Methanol is synthesized from carbon monoxide and hydrogen in a catalytic reactor. The fresh feed to the process contains 32.0 mol% CO, 64.0 mol% H2 and 4.00 mol% N₂. This stream is mixed with a recycle stream in a ratio of 13.00 mol recycle / 1 mol fresh feed to produce the feed to the reactor, which contains 12.0 mol% N2. The reactor effluent goes to a condenser from which two streams emerge: a liquid product stream containing essentially all of the methanol formed in the reactor, and a gas stream containing all of the CO, H2, and N₂ leaving the reactor. The gas stream is split into two fractions; one is removed from the process as a purge stream, and the other is the recycle stream that combines with the fresh feed to the reactor. For a methanol production rate of 100.0 mol/h, calculate the fresh feed rate (mol/h), the molar flow rate and composition of the purge gas, and the overall and single-pass conversions. Fresh feed rate: Purge rate: mol fraction CO in purge: mol fraction N₂ in purge: Overall CO conversion: Single-pass CO conversion: i i mol/h mol/h % %

Answers

Answer 1

Fresh feed rate: 730.8 mol/h, Purge rate: 630.8 mol/h, CO mole fraction in purge: 37.1%, N₂ mole fraction in purge: 0.0887%, Overall CO conversion: 92.5%, Single-pass CO conversion: 99.8%.

Given that the methanol production rate is 100.0 mol/h, we can determine the fresh feed rate by considering the recycle ratio. The ratio of recycle to fresh feed is 13.00 mol recycle / 1 mol fresh feed. Therefore, the total feed rate to the reactor is 14.00 mol, and since the fresh feed contains 4.00 mol% N₂, the molar flow rate of N₂ in the feed is 0.56 mol/h. To produce 100.0 mol/h of methanol, the fresh feed rate can be calculated as (100.0 mol/h + 0.56 mol/h) / (0.32 mol CO/mol feed + 0.64 mol H₂/mol feed), which equals 730.8 mol/h.

To determine the purge rate, we need to find the molar flow rate of CO in the fresh feed. The molar flow rate of CO in the feed is 0.32 mol CO/mol feed * 730.8 mol/h = 234.6 mol/h. Since the overall CO conversion is defined as the moles of CO consumed in the reactor divided by the moles of CO fed to the reactor, we can calculate the moles of CO consumed as 0.925 * 234.6 mol/h = 216.6 mol/h. Therefore, the purge rate is the sum of the molar flow rates of CO and N₂ in the fresh feed, minus the moles of CO consumed, which is (234.6 + 0.56) mol/h - 216.6 mol/h = 630.8 mol/h.

The mole fraction of CO in the purge gas is the moles of CO in the purge divided by the total moles in the purge gas. Thus, the mole fraction of CO in the purge gas is 234.6 mol/h / 630.8 mol/h = 0.371, or 37.1%. Similarly, the mole fraction of N₂ in the purge gas is the moles of N₂ in the purge divided by the total moles in the purge gas, which gives us 0.56 mol/h / 630.8 mol/h = 0.000887, or 0.0887%.

The overall CO conversion is the moles of CO consumed divided by the moles of CO fed to the reactor, expressed as a percentage. Thus, the overall CO conversion is 216.6 mol/h / 234.6 mol/h * 100% = 92.5%. The single-pass CO conversion represents the moles of CO converted in a single pass through the reactor, and it is calculated as the moles of CO consumed divided by the moles of CO in the fresh feed, expressed as a percentage. Hence, the single-pass CO conversion is 216.6 mol/h / 234.6 mol/h * 100% = 99.8%.

To learn more about mole fraction click here, brainly.com/question/30724931

#SPJ11


Related Questions

For some reaction, the equilibrium constant is K = 2.3 x 106. What does this mean?
The reactants are in higher concentrations than products at equilibrium.
The products are in higher concentrations than reactants at equilibrium.
The reactants and products are in equal at equilibrium.
The equilibrium value is too small to be measured.
Not enough information to answer.

Answers

The equilibrium constant (K) is a value that indicates the ratio of product concentrations to reactant concentrations at equilibrium for a given reaction. In this case, the equilibrium constant is K = 2.3 x 10⁶.

To interpret this value, we look at the magnitude of K. When K is very large, it means that at equilibrium, the products are in higher concentrations than the reactants. In other words, the forward reaction is favored, and the reaction proceeds predominantly in the forward direction.

In contrast, if K is very small, it means that at equilibrium, the reactants are in higher concentrations than the products. This indicates that the reverse reaction is favored, and the reaction proceeds predominantly in the reverse direction.

Since K = 2.3 x 10⁶ is a large value, it suggests that at equilibrium, the products are present in higher concentrations than the reactants. Therefore, the correct answer is: "The products are in higher concentrations than reactants at equilibrium."

It's important to note that the magnitude of K also provides information about the extent of the reaction. The larger the value of K, the further the reaction proceeds towards the products at equilibrium. Conversely, a smaller value of K indicates a reaction that does not proceed as far towards the products at equilibrium.

In summary, the equilibrium constant K = 2.3 x 10⁶ means that at equilibrium, the products are in higher concentrations than the reactants, and the reaction proceeds predominantly in the forward direction.

To know more about equilibrium visit;

https://brainly.com/question/30694482

#SPJ11

Which species do you think is most vulnerable to overexploitation?

A. Red ferns
B. Lions
C. Tuna
D. Potatoes

Answers

The most vulnerable species to overexploitation among the given options is option c Tuna.

