The P-value is less than the significance level of 0.01, we reject the null hypothesis.
Null Hypothesis: The proportion of adults who prefer window seats when they fly is 0.5 or less.
Alternative Hypothesis: The proportion of adults who prefer window seats when they fly is greater than 0.5.
Let p be the true proportion of adults who prefer window seats when they fly.
The sample proportion of adults who prefer window seats is:
= 520/813 = 0.639
The standard error of the sample proportion is:
SE = sqrt((1-)/n) = sqrt(0.639(1-0.639)/813) = 0.022
The test statistic is:
z = ( - 0.5)/SE = (0.639 - 0.5)/0.022 = 6.32
Using a normal distribution, the P-value is P(Z > 6.32) < 0.0001.
Since the P-value is less than the significance level of 0.01, we reject the null hypothesis.
Therefore, we conclude that there is sufficient evidence to support the claim that the majority of adults prefer window seats when they fly.
To learn more about window visit:
https://brainly.com/question/276025
#SPJ11
Find the distance from the plane 6x + 5y + z = 54 to the plane 6x + 5y + z = 48. The distance is d= (Type an exact answer, using radicals as needed.)
The exact distance between the planes, using radicals as needed, is d = 6√62 / 62.
To find the distance d between the two planes 6x + 5y + z = 54 and 6x + 5y + z = 48, we can use the formula for the distance between parallel planes:
d = |C1 - C2| / √(A^2 + B^2 + C^2)
where A, B, and C are the coefficients of the x, y, and z terms respectively, and C1 and C2 are the constants in the two equations.
In this case, A = 6, B = 5, C = 1, C1 = 54, and C2 = 48. Plugging these values into the formula, we get:
d = |54 - 48| / √(6^2 + 5^2 + 1^2)
d = 6 / √(36 + 25 + 1)
d = 6 / √62
So the distance between the two planes is d = 6/√62. You can simplify this expression by rationalizing the denominator:
d = (6/√62) * (√62/√62)
d = 6√62 / 62
Thus, the exact distance between the planes, using radicals as needed, is d = 6√62 / 62.
radicalshttps://brainly.com/question/7572132
#SPJ11
An investor is planning on selling some property that she recently purchased. A real estate consulting firm determines that there is a 50% chance of making a profit of $50,000, a 30% chance of breaking even, and a 20% chance of suffering a $60,000 loss. Determine the expected value of the sale
The expected value of the sale is $13,000.
How to determine the expected value of the sale?The expected value is a statistical measure that represents the average outcome of a probability distribution, weighted by the probabilities of each outcome. In this case, the investor is planning to sell a property and wants to know what the expected value of the sale will be. To determine this value, we must consider the potential outcomes and their probabilities.
According to the real estate consulting firm, there is a 50% chance of making a profit of $50,000, a 30% chance of breaking even, and a 20% chance of suffering a $60,000 loss. To calculate the expected value of the sale, we multiply the potential profit or loss by the probability of each outcome occurring and then sum those products.
To determine the expected value of the sale, we need to multiply the potential profit or loss by the probability of each outcome occurring and then sum those products.
Expected value = (0.5 * $50,000) + (0.3 * $0) + (0.2 * -$60,000)
Expected value = $25,000 - $12,000
Expected value = $13,000
Therefore, the expected value of the sale is $13,000.
Learn more about expected value
brainly.com/question/29574962
#SPJ11
A triangle as a base of 20 ft and a height of 3 yd. What is its area?
(DOES NOT HAVE A PICTURE)
(PLS HELP!!!)
Answer: 90 feet squared
Step-by-step explanation:
The formula for finding the area of a triangle is
(bxh)/2
In this problem, you need to convert 3 yards to feet. The conversion is as follows:
1 yard = 3 feet
Therefore, 3 yards = 9 feet.
You can then plug everything in and solve as follows:
20x9= 180
Then divide 180 by 2.
