in creating a low-cost, portable water purification system include assuring efficient pollution removal, compact design, durability etc.
In order to create a low-cost, portable water purification system, engineers must overcome several main obstacles and challenges, including: ensuring the removal of contaminants effectively; designing a compact and lightweight system; guaranteeing durability and reliability in harsh environments; providing an affordable, sustainable power source; and addressing cultural and social factors that may affect user acceptance and adoption.
To know more about water purification system, visit,
https://brainly.com/question/11523514
#SPJ1
What mass (grams) of oxygen will be released when 268.9 grams of Potassium Chlorate is thermally decomposed?
KClO3 --> KCl + O2
The centripetal acceleration experienced by the object can be calculated using the formula a = v^2/r, where v is the speed of the object and r is the radius of the circle. Substituting the given values, we get:
a = (50 cm/s)^2 / (250 cm)
a = 10 cm/s^2
Therefore, the centripetal acceleration experienced by the object is 10 cm/s^2.
To calculate the centripetal acceleration experienced by the object, you can use the formula:
Centripetal acceleration (a_c) = (velocity^2) / radius
Here, the velocity (v) is 50 cm/s and the radius (r) is 250 cm. Plugging in these values, we get:
a_c = (50^2) / 250 = 2500 / 250 = 10 cm/s²
So, the centripetal acceleration experienced by the object is 10 cm/s².
For more question on centripetal acceleration
https://brainly.com/question/22103069
#SPJ11
Both chairs are the same size and have the same number of molecules. The diagram above shows the chairs before they touch.
How does the temperature of the bottom chair compare with the temperature of the top chair before the chairs touch? What will happen after the chairs have been touching for a while?
Before the chairs touch, the temperature of the bottom chair is lower than the temperature of the top chair, this is because the molecules in the bottom chair are in contact with a cooler surface.
After the chairs have been touching for a while, the heat will begin to transfer from the top chair to the bottom chair through a process called conduction. This will continue until the temperature of the two chairs equalizes, at which point there will be no more net heat transfer between them.
The final temperature of both chairs will be somewhere between the initial temperatures of the two chairs, and will depend on factors such as the thermal conductivity of the material, the size of the chairs, and the duration of the contact.
To know more about the Molecules, here
https://brainly.com/question/2114821
#SPJ1
What is the net ionic charge of an oxygen ion ?
( + 0₂ (0₂ 1 Is the molecular mas of carbon is 12 and that of oxygen is 32, Calculate the mass of carbon dioxide formed when 24kg of carbon is burnt completely in oxygen and determine the heat thereby released in MJ if the complete combustion of 1kg of carbon releases 33.8MJ of heat
The mass of carbon dioxide formed when 24 kg of carbon is burnt completely in oxygen is 88 kg, and the heat released is 811.2 MJ.
What is Molar Mass?
Molar mass is the mass of one mole of a substance and is expressed in grams per mole (g/mol). It is calculated by adding up the atomic masses of all the atoms in a molecule or formula unit of a compound. The molar mass is used in stoichiometry calculations to convert between mass and moles of a substance.
The balanced equation for the combustion of carbon is:
C + O₂ → CO₂
From the equation, we can see that one mole of carbon reacts with one mole of oxygen to produce one mole of carbon dioxide. The molar mass of carbon dioxide is 12 + (2 × 16) = 44 g/mol.
First, let's find the number of moles of carbon in 24 kg:
n(C) = m/M = 24000 g / 12 g/mol = 2000 mol
Therefore, 2000 mol of CO₂ will be produced.
The mass of CO₂ produced can be calculated as:
m(CO₂) = n(CO₂) × M(CO₂) = 2000 mol × 44 g/mol = 88,000 g = 88 kg
Now, let's calculate the heat released during combustion:
Heat released = 33.8 MJ/kg × 24 kg = 811.2 MJ
Learn more about Molar Mass from the given link
https://brainly.com/question/837939
#SPJ9
At some constant temperature, the equilibrium constant for the reaction below is Kc = .76. An empty 1.00L flask is charged with 2.00 mol carbon tetrachloride and then allowed to reach equilibrium.
CCl4(g) ⇌ C (s) + 2 Cl2(g)
a. What fraction of the reactant remains at equilibrium?
b. What is the molarity of chlorine gas at equilibrium?
At some constant temperature, the equilibrium constant for the reaction below is Kc = .76. An empty 1.00L flask is charged with 2.00 mol carbon tetrachloride and then allowed to reach equilibrium. CCl4(g) ⇌ C (s) + 2 Cl2(g)
a. To find the fraction of the reactant (CCl4) remaining at equilibrium, we can start by determining the initial concentration of CCl4:
Initial concentration of CCl4 = moles/volume = 2.00 mol / 1.00 L = 2.00 M
Let x be the change in concentration of CCl4 at equilibrium. Then, the equilibrium concentrations are:
[CCl4] = 2.00 - x
[Cl2] = 2x
The equilibrium constant expression is given by:
Kc = [Cl2]^2 / [CCl4]
Plugging in the given Kc value (0.76) and the equilibrium concentrations:
0.76 = (2x)^2 / (2.00 - x)
Now, you can solve for x. The fraction of the reactant remaining at equilibrium is (2.00 - x) / 2.00.
b. To find the molarity of chlorine gas (Cl2) at equilibrium, you can use the value of x obtained in part (a). The molarity of Cl2 is equal to 2x.
For more questions on: temperature
https://brainly.com/question/27944554
#SPJ11