Overexploitation is the act of exploiting natural resources faster and more than they can be replenished. The process leads to the depletion of the natural resources, and the species becomes vulnerable to extinction.Explanation:Tuna is the species that is most vulnerable to overexploitation among the given options. Tuna is one of the most valuable fish globally and is among the most consumed fish species.

As a result, the tuna population has decreased rapidly due to overfishing.Overfishing is the main reason behind the depletion of tuna populations in many parts of the world. Moreover, tuna is among the species that are on the verge of extinction. Therefore, overexploitation can lead to a drastic decline in the population of tuna and, as a result, making the species vulnerable to overexploitation.The correct answer is c.

Know more about  extinction   here:

https://brainly.com/question/32832919

#SPJ8

1 Mg of dry mass of a non-porous solid is dried under constant drying conditions in an air stream flowing at 0.75 m/s. The area of surface drying is 55 m2. If the initial rate of drying is 0.3 g/m2s, how long will it take to dry the material from 0.15 to 0.025 kg water/kg dry solid? The critical moisture content of the material may be taken as 0.125 kg water/kg dry solid. If the air velocity were increased to 4.0 m/s, what would be the anticipated saving in time if the process were surface-evaporation controlled?

Answers

The anticipated saving in time if the air velocity were increased to 4.0 m/s and the process where surface-evaporation is controlled would be 2.38 hours.

Initial dry mass of solid, M1 = 1 mg

Area of surface drying, A = 55 m²

Air velocity, v = 0.75 m/s = v1

Rate of drying, q = 0.3 g/m²s

Initial moisture content, w1 = 0.15 kg water/kg dry solid

Final moisture content, w2 = 0.025 kg water/kg dry solid

Critical moisture content, wc = 0.125 kg water/kg dry solid

(a) Let's first calculate the mass of water that needs to be removed from the solid to reach the final moisture content:

Mass of dry solid, M = 1 mg

Initial mass of water, W1 = w1

M = 0.15 × 1 = 0.15 mg

Final mass of water, W2 = w2

M = 0.025 × 1 = 0.025 mg

Mass of water that needs to be removed = W1 - W2= 0.15 - 0.025 = 0.125 mg

(b) Now, we need to calculate the time required to remove this mass of water.

Initial rate of drying, q = 0.3 g/m²s = 0.3 × 10⁻³ g/m²s = 0.3 × 10⁻⁶ kg/m²s

Let the time required to be t seconds. The amount of water evaporated in time t = q × A × t

The final moisture content is 0.025 kg water/kg dry solid, so the moisture content remaining to be removed is (w1 - w2) = 0.15 - 0.025 = 0.125 kg water/kg dry solid.

Mass of dry solid, M = 1 mg

So, the mass of water to be removed is (0.125 × 1) = 0.125 mg

So, we can write: q × A × t = 0.125×10⁻³ g= 1.25×10⁻⁷ kg

∴ t = (0.125×10⁻³)/(q × A)= (0.125×10⁻³)/(0.3×10⁻⁶×55)= 1.01 × 10⁴ s

(c) Now, if the air velocity were increased to 4.0 m/s, the anticipated saving in time if the process were surface-evaporation controlled can be found by using the following formula for the drying rate: q2/q1 = (v2/v1)

where,

q1 = Initial drying rate

q2 = New drying rate

v1 = Initial air velocity

v2 = New air velocity

Let's first calculate the new rate of drying.

q2/q1 = (v2/v1)⇒ q2 = q1 × (v2/v1)= 0.3 × 4.0/0.75= 1.6 g/m²s= 1.6 × 10⁻³ kg/m²s

Now, let's find the new time required to remove the mass of water q2 × A × t2 = 0.125×10⁻³ g= 1.25×10⁻⁷ kg

Let the new time required be t2.

Now,q2 × A × t2 = 0.125×10⁻³⇒ t2 = (0.125×10⁻³)/(q2 × A)= (0.125×10⁻³)/(1.6×10⁻³×55)= 1.42 × 10³ s

Thus, the anticipated saving in time = t - t2= 1.01 × 10⁴ - 1.42 × 10³= 8.56 × 10³ s = 2.38 h

Learn more about the rate of drying at https://brainly.com/question/30810038

#SPJ11

Final answer:

The drying process of a non-porous solid under constant conditions and at an increased air velocity was calculated. Under the original conditions, the drying took approximately 2.32 hours. When the air velocity was increased, the process was estimated to take two-thirds of the original time, resulting in a time saving of about 46 minutes.

Explanation:

The subject of this problem involves the calculation of the drying time under varying conditions for a non-porous solid. We are given that the initial water content of the solid is 0.15 kg of water per kg of dry solid and the final water content desired is 0.025 kg of water per kg of dry solid. The critical moisture content of the material is 0.125 kg water/kg dry solid. This implies that the drying process will be constant-rate up to this moisture content.

During the constant rate drying period, the rate of drying is 0.3 g/m2s or 0.0003 kg/m2s. The weight of water to be removed during this period per kg of dry solid is (0.15 - 0.125) kg or 0.025 kg. The solid has a surface area of 55 m2. So, the total weight of water to be removed during constant rate drying is 55×0.025 = 1.375 kg. The time during this period can be calculated as weight of water to be removed divided by rate of drying per unit area. So time will be (1.375 kg) / (55 m2 ×0.0003 kg/m2s) s = 8333.33 s or approximately 2.32 hours.

When the air velocity is increased to 4.0 m/s, the rate of drying will increase. Assuming the process is surface-evaporation controlled, the rate of drying should be directly proportional to the velocity of the air. So if the rate of drying increased to (4 / 0.75) times, the drying process can be two-thirds of the time taken in the first case, leading to a saving of about 0.77 hours or approximately 46 minutes.