180/2=90
Answer:[tex]90ft^{2}[/tex]
Step-by-step explanation:
Area of a triangle: A=(bh)/2
b = 20 ft
h = 3 yds = 9ft
Plug in
A=[(20ft)(9ft)]/2
A=180ft/2
A=90ft^2
A traingle has side of 7cm and 18cm if the length of the third side is a whole number how many possible traingles are there explain your answer
Therefore, there are 13 possible triangles that can be formed with sides of 7cm, 18cm and a whole number as the third side.
How to get the number of trianglesUsing the triangle inequality law, Let's denote the sides of the triangle as a, b, and c. In this case, we have:
a = 7 cm
b = 18 cm
c = the third side, a whole number
Now, we apply the triangle inequality theorem to these sides:
a + b > c
=> 7 + 18 > c
=> 25 > c
a + c > b
=> 7 + c > 18
=> c > 11
b + c > a
=> 18 + c > 7
=> c > -11
Since c is a whole number, the third condition is always true, as there are no negative whole numbers. Therefore, we only need to consider the first two conditions:
11 < c < 25
Now, we list the whole numbers that fall within 11 and 25 within this range:
these are listed and counted
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
There are 13 whole numbers in this range. So, there are 13 possible triangles with sides of 7 cm and 18 cm, and a third side that is a whole number.
Read more on triangles herehttps://brainly.com/question/17335144
#SPJ4
5 37 ( 1 Consider 9 g(x) = $/ +31 + (2x +39 3 3 A) 57-2 +6(2t - 1)* calculate g(x) g) B) 5 3r 3(2x - 1) 5 C) 3 3(2x - 1) 3 D) +6(2t - 1)
The derivative of g(x) is (2x/3∛x) + (8x+4)/9.
To find g'(x), we first need to apply the power rule of differentiation to the first term in the expression for g(x), which is ∛x². Recall that the power rule states that if f(x) = xⁿ, then f'(x) = n*xⁿ⁻¹. In this case, n = 1/3, so we have:
d/dx [∛x²] = (1/3) * d/dx [x²] = (1/3) * 2x = 2x/3∛x
Next, we need to apply the chain rule of differentiation to the second term in the expression for g(x), which is (2x+1)²/9. Recall that the chain rule states that if f(x) = g(h(x)), then f'(x) = g'(h(x)) * h'(x). In this case, we have:
h(x) = 2x+1
g(u) = u²/9
u = h(x) = 2x+1
So, applying the chain rule, we have:
d/dx [(2x+1)²/9] = 2/9 * (2x+1) * d/dx [2x+1] = 4/9 * (2x+1)
Putting these two results together, we have:
g'(x) = d/dx [∛x² + (2x+1)²/9] = 2x/3∛x + 4/9 * (2x+1)
Simplifying this expression, we get:
g'(x) = 2x/3∛x + 8x/9 + 4/9
g'(x) = (2x/3∛x) + (8x+4)/9
To know more about derivative here
https://brainly.com/question/30074964
#SPJ4
Complete Question:
Consider g(x) = ∛x² + (2x + 1)² / 9
Calculate g'(x)
In triangle DEF angle F is a right triangle DE is 25 units long and EF is 24 units long. What is the length of DF
Answer:
7 units
Step-by-step explanation:
Since DEF is a right triangle, and angle F is a right angle, DE is the hypotenuse, in which we can use a^2 + b^2 = c^2 25 to the power of 2 is 625 and 24 to the power of 2 is 576. 625-576 = 49. The square root of 49 is 7
the average weight of 40 randomly selected minivans was 4,150 pounds. the minivan population standard deviation was 490 pounds. find the 99% confidence interval of the true mean weight of minivans.
The 99% confidence interval of the true mean weight of minivans with 4150 pounds is CI = (3950, 4350).
The percentage (frequency) of acceptable confidence intervals that include the actual value of the unknown parameter is represented by the confidence level. In other words, a limitless number of independent samples are used to calculate the confidence intervals at the specified degree of assurance. in order for the percentage of the range that includes the parameter's real value to be equal to the confidence level.