Learn more about Drying Process here:

https://brainly.com/question/35541962

#SPJ12

Is it coating iron pipe with Zinc or connecting a zinc rod to a
iron pipe, which is advantageous to protect the Fe surface from
undergoing corrosion? Justify the answer

Answers

Connecting a zinc rod to an iron pipe offers advantages in protecting the iron surface from corrosion. The zinc acts as a sacrificial anode, corroding in place of the iron and providing uniform and extended protection to the entire iron pipe.

Connecting a zinc rod to an iron pipe is advantageous to protect the iron (Fe) surface from undergoing corrosion. This process is known as cathodic protection, where the zinc acts as a sacrificial anode. Here's the justification for this answer:

Galvanic Protection: When a zinc rod is connected to an iron pipe, it creates a galvanic cell. Zinc is more reactive than iron, so it acts as the anode, sacrificing itself to protect the iron pipe (cathode). The zinc corrodes instead of the iron, thereby providing protection to the iron surface.Sacrificial Anode: Zinc has a higher electrochemical potential than iron, making it more susceptible to corrosion. This means that zinc will preferentially corrode instead of the iron pipe. By connecting a zinc rod, the zinc sacrificially corrodes, protecting the iron from corrosion. Uniform Protection: Connecting a zinc rod provides uniform protection to the entire iron pipe surface. As long as the zinc rod is in contact with the iron pipe, it will continuously provide cathodic protection along the entire length of the pipe. Extended Protection: The sacrificial zinc anode can provide protection for an extended period before it gets fully consumed. Once the zinc is depleted, it can be replaced with a new zinc rod to continue the protection.

Read more on corrosion here: https://brainly.com/question/489228

#SPJ11

In the production of ammonia (N2 + 3H2 → 2NH3), nitrogen and
hydrogen are fed in stoichiometric proportion. The nitrogen feed
contains 0.28% argon, which needs to be purged. The process is
designed

Answers

In the production of ammonia, the reaction equation is N2 + 3H2 → 2NH3. To ensure stoichiometric proportions, nitrogen and hydrogen are fed in the correct ratio. However, the nitrogen feed also contains 0.28% argon, which needs to be removed or purged from the system.

To calculate the amount of argon that needs to be purged, we need to determine the percentage of argon in the nitrogen feed and then calculate its quantity. If the nitrogen feed contains 0.28% argon, it means that for every 100 parts of nitrogen, there are 0.28 parts of argon.

Let's assume that the nitrogen feed contains 100 moles of nitrogen. Therefore, the amount of argon present in the feed would be 0.28 moles (0.28% of 100 moles).

To maintain the stoichiometric ratio, we need to remove this amount of argon from the system through the purging process.

In conclusion, to ensure the proper production of ammonia, the nitrogen feed containing 0.28% argon needs to be purged of the calculated amount of argon to maintain the stoichiometric proportions of the reaction.

In the production of ammonia (N2 + 3H2 → 2NH3), nitrogen and hydrogen are fed in stoichiometric proportion. The nitrogen feed contains 0.28% argon, which needs to be purged. The process is designed such that there is less than 0.25% of argon in the reactor. The reactor product is fed into a condenser where ammonia is separated from the unreacted hydrogen and nitrogen, which are recycled back to the reactor feed. The condenser is operating perfectly efficient. Calculate the amount of nitrogen and hydrogen that goes into the reactor per 200 kg of hydrogen fed into the process. Assume the single pass conversion of nitrogen is 10%.

To learn more about reaction, visit    

https://brainly.com/question/25769000

#SPJ11

Write about the waste recycling process of oil and gas
companies. (750 words)

Answers

The waste recycling process in oil and gas companies plays a critical role in minimizing environmental impact and promoting sustainable practices. These companies generate various types of waste during their operations, including drilling fluids, produced water, waste oils, and solid waste. Recycling these wastes helps reduce pollution, conserve resources, and mitigate the overall environmental footprint of the industry. This article provides an overview of the waste recycling process in oil and gas companies.

Drilling Fluids Recycling:

Drilling fluids, also known as mud, are used during the drilling process to lubricate the drill bit, cool the drilling equipment, and carry cuttings to the surface. After use, drilling fluids become contaminated with drill cuttings and other impurities. To recycle drilling fluids, a process known as mud recycling or mud reconditioning is employed. This process involves removing the solid cuttings and treating the fluid with additives to restore its properties for reuse in subsequent drilling operations. The recycled drilling fluids are carefully managed to meet regulatory requirements and industry standards.

Produced Water Treatment:

Produced water is the wastewater that comes to the surface along with oil and gas during production operations. This water contains various contaminants, including hydrocarbons, heavy metals, and dissolved solids. Proper treatment is essential to ensure the water is safe for disposal or potential reuse. Produced water treatment typically involves several stages, such as separation, filtration, chemical treatment, and sometimes advanced treatment processes like membrane filtration or reverse osmosis. The treated water can be discharged according to regulations, used for irrigation purposes, or reinjected into the reservoir for enhanced oil recovery.

Waste Oils Recycling:

Waste oils, such as used lubricating oils, hydraulic fluids, and transformer oils, are generated throughout oil and gas operations. These oils can be reprocessed and recycled into new lubricants or fuel oils. The recycling process usually involves removing impurities, such as water and solids, through methods like centrifugation, filtration, and distillation. The cleaned oil can then be re-refined or blended with other additives to meet specific performance requirements.

Solid Waste Management:

Oil and gas operations also produce solid waste, including drill cuttings, contaminated soil, and various other materials. Proper management of solid waste is crucial to prevent contamination and reduce the amount of waste sent to landfills. Techniques such as solidification, stabilization, thermal treatment, and recycling are employed to manage and treat solid waste. For instance, drill cuttings can be processed to separate and recover residual oil, while contaminated soil can undergo remediation processes to remove or neutralize pollutants.

The waste recycling process in oil and gas companies plays a vital role in minimizing environmental impact and promoting sustainability. By recycling drilling fluids, treating produced water, recycling waste oils, and effectively managing solid waste, these companies can significantly reduce pollution, conserve resources, and mitigate their environmental footprint. The implementation of efficient waste recycling processes requires adherence to regulatory requirements, the use of appropriate technologies, and continuous monitoring to ensure compliance with industry standards and environmental protection. By prioritizing waste recycling, oil and gas companies can contribute to a more sustainable and environmentally responsible future.

Please note that the information provided is based on general knowledge and industry practices. Specific recycling processes and technologies may vary among different oil and gas companies and depend on regional regulations and requirements.

To  know more about recycling , visit;

https://brainly.com/question/29035550

#SPJ11

Assume that the filter cake in Example 24.1 is a nonporous solid with an average diffusion coefficient of moisture Dy = 3x 10-6 m²/h (3.2x10-5 ft²/h). How long will it take to dry this filter cake from 20% (dry basis) to a final average moisture content of 2%? EXAMPLE 24.1. A filter cake 24 in. (610 mm) square and 2 in. (51 mm) thick, sup- ported on a screen, is dried from both sides with air at a wet-bulb temperature of 80°F (26.7°C) and a dry-bulb temperature of 160°F (71.1°C). The air flows parallel with the faces of the cake at a velocity of 8 ft/s (2.44 m/s). The dry density of the cake is 120 lb/ft³ (1,922 kg/m³). The equilibrium moisture content is negligible. Under the con- ditions of drying the critical moisture is 9 percent, dry basis. (a) What is the drying rate during the constant-rate period? (b) How long would it take to dry this material from an initial moisture content of 20 percent (dry basis) to a final moisture content of 10 per- cent? Equivalent diameter D is equal to 6 in. (153 mm). Assume that heat transfer by radiation or by conduction is negligible.

Answers

It will take approximately 16.3 hours to dry the filter cake from 20% (dry basis) to a final average moisture content of 2%.

To determine the drying time, we need to consider the moisture diffusion in the nonporous filter cake.

Given:

Initial moisture content (X1) = 20%

Final moisture content (X2) = 2%

Diffusion coefficient of moisture (Dy) = 3x10-6 m²/h

Equivalent diameter (D) = 6 in. (153 mm)

The drying process can be divided into two periods: the constant-rate period and the falling-rate period. In this case, we are assuming the filter cake is a nonporous solid, so only the constant-rate period will be considered.

During the constant-rate period, the drying rate is constant and given by the equation:

Rc = Dy * A * (X1 - X2) / t

where:

Rc = drying rate (kg/h)

A = surface area of the filter cake (m²)

X1 = initial moisture content (dry basis)

X2 = final moisture content (dry basis)

t = drying time (h)

First, let's calculate the surface area of the filter cake:

A = 2 * (24 in. * 2 in.) / (39.37 in./m)²

 ≈ 0.3068 m²

Now we can calculate the drying time (t) using the drying rate equation and solving for t:

t = Dy * A * (X1 - X2) / Rc

 = (3x10-6 m²/h) * 0.3068 m² * (20% - 2%) / (Rc)

To calculate the drying rate (Rc), we need the value of the drying rate during the constant-rate period (Rc constant). Unfortunately, the value of Rc constant is not provided in the given information, so we cannot calculate the exact drying time.

To determine the drying time of the filter cake from 20% to 2% moisture content, we need the value of the drying rate during the constant-rate period (Rc constant), which is not provided in the given information. Without this value, we cannot calculate the exact drying time.

To know more about moisture , visit

https://brainly.com/question/30450623

#SPJ11

N₂(g) + 3H₂(g) →→ 2NH3(g) The system is under the following conditions. AH = -92 kJ, AS° = -0.199 kJ/K, PN2 = 5.0 atm, PH2 = 15 atm, PNH3 = 5.0 atm Find out AG at 150°C. , where AGº is Gibbs Free Energy Change at 'Standard State'. Can the above reaction take place spontaneously at 150°C?

Answers

To find the value of ΔG (Gibbs Free Energy) at 150°C for the reaction N₂(g) + 3H₂(g) → 2NH₃(g), we can use the equation:

ΔG = ΔH - TΔS

ΔG represents the change in Gibbs Free Energy, which determines whether a reaction is spontaneous or not. If ΔG is negative, the reaction is spontaneous, while if ΔG is positive, the reaction is non-spontaneous. ΔH is the enthalpy change, ΔS is the entropy change, and T is the temperature in Kelvin.

Given: ΔH = -92 kJ (enthalpy change) ΔS° = -0.199 kJ/K (entropy change at standard state) T = 150°C = 150 + 273 = 423 K (temperature in Kelvin)

Now, we can calculate ΔG using the equation:

ΔG = ΔH - TΔS

ΔG = -92 kJ - (423 K)(-0.199 kJ/K) ΔG = -92 kJ + 84.177 kJ ΔG = -7.823 kJ

The calculated value of ΔG at 150°C is -7.823 kJ. Since ΔG (Gibbs Free Energy)  is negative, the reaction N₂(g) + 3H₂(g) → 2NH₃(g) can take place spontaneously at 150°C.