Most of the time, the confidence level is chosen before looking at the data. 95% confidence level is the standard degree of assurance. Nevertheless, additional confidence levels, such as the 90% and 99% confidence levels, are also applied.
Point estimate is the sample mean, which is 4150 pounds. It is the best "guess" one has.
selected minivans was 4,150 pounds,
(z < 0.99) = 2.58
99% CI = ±2.58
Standard Error of the mean.
It is the = [tex]\frac{standard \ deviation}{\sqrt{sample \ size} }[/tex]
SE = [tex]\frac{490}{\sqrt{40} }[/tex]
SE = 77.475
To the nearest decimal ,
z x SE = ±200
CI = (3950, 4350) units are pounds.
Therefore, the confidence interval of the true mean weight of minivans is (3950, 4350).
Learn more about Confidence interval:
https://brainly.com/question/15712887
#SPJ4
What is the midpoint of the line segment that joins points (4,-2) and (-2,5)
Answer:
(1, 1.5).
Step-by-step explanation:
Midpoint of (x1, y1) and (x2, y2)
(x1 + x2)/2 , (y1 + y2)/2
=(4+-2)/2, (-2+5)/2
= (1, 1.5).
Quadratic Inequalities
The complete table of values is
x 1 1.5 2 3 3.5 4 5
y 1.33 -1.58 -2.17 -1.33 -0.43 0.71 3.57
The graph is attachedThe x values are {1.28, 4.76}The x values are undefined The x values are {1.15, 3.69}Completing the table of valuesThe equation of the function is given as
y = x²/3 + 6/x² - 5
To complete the table of values, we set x = 1, 1.5, 4 and 5
So, we have
y = 1²/3 + 6/1² - 5 = 1.33
y = 1.5²/3 + 6/(1.5²) - 5 = -1.58
y = 4²/3 + 6/(4²) - 5 = 0.71
y = 5²/3 + 6/(5²) - 5 = 3.57
Solving the x values from the graphThe x and the y intervals are given as
0 ≤ x ≤ 5 and -5 ≤ y ≤ 4
See attachment for the graph and the labelled points
Estimating x²/3 + 6/x² - x - 3 = 0
We have
y = x²/3 + 6/x² - 5
Set y = x - 2
x²/3 + 6/x² - 5 = x - 2
So, we have
x²/3 + 6/x² - x - 3 = 0
This means that y = x - 2
From the graph, we have x = {1.28, 4.76}
Estimating x²/3 + 6/x² - x = 0
We have
y = x²/3 + 6/x² - 5
Set y = x - 5
x²/3 + 6/x² - 5 = x - 5
So, we have
x²/3 + 6/x² - x = 0
This means that y = x - 5
From the graph, we have x = undefined
It has no solution because the line does not intersect with the curve
Estimating x²/3 + 6/x² - 5 = 0
We have
y = x²/3 + 6/x² - 5
This means that y = 0
From the graph, we have x = {1.15, 3.69}
Read more about functions at
https://brainly.com/question/27915724
#SPJ1
Sam, Mike, and Cindy are in a lottery drawing for housing with 40 other students to choose their dorm rooms. If the students are chosen in random order, what is the probability that Sam is chosen first, Mike second, and Cindy third?
A. 1/20,760
B. 37!/40
C. 1/59,280
D. 3/40
The probability that Sam is chosen first, Mike second, and Cindy third in a random order is 37!/40 (Option B).
The question is: Sam, Mike, and Cindy are in a lottery drawing for housing with 40 other students to choose their dorm rooms. If the students are chosen in random order, what is the probability that Sam is chosen first, Mike second, and Cindy third?
To find the probability, we need to consider the total possible ways the students can be chosen and the specific arrangement we want (Sam first, Mike second, and Cindy third). There are a total of 43 students, so there are 43! (43 factorial) ways to arrange them.
For the specific arrangement we want:
- There is 1 way to choose Sam first (out of 43 students).
- After choosing Sam, there is 1 way to choose Mike second (out of the remaining 42 students).
- After choosing Mike, there is 1 way to choose Cindy third (out of the remaining 41 students).
So, there is a total of 1 × 1 × 1 = 1 way to have the specific arrangement we want.
Now, we can calculate the probability by dividing the number of ways to get the specific arrangement by the total number of arrangements:
Probability = (1 way for the specific arrangement) / (43! total arrangements) = 1/(43!)
Learn more about random order: https://brainly.com/question/251701
#SPJ11
Jack, Martina, and Napier are racing their bikes. Each has an equal chance of winning the race
What is the probability that Jack wins the race, and Martina finishes last?
Therefore, the probability that Jack wins the race and Martina finishes last is 1/6 or approximately 0.167.
What is the probability that Jack wins the race, and Martina finishes last?There are 3 people racing, so there are 3! = 6 possible ways the race can end (assuming no ties).
These are:
Jack, Martina, Napier
Jack, Napier, Martina
Martina, Jack, Napier
Martina, Napier, Jack
Napier, Jack, Martina
Napier, Martina, Jack
Of these 6 outcomes, there is only 1 where Jack wins the race and Martina finishes last: outcome 2.
Learn more about probability at: https://brainly.com/question/25870256
#SPJ1
Find the volume of this cone.
Round to the nearest tenth.
7in
4in
The volume of the cone is 117.3 (Round to the nearest tenth).
To find the volume of this cone with a height of 7 inches and a radius of 4 inches, and round to the nearest tenth, follow these steps:
1. Use the formula for the volume of a cone: V = (1/3)πr²h, where V is the volume, r is the radius, and h is the height.
2. Plug in the given values: V = (1/3)π(4²)(7)
3. Calculate the volume: V = (1/3)π(16)(7) = (1/3)(112π)
4. Multiply and round to the nearest tenth: V ≈ 117.3 cubic inches
So, the volume of this cone is approximately 117.3 cubic inches.
Learn more about Cone here:- https://brainly.com/question/32151202
#SPJ11
Libby starts draining the pool for cleaning. The function y = 10,080 - 720x represents the
gallons of water y remaining in the pool after x hours. Find the zero and explain what it means in the context of the situation
The zero of the function is 14. In the context of the situation, this means it will take 14 hours for Libby to completely drain the pool for cleaning.
To find the zero of the function, we need to determine the value of x when y equals 0.
0 = 10,080 - 720x
To solve for x, we will isolate the variable by following these steps:
1. Add 720x to both sides:
720x = 10,080
2. Divide both sides by 720:
x = 14
The zero of the function is 14, which means that after 14 hours, there will be no water remaining in the pool. In the context of the situation, this means it will take 14 hours for Libby to completely drain the pool for cleaning.
Learn more about zero of the function here: https://brainly.com/question/24648724
#SPJ11
(1 point) Calculate TT, and n(u, v) for the parametrized surface at the given point. Then find the equation of the tangent plane to the surface at that point. O(u, v) = (2u + 0.0 - 40, 8u); u= 3, U =
The equation of the tangent plane to the surface at the point (u,v) = (3,U) is z = x + 34 + U.
To calculate TT, we need to find the partial derivatives of O(u,v) with respect to u and v:
TT = (∂O/∂u) x (∂O/∂v)
= (2, 0, 8) x (0, 0, 1)
= (-8, 0, 0)
To find n(u,v), we normalize TT:
n(u,v) = TT/|TT|
= (-1, 0, 0)
At the point u=3, v=U, O(u,v) = (2u + 0.0 - 40, 8u) = (-34, 24).
To find the equation of the tangent plane, we first find the normal vector to the plane, which is n(u,v) = (-1, 0, 0). Then we use the point-normal form of the equation of a plane:
(-1)(x + 34) + 0(y - 24) + 0(z - U) = 0
-x - 34 + z - U = 0
z = x + 34 + U
Know more about tangent plane here:
https://brainly.com/question/30260323
#SPJ11
Cuál es el valor de la razón del cambio cuando metemos un vaso de agua al tiempo al congelador por 15 minutos?