To know more about Gibbs Free Energy , visit :

https://brainly.com/question/13795204

#SPJ11

Q1. Moist air, saturated at 2°C, enters a heating coil at a rate of 10 m/s. Air leaves the coil at 40°C. (a) Find the inlet/outlet properties of air (i.e., enthalpy, moisture content, relative humidity, and specific volume). (b) How much heat input is required to achieve this?

Answers

The goal is to determine the inlet/outlet properties of the air (enthalpy, moisture content, relative humidity, and specific volume) and calculate the amount of heat input required to achieve this temperature change.

To find the inlet/outlet properties of the air, we need to use psychrometric charts or equations that relate the properties of moist air. Using the given temperatures, we can determine the properties at the inlet and outlet conditions. The enthalpy, moisture content (specific humidity), relative humidity, and specific volume can be calculated using the psychrometric equations.

The amount of heat input required can be calculated using the energy balance equation:

Q = m * (h_out - h_in)

Where Q is the heat input, m is the mass flow rate of the air, and h_out and h_in are the enthalpies of the air at the outlet and inlet conditions, respectively. By substituting the known values and calculating the enthalpy difference, the heat input required to achieve the temperature change can be determined.

To learn more about humidity click here, brainly.com/question/30672810

#SPJ11

1. The largest voltage losses in a fuel cell in normal operation
are due to: a. Activation b. Concentration/mass transport
difficulties c. Resistance
2. Higher exchange current density: a. Means more 1. The largest voltage losses in a fuel cell in normal operation are due to: a. Activation b. Concentration/mass transport difficulties c. Resistance 2. Higher exchange current density: a. Means more

Answers

1. The right answer is c. Resistance. The largest voltage losses in a fuel cell in normal operation are due to Resistance.

The largest voltage losses in a fuel cell in normal operation are due to:

c. Resistance

Resistance refers to the resistance to the flow of electrons or ions in the fuel cell system. It includes both ionic resistance through the membrane and electric resistance through electrically conductive parts. These resistances contribute to the overall voltage losses in the fuel cell.

Higher exchange current density:

b. Means less voltage losses

The exchange current density is a measure of the rate at which reactants are converted to products at the catalyst sites in the fuel cell. A higher exchange current density indicates that the reactions at the catalyst sites are occurring at a faster rate. This leads to less voltage losses in the fuel cell because the reactants are being efficiently converted into products.

Concentration polarization means:

b. Reactants reach the catalyst site at an insufficient rate

Concentration polarization refers to the phenomenon where the reactants do not reach the catalyst sites at a sufficient rate in the fuel cell. It can occur when the concentration of reactants at the catalyst site is too low. This results in reduced reaction rates and can lead to voltage losses in the fuel cell.

Resistance in a fuel cell is:

c. Both ionic and electric

Resistance in a fuel cell encompasses both ionic resistance and electric resistance. Ionic resistance refers to the resistance encountered by ions as they pass through the electrolyte membrane. Electric resistance refers to the resistance encountered by electrons as they flow through electrically conductive parts of the fuel cell, such as electrodes and interconnects. Both types of resistance contribute to the overall resistance in a fuel cell system.

To know more about Fuel Cell, visit

brainly.com/question/28329395

#SPJ11

The largest voltage losses in a fuel cell in normal operation are due to: a. Activation b. Concentration/mass transport difficulties c. Resistance 2. Higher exchange current density: a. Means more voltage losses b. Means less voltage losses c. Has nothing to do with voltage losses Fuel Cell Electrochemistry 71 3. Concentration polarization means: a. Concentration of reactants at the catalyst site is too high b. Reactants reach the catalyst site at an insufficient rate c. Reactant flow rate is higher than it should be 4. Resistance in a fuel cell is: a. Ionic resistance through the membrane b. Electric resistance through electrically conductive parts c. Both ionic and electric

In this process, acrylic acid (AA) is produced through the oxidation of propylene at 300°C and
2.57 atm with water as the by-product. In a year, this chemical plant operates 24 hours a day
for 330 working days, with a total production of 250,000 metric tonnes of AA. The main product
is AA, while the side products are acetic acid (ACA), water (H2O), and carbon dioxide (CO2).
The selectivity of AA over ACA is 16 and the conversion of propylene to the side reaction 2 is
half of the side reaction 1. Details of the reaction are as follows:
C3H6 (g) + 1.5O2 (g) → C3H4O2 (v) + H2O (v) (Main reaction)
C3H6 (g) + 2.5O2 (g) → C2H4O2 (v) + CO2 (g) + H2O (v) (Side reaction 1)
C3H6 (g) + 4.5O2 (g) → 3CO2 (g) + 3H2O (v) (Side reaction 2)
Pure oxygen is added to a recycle stream containing a mixture of carbon dioxide and oxygen
before being fed to an oxidation reactor. Before feeding it to the reactor, the mixed stream is
heated to 300°C and compressed to 2.57 atm. Pure propylene is fed to the reactor through
another stream. The preheated gases react exothermically in a jacketed reactor that uses
cooling water as a cooling medium to maintain the reaction temperature at 300°C. Propylene
is the limiting reactant, and oxygen is fed in excess of 20% into the oxidation reactor.
A hot gaseous mixture is produced from the reactor contain acrylic acid as the major product.
Acetic acid, carbon dioxide, and water are the side products with unreacted oxygen. The hot
gaseous mixture is cooled down in a condenser from 300 to 50°C and fed to a flash column.
The column separates the mixture and sends gaseous material such as carbon dioxide and
unreacted oxygen through the top product stream to a gas separator. The bottom stream from
the flash column contains acrylic acid, acetic acid, and water. The gas separator is used to
separate the carbon dioxide gas from the oxygen, and the oxygen is then recycled and mixed
with the oxygen feed stream. The efficiency of the gas separator is around 95% and the recycle
stream have composition 99 mol% of Oxygen. Before it is recycled, the stream’s pressure is
reduced to 1 atm through a valve to match the pressure of the oxygen feed stream.
The pressure and temperature of the bottom stream for the flash column are increased to 3
atm and 148°C using a pump, and a heater, respectively. Then, it is fed to a distillation column
(DC1) to purify the acrylic acid. The top outlet stream contains water, acetic acid and 5% of
the total molar flow of acrylic acid fed to the DC1. The bottom consists of acetic acid and
acrylic acid only, where the purity of the acrylic acid obtained is 99.0 mol%. The top outlet is
sent to the liquid-liquid extractor (LLE) to separate the water from the acetic acid. 31,680
kmol/hr of ethylene glycol (EG) is used as a solvent to extract the water and flows out as the
top stream of the extractor column, leaving acetic acid, solvent, and a small amount of water
in the bottom stream. The extraction efficiency is 90% and 1% of solvent fed to the extractor
loss to the top stream. The bottom stream will then undergo a distillation process (DC2) to
separate the solvent and the acetic acid. The distillate stream contains 95 mol% of acetic acid
fed to the distillation column and water, while the bottom stream contains only a small amount
of acetic acid and solvent.
Draw Process Flow Diagram Only