The value of the rate of change when we put a glass of water at room temperature is 1/3.
The pace at which one quantity changes in relation to another quantity is known as the rate of change function. Simply said, the rate of change is calculated by dividing the amount of change in one thing by the equal amount of change in another.
The connection defining how one quantity changes in response to the change in another quantity is given by the rate of change formula. The formula for calculating the rate of change from y coordinates to x coordinates is y/x = (y2 - y1)/. (x2 - x1 ).
Rate of change = change in temperature / time
= 10-5/15
=5 / 15
= 1/3
Therefore, the Rate of change is 1/3.
Learn more about Rate of change:
https://brainly.com/question/29504549
#SPJ4
Complete question;
What is the value of the rate of change when we put a glass of water at room temperature in the freezer for 15 minutes, what is its temperature at 5 minutes and then at 10 minutes.
Which triangles are similar?
OA. Triangles B and C
OB. Triangles A, B, and C
C. Triangles A and C
OD. Triangles A and B
Answer:
C. Triangles A and C.
Step-by-step explanation:
In triangles A and C, the ratios of corresponding sides are equal, and the corresponding angles are congruent.
There are 5 different green balls and 7 different red balls to be arranged in a row. how many ways can be arranged if all the green balls are separated
There are 86,400 ways to arrange 5 different green balls and 7 different red balls in a row if all the green balls are separated.
If all the green balls are separated, we can think of the green balls as dividers that separate the red balls into groups. Since there are 5 green balls, there will be 6 groups of red balls. For example, if there are 7 red balls, the arrangement might look like this:
| R R R R R R R |
The "|" symbols represent the green balls. Each group of red balls is between two green balls.
To count the number of arrangements, we can think of each group of red balls as a box, and the green balls as dividers between the boxes.
We can arrange the 6 boxes in a row in 6! = 720 ways, and we can arrange the 5 green balls in the remaining 5 positions in 5! = 120 ways. Therefore, the number of arrangements is:
6! x 5! = 720 x 120 = 86,400
So ,there are 86,400 ways to arrange 5 different green balls and 7 different red balls in a row if all the green balls are separated.
To know more about arrangements refer here:
https://brainly.com/question/28406752
#SPJ11
Find an equivalent expression using the Distributive Property.
25w+30x
Find an equivalent expression using the Distributive Property.
25w+30x
Answer: 5(5w+6)
Step-by-step explanation:
Factor out a 5: 5(5w+6)
To check our work distribute: 25w+30
Answer: 5(5w+6)
Answer:
5 ( 5w + 5x )
Step-by-step explanation:
Just find a common factor in both terms: 5
5 ( 5w + 5x )
If you multiply again, you will see that the values of both expressions are the same.
Choose whether the system of equations has one solution, no solution, or infinite solutions. Y=2/3x-1 and y=-x+4
The system of equations has one solution.
To determine whether the system of equations has one solution, no solution, or infinite solutions, we will compare the slopes and y-intercepts of the given equations:
Equation 1: [tex]y = (\frac{2}{3})-1[/tex]
Equation 2: y = -x + 4
Step 1: Identify the slopes and y-intercepts of each equation.
For Equation 1, the slope is 2/3, and the y-intercept is -1.
For Equation 2, the slope is -1, and the y-intercept is 4.
Step 2: Compare the slopes and y-intercepts.
The slopes are different (2/3 ≠ -1), and the y-intercepts are also different [tex](\frac{2}{3} ) ≠ 4[/tex].
Your answer: Since the slopes and y-intercepts are different, the system of equations has one solution.
To know more about " system of equations" refer here:
https://brainly.com/question/15272411#
#SPJ11
The agnews have $52,031 in disposable income their expenses are $39,826 how much less is their annual expenses than their disposable income?
The Agnews' annual expenses are $12,205 less than their disposable income.
What is disposable income?The amount of money a person or family has available to spend or save after paying taxes and other necessary costs like rent or mortgage payments, utilities, and insurance premiums is known as disposable income.
It stands for the money that is left over after taxes for discretionary expenses, such as savings or hobbies or amusement.
The Agnews' annual expenses are $39,826, and their disposable income is $52,031. To find out how much less their annual expenses are than their disposable income, we can subtract their annual expenses from their disposable income:
$52,031 - $39,826 = $12,205
Therefore, the Agnews' annual expenses are $12,205 less than their disposable income.
To know more about disposable income:
https://brainly.com/question/14732695
#SPJ1
jameson plans to create a larger kennel by doubling the dimensions in the blueprint. how many times the perimeter of the original kennel is the
perimeter of the larger kennel?
The perimeter of the larger kennel will be twice as large as the perimeter of the original kennel.
To find the ratio of the perimeters of the original kennel to the larger kennel, we need to know how doubling the dimensions affects the perimeter.
Since the perimeter is the sum of all four sides, doubling each side will result in a perimeter that is double the original.
Therefore, the perimeter of the larger kennel will be two times the perimeter of the original kennel.
In mathematical terms:
Perimeter of larger kennel = 2 x perimeter of original kennel
So, the perimeter of the larger kennel will be twice as large as the perimeter of the original kennel.
To learn more about ratio, refer below:
https://brainly.com/question/13419413
#SPJ11
If there is one to one correspondence between two sets, we say that the sets have the same "size" or the same ____________________
If there is a one-to-one correspondence between two sets, we say that the sets have the same "size" or the same "cardinality."
Cardinality is a term used in mathematics and set theory to describe the size or number of elements in a set. It refers to the property of a set that determines how many objects it contains. For example, the cardinality of the set {1, 2, 3} is 3, because it contains three elements. The cardinality of a set can be finite (if it has a specific number of elements) or infinite (if it contains an uncountable number of elements).
Cardinality is usually denoted using the vertical bar notation |A|, where A is the set in question. For example, if A = {a, b, c}, then |A| = 3.
Cardinality is an important concept in mathematics, especially in areas such as set theory, combinatorics, and number theory. It is used to compare the sizes of different sets and to determine the properties of operations that involve sets, such as union, intersection, and complement.
If there is a one-to-one correspondence between two sets, we say that the sets have the same "size" or the same "cardinality."
Learn more about cardinality,
https://brainly.com/question/30425571
#SPJ11
The original selling price of a jacket was
s
s dollars. The selling price was then changed on two occasions by the store owner. Its price is now represented by
0. 85
(
1. 4
s
)
0. 85(1. 4s). Which expression could explain what happened to the price of the jacket?
The expression that explains what happened to the price of the jacket is 0.85(1.4s), which represents a 40% increase in price followed by a 15% discount.
The expression 0.85(1.4s) represents the current selling price of the jacket, which includes two price changes.
To explain what happened to the price of the jacket, we can break down the expression into two steps:
1. The first change was an increase by 40%, which can be represented as multiplying the original price "s" by 1.4 (100% + 40% = 140% or 1.4). So, the price after the first change is 1.4s.
2. The second change was a discount of 15%, which can be represented as multiplying the price after the first change by 0.85 (100% - 15% = 85% or 0.85). So, the price after both changes is 0.85(1.4s).
So, the expression that explains what happened to the price of the jacket is 0.85(1.4s), which represents a 40% increase in price followed by a 15% discount.
To know more about price of the jacket refer here:
https://brainly.com/question/17236954
#SPJ11
An amusement park has 12 major attractions: four roller
coasters, two carousels, two drop towers, two gravity rides, and two dark ride
The park's app will randomly select attractions for you to visit in order. What
is the probability that the four roller coasters are the first four suggested
attractions?
Answer:
1/11880 or 0.00008417508
Step-by-step explanation:
The probability of this can be determined by 1/12 x 1/11 x 1/10 x 1/9
We subtract one from the denominator each time because that ride has already been used, and cannot appear again in the list.