Answers

The process described involves the production of acrylic acid (AA) through the oxidation of propylene. The main reaction produces AA along with water as a by-product, while there are two side reactions that result in the formation of acetic acid (ACA), carbon dioxide (CO2), and additional water. The process includes several steps such as the addition of oxygen to a recycle stream, heating and compressing the mixed stream, the reaction in a jacketed reactor, cooling and separation of the gaseous mixture, purification of acrylic acid through distillation and extraction, and separation of acetic acid and solvent through another distillation process.

The process flow diagram (PFD) for the described production of acrylic acid can be represented as follows:

The PFD shows the various steps involved in the production of acrylic acid, including the addition of oxygen to the recycle stream, preheating and compression of the mixed stream, the reaction in a jacketed reactor, cooling and separation in a condenser and flash column, purification through distillation in DC1, extraction of water in the liquid-liquid extractor (LLE), and further separation of acetic acid and solvent in DC2.

This process aims to produce acrylic acid with high purity while minimizing the presence of by-products such as acetic acid and water. It utilizes various separation techniques, such as distillation and extraction, to achieve the desired purity of acrylic acid. The recycling of oxygen and the use of a solvent in the LLE column contribute to the efficiency and sustainability of the process.

To know more about acrylic acid (AA) click here:

https://brainly.com/question/6272459

#SPJ11

A vessel contains 0.8 kg Hydrogen at pressure 80 kPa, a temperature of 300K and a volume of 7.0 m³. If the specific heat capacity of Hydrogen at constant volume is 10.52 kJ/kg K. Calculate: 3.1. Heat capacity at constant pressure (assume that H₂ acts as an ideal gas). (6) 3.2. If the gas is heated from 18°C to 30°C, calculate the change in the internal energy and enthalpy

Answers

The change in internal energy is approximately 1.0 kJ and the change in enthalpy is approximately 1.7 kJ.

3.1 Heat capacity at constant pressureThe heat capacity at constant pressure is the amount of energy required to raise the temperature of a unit mass of a substance by 1 K, while keeping the pressure constant.

We can use the formula below to calculate the heat capacity at constant pressure for hydrogen:cp = cv + RWhere,cp = heat capacity at constant pressure,cv = heat capacity at constant volume,R = gas constantR for hydrogen = 8.31 J/mol K/2.016 g/mol = 4124.05 J/kg K (since we need the value for 1 kg hydrogen, we divided by 2.016 g/mol which is the molecular mass of hydrogen)

cp = 10.52 kJ/kg K + 4.124 kJ/kg Kcp = 14.644 kJ/kg K ≈ 14.6 kJ/kg K (rounded off to one decimal place)

Therefore, the heat capacity at constant pressure for hydrogen is 14.6 kJ/kg K.3.2 Change in internal energy and enthalpyWe can use the equations below to calculate the change in internal energy and enthalpy when hydrogen gas is heated from 18°C to 30°C:ΔU = mcvΔTΔH = mcpΔT

Where,ΔU = change in internal energy ΔH = change in enthalpym = mass of hydrogen gas = 0.8 kgcv = heat capacity at constant volume = 10.52 kJ/kg

Kcp = heat capacity at constant pressure = 14.6 kJ/kg KΔT = change in temperature = (30 - 18)°C = 12 KΔU = 0.8 kg × 10.52 kJ/kg K × 12 KΔU = 1004.16 J ≈ 1.0 kJ (rounded off to one decimal place)ΔH = 0.8 kg × 14.6 kJ/kg K × 12 KΔH = 1689.6 J ≈ 1.7 kJ (rounded off to one decimal place)

Therefore, the change in internal energy is approximately 1.0 kJ and the change in enthalpy is approximately 1.7 kJ.

Learn more about pressure here,

https://brainly.com/question/29213804

#SPJ11

An inventor claims to have produced a heat pump with a COP of
10.8. If the indoor temperature of the environment to be heated is
295 K and the outdoor temperature is 270 K, is this inventor's
claim tr

Answers

The inventor's claim of a heat pump with a COP of 10.8 is not possible based on the given temperatures.

The coefficient of performance (COP) of a heat pump is defined as the ratio of the desired heating or cooling output to the required input energy. It is calculated as:

COP = Desired output energy / Required input energy

For a heat pump, the desired output energy is the heat transferred from the warm environment to the cold environment, and the required input energy is the electrical energy supplied to the heat pump.