Daniel is constructing a fence that consists of parallel sides line AB and line EF. Complete the proof to explain how he can show that m∠GKB = 120° by filling in the missing justifications. Statement Justification line AB ∥ line EF m∠ELJ = 120° Given m∠ELJ + m∠ELK = 180° Linear Pair Postulate m∠BKL + m∠GKB = 180° Linear Pair Postulate m∠ELJ + m∠ELK = m∠BKL + m∠GKB Transitive Property ∠ELK ≅ ∠BKL 1. M∠ELK = m∠BKL 2. M∠ELJ + m∠ELK = m∠ELK + m∠GKB Substitution Property m∠ELJ = m∠GKB Subtraction Property m∠GKB = m∠ELJ Symmetric Property m∠GKB = 120° Substitution
The completed two column table in the question showing that the measure of the angle m∠GKB = 120° can be presented as follows;
Statement [tex]{}[/tex] Reason
[tex]\overline{AB}[/tex] || [tex]\overline{EF}[/tex] [tex]{}[/tex] Given
m∠ELJ = 120°
m∠ELJ + m∠ELK = 180° [tex]{}[/tex] Linear pair Postulate
m∠BKL + m∠GKB = 180° [tex]{}[/tex] Linear pair Postulate
m∠ELJ + m∠ELK = mBKL + m∠GKB [tex]{}[/tex] Transitive property
∠ELK ≅ ∠BKL [tex]{}[/tex] 1. Alternate Interior Angles
m∠ELK = m∠BKL [tex]{}[/tex] 2. Definition of congruent angles
m∠ELJ + m∠ELK = m∠ELK + m∠GKB[tex]{}[/tex] Substitution property
m∠ELJ = m∠GKB[tex]{}[/tex] Subtraction property
m∠GKB = m∠ELJ [tex]{}[/tex] Symmetric property
m∠GKB = 120° [tex]{}[/tex] Substitution
What is an angle in geometry?An angle is the figure formed at the point of intersection of two rays that have the same starting point. The parts of an angle includes; The vertex, which is the point of intersection of the rays, and the sides or arms of the angle, which are the two rays forming the angle.
The details of the the statements that completes the above table used to prove the measure of the angle m∠GKB = 120° are as follows;
Alternate interior angles theorem
The alternate interior angles theorem states that the alternate interior angle formed by the two parallel lines and their shared transversal are congruent.
Definition of congruent angles
Congruent angles are angles that have the same measure.
Learn more alternate interior angles here: https://brainly.com/question/20344743
#SPJ4
How do i solve this?
RSQ= 126 degrees
both angles are cooresponding angels therefore
5x+86=10x+46
86-46=10x-5x
40=5x
x=8
substitute
10(x)+46
10(8)+46
80+46
126
Identify the volume of a cube with edge length 8 ft.
V = 512 ft^3
V = 256 ft^3
V = 514 ft^3
V = 324 ft^3
The volume of a cube with edge length 8 ft are V = 512 ft³
The volume of a cube is calculated by multiplying the length of one of its sides by itself three times (V = s³). Therefore, for a cube with an edge length of 8 ft, its volume would be V = 8³ = 512 ft³.
Therefore, the correct answer is: V = 512 ft³
To know more about volume, refer here:
https://brainly.com/question/1578538#
#SPJ11
A tree farm has begun to harvest a section of trees that was planted a number of years ago. the table shows the number of trees remaining for each of 8 years of harvesting.
a) find the regression equation for the relationship between time and trees remaining. (round values for a and b to two decimal places.)
b) the owners of the farm intend to stop harvesting when only 1000 trees remain. during which year will this occur?
The owners of the farm will stop harvesting when only 1000 trees remain during the fifth year of harvesting.
a) To get the regression equation for the relationship between time and trees remaining, we need to use linear regression. We can use the data given in the table to create a scatterplot and then find the line of best fit. Using a calculator or Excel, we can find that the regression equation is:
Trees remaining = 1177.38 - 36.25(time)
where "Trees remaining" is the number of trees remaining and "time" is the number of years since harvesting began.
b) To find during which year the owners of the farm will stop harvesting when only 1000 trees remain, we can substitute "1000" for "Trees remaining" in the regression equation and solve for "time":
1000 = 1177.38 - 36.25(time)
Solving for "time", we get:
time = (1177.38 - 1000) / 36.25
time ≈ 4.89 years
Therefore, the owners of the farm will stop harvesting when only 1000 trees remain during the fifth year of harvesting.
Learn more about regression equation here, https://brainly.com/question/25987747
#SPJ11
(1 point, Consider the series a, where 1 - 2n-4 In this problem you must attempt to use the Ratio Test to decide whether the series converges. Computo 1 L = lim a. Enter the numerical value of the limit Lif it converges, INF if it diverges to infinity, MINF if it diverges to negativo infinity, or Div if it diverges but not to Infinity or negative infinity L = Which of the following statements is true? A. The Ratio Test says that the series converges absolutely B. The Ratio Test says that the series diverges. C. The Ratio Test says that the series converges conditionally D. The Ratio Test is inconclusive, but the series converges absolutely by another test or tests. E. The Ratio Test is inconclusive, but the series diverges by another test or tests. F. The Ratio Test is inconclusive, but the series converges conditionally by another test or tests. Enter the letter for your choice here:
The answer to this given problem on convergent series can be D,E or F.
A series is said to be convergent when it approaches a certain value as the series approaches infinity.
A series is convergent (or converges) if the sequence
To use the Ratio Test, we must compute the limit L = lim (n→∞) |a_n+1 / a_n|.
For the given series a, where a_n = 1 - 2n - 4, we first find a_n+1:
a_n+1 = 1 - 2(n + 1) - 4 = 1 - 2n - 2 - 4 = -1 - 2n - 4.
Now, we compute the limit:
L = lim (n→∞) |(-1 - 2(n + 1) - 4) / (1 - 2n - 4)| = lim (n→∞) |(-1 - 2n - 6) / (1 - 2n - 4)| = lim (n→∞) |-2 / -2| = 1.
Since L = 1, the Ratio Test is inconclusive, so we cannot determine whether the series converges or diverges using this method alone. Therefore, the answer is either D, E, or F. To determine which of these options is true, another test or tests must be used.
To learn more about series convergence and divergence, visit https://brainly.com/question/15415793
#SPJ11
Calculate ∑ (-1)^k pi^2k/2k
To calculate ∑ (-1)^k pi^2k/2k, we can use the power series expansion for the cosine function:
cos(x) = ∑ (-1)^n x^(2n) / (2n)!
We can substitute pi^2 for x in this formula to get:
cos(pi^2) = ∑ (-1)^n (pi^2)^(2n) / (2n)!
= ∑ (-1)^n pi^(4n) / (2n)!
Now we can compare this to the original series we want to evaluate:
∑ (-1)^k pi^2k/2k = ∑ (-1)^n pi^(2n) / (2n)
We notice that the powers of pi in the two series match up, but the coefficients are different. However, we can use the identity cos(pi^2) = (-1)^n to rewrite the series we want to evaluate as:
∑ (-1)^n pi^(2n) / (2n) = ∑ (-1)^n pi^(4n) / (2n)! * (2n) / pi^2n
= pi^2 / 2 * ∑ (-1)^n pi^(4n) / (2n)!
Now we can substitute our expression for cos(pi^2) into this equation to get:
∑ (-1)^k pi^2k/2k = pi^2 / 2 * cos(pi^2)
= pi^2 / 2 * (-1)^n
Therefore, the value of the series is (-1)^n * pi^2 / 2.
To calculate the sum ∑ (-1)^k (pi^2k)/(2k), it is important to recognize that this is an alternating series with a general term given by a_k = (-1)^k (pi^2k)/(2k).
However, the question seems incomplete, as there is no specified range for the sum (i.e., the values of k). If you provide the range of k for which this sum is to be calculated, I would be glad to help you further.
Learn more about cosine function here: brainly.com/question/17954123
#SPJ11