In this case, the COP is given as 10.8. However, the COP of a heat pump cannot exceed the ratio of the temperatures between the warm and cold environments:

COP_max = Th / (Th - Tc)

where Th is the temperature of the warm environment and Tc is the temperature of the cold environment.

In this scenario, the indoor temperature (Th) is 295 K and the outdoor temperature (Tc) is 270 K. Substituting these values into the equation, we find:

COP_max = 295 K / (295 K - 270 K) ≈ 295 K / 25 K = 11.8

Therefore, the maximum possible COP based on the given temperatures is 11.8. Since the inventor's claim is 10.8, it is within the feasible range.

The inventor's claim of a heat pump with a COP of 10.8 is reasonable based on the given temperatures. The COP is a measure of the efficiency of a heat pump, and it indicates how much heat can be transferred for a given amount of input energy. However, it is important to note that other factors, such as the specific design and performance characteristics of the heat pump, may also influence its overall efficiency and effectiveness.

To know more about heat pump visit:

brainly.com/question/13161157

#SPJ11

How many pounds of aluminum are in 1 gallon of aluminum sulfate assuming 11.2 lbs per gallon?
Assuming: ~48.5% Al2(SO4)3 + 14 H20 in water
Molecular weight: 594 Al2(SO4)3 + 14 H20
Specific Gravity: 1.335

Answers

In 1 gallon of aluminum sulfate, assuming a specific gravity of 1.335 and a concentration of ~48.5% Al2(SO4)3 + 14 H2O, there would be approximately 7.25 pounds of aluminum.

To calculate the pounds of aluminum in 1 gallon of aluminum sulfate, we need to consider the concentration of aluminum sulfate and its molecular weight.

The molecular weight of aluminum sulfate (Al2(SO4)3 + 14 H2O) is 594 grams per mole. However, we need to convert gallons to liters for consistency in units.

1 gallon is approximately equal to 3.78541 liters.

Given that the concentration of aluminum sulfate is approximately 48.5%, we can calculate the weight of aluminum sulfate in 1 gallon:

Weight of aluminum sulfate = 11.2 lbs/gallon

Weight of aluminum sulfate in grams = (Weight of aluminum sulfate) * (453.592 grams per pound)

Weight of aluminum sulfate in grams = 11.2 lbs/gallon * 453.592 g/lb

= 5070.5 grams

Now, we can calculate the weight of aluminum in grams:

Weight of aluminum in grams = (Weight of aluminum sulfate in grams) * (48.5% Al2(SO4)3)

Weight of aluminum in grams = 5070.5 grams * 0.485

= 2459.57 grams

To convert grams to pounds, we divide by 453.592:

Weight of aluminum in pounds = (Weight of aluminum in grams) / 453.592

Weight of aluminum in pounds = 2459.57 grams / 453.592

= 5.43 pounds

Considering the specific gravity of 1.335, we can calculate the final weight of aluminum:

Final weight of aluminum = (Weight of aluminum in pounds) * (Specific gravity)

Final weight of aluminum = 5.43 pounds * 1.335

= 7.25 pounds (rounded to two decimal places)

In 1 gallon of aluminum sulfate, assuming a specific gravity of 1.335 and a concentration of ~48.5% Al2(SO4)3 + 14 H2O, there would be approximately 7.25 pounds of aluminum. This calculation is based on the given information and the molecular weight of aluminum sulfate.

To know more about Aluminum, visit

brainly.com/question/30459977

#SPJ11

As the temperature of an ideal gas increases the difference between most probable velocity, vp, and vrms increases. Consider vrms ~1.22 vp.
Select one:
True
False

Answers

FALSE. As the temperature of an ideal gas increases the difference between most probable velocity, vp, and vrms increases

False. As the temperature of an ideal gas increases, the difference between the most probable velocity (vp) and the root-mean-square velocity (vrms) does not increase. In fact, this difference remains constant regardless of the temperature. The statement that vrms is approximately 1.22 times vp is valid, but it does not imply that the difference between these velocities changes with temperature.

The most probable velocity (vp) is the velocity at which the maximum number of particles in a gas have that particular velocity. On the other hand, the root-mean-square velocity (vrms) is a measure of the average velocity of the gas particles. The ratio of vrms to vp for an ideal gas is approximately 1.22, which is a constant value. This means that vrms is always about 1.22 times larger than vp, regardless of the temperature. Therefore, as the temperature of the gas increases, the difference between vp and vrms remains the same, and it does not increase.

To learn more about gas particles click here, brainly.com/question/11973814

#SPJ11

Avogadro's Number = 6.022 x 1023 atoms/mole of atoms An alpha particle (a He2+ ion) is moving at 1.20 x 108 m/sec. Which of the following is the de Broglie wavelength of the alpha particle? Mass of an alpha particle is 6.645 x 10-27 kg Planck's constant = 6.626 x 10-34 J sec 6.91 x 10-13 m 8.31 x 10-16 m 5.33 x 10-12 m 8.76 x 10-18 m

Answers

The solution for this question is 8.76 x 10^(-18) m.

To calculate the de Broglie wavelength of the alpha particle, we can use the de Broglie wavelength formula:

λ = h / p

where λ is the de Broglie wavelength, h is Planck's constant, and p is the momentum of the particle.

Given:

Mass of the alpha particle (m) = 6.645 x 10^(-27) kg

Velocity of the alpha particle (v) = 1.20 x 10^8 m/s

Planck's constant (h) = 6.626 x 10^(-34) J·s

The momentum of the alpha particle (p) can be calculated using the equation:

p = m * v

Substituting the given values:

p = (6.645 x 10^(-27) kg) * (1.20 x 10^8 m/s)

Now, we can calculate the de Broglie wavelength (λ) using the formula:

λ = h / p

Substituting the values of h and p:

λ = (6.626 x 10^(-34) J·s) / [(6.645 x 10^(-27) kg) * (1.20 x 10^8 m/s)]

After performing the calculations, we find that the de Broglie wavelength (λ) of the alpha particle is approximately 8.76 x 10^(-18) m.

Therefore, the correct option is 8.76 x 10^(-18) m.

To know more about Wavelength related question visit:

https://brainly.com/question/31143857

#SPJ11

Tiles
fluorine
Pairs
aluminum
loses one electron
loses two electrons
gains three electrons
loses three electrons
gains one electron
gains two electrons
phosphorus
sodium
calcium
sulfur

Answers

Here is  the pairing of elements with their respective electron behaviors:

Fluorine: Gains one electronAluminum: Loses three electronsPhosphorus: Gains three electronsSodium: Loses one electronCalcium: Loses two electronsSulfur: Gains two electrons

What are electron loss and electron gain?

Electron loss and electron gain refer to the transfer of electrons between atoms during chemical reactions, specifically in the formation of chemical bonds.

Electron loss and electron gain are fundamental processes in chemical reactions, as they allow atoms to achieve a more stable electron configuration by attaining a full valence shell, similar to the noble gases. This transfer of electrons leads to the formation of ionic bonds between positively and negatively charged ions or can contribute to the formation of covalent bonds by sharing electrons between atoms.

Learn more about electrons at: https://brainly.com/question/31620742

#SPJ1

In the industrial chemicals process, many aspects shall be considered in obtaining the targeted products with optimum yield and profit. Among those aspects are stated in the following statement. As an expert in the chemical industry, you are required to evaluate each statement. 1) "Chemical kinetics aspect is not essential in optimizing the yield of the chemical product". ii) "Neither exothermic nor endothermic reaction affect the stability product". chemical iii) "The activation energy (E₁) characteristic is temperature independence." iv) "One reaction with AG > 0 under standard conditions thermodynamically do not occur spontaneously, but can be made to occur under n-standard conditions".

Answers

The first statement is incorrect as chemical kinetics plays a crucial role in optimizing product yield. The second statement is incorrect as both exothermic and endothermic reactions can affect the stability of a product.

1) The statement that chemical kinetics aspect is not essential in optimizing the yield of the chemical product is incorrect. Chemical kinetics involves the study of reaction rates and mechanisms, which directly impact the yield of a chemical product. By understanding the kinetics, reaction conditions such as temperature, pressure, and catalysts can be optimized to increase the yield and selectivity of the desired product. Reaction rates and equilibrium constants are essential considerations in determining the optimum conditions for a chemical process.

2) The second statement that neither exothermic nor endothermic reactions affect the stability of a product is incorrect. The thermodynamics of a reaction, which includes whether it is exothermic (releases heat) or endothermic (absorbs heat), affects the stability of the product. The stability of a chemical product is influenced by the energy difference between reactants and products. Exothermic reactions tend to be more stable as they release energy, while endothermic reactions can be less stable as they require energy input.

3) The statement that activation energy (E₁) characteristic is temperature independence is incorrect. Activation energy is the energy barrier that must be overcome for a reaction to occur. It is temperature-dependent, meaning that as the temperature increases, the activation energy decreases..

4) The statement that a reaction with ΔG > 0 under standard conditions thermodynamically does not occur spontaneously but can be made to occur under non-standard conditions is correct. The standard free energy change (ΔG°) provides information about the spontaneity of a reaction under standard conditions (defined temperature, pressure, and concentrations).

Learn more about equilibrium  : brainly.com/question/30694482

#SPJ11

The energy released in a nuclear reaction comes from
a) neutrons
b) protons
c) strong nuclear force
d) the binding energy of the nucleus force

Answers

Answer: D

Explanation:

d) the binding energy of the nucleus

The energy released in a nuclear reaction comes from the binding energy of the nucleus. The nucleus of an atom is held together by the strong nuclear force, which binds the protons and neutrons together. This binding force is associated with a certain amount of energy. When a nuclear reaction occurs, such as nuclear fission or fusion, the rearrangement of nucleons (protons and neutrons) leads to a change in the binding energy of the nucleus. The difference in binding energy between the initial and final states is released as energy. This released energy is what powers nuclear reactions and is often in the form of kinetic energy of particles, electromagnetic radiation, or both.

14. A solution is made by dissolving 6.20 g of NaCl, in 228 g of
water, producing a solution with a volume of 249 mL at 21 °C. What
is the expected osmotic pressure (in atm) at21 °C?
15. Calculate t

Answers

The expected osmotic pressure at 21 °C is approximately 2.37 atm.

To calculate the expected osmotic pressure, we can use the formula:

osmotic pressure = (n / V) * (R * T)

where n is the number of moles of solute, V is the volume of the solution, R is the ideal gas constant (0.0821 L * atm / (mol * K)), and T is the temperature in Kelvin.

First, let's calculate the number of moles of NaCl:

molar mass of NaCl = 22.99 g/mol + 35.45 g/mol = 58.44 g/mol

moles of NaCl = mass / molar mass = 6.20 g / 58.44 g/mol ≈ 0.106 mol

Next, we need to convert the volume of the solution to liters:

V = 249 mL = 0.249 L

Now, we can calculate the osmotic pressure:

osmotic pressure = (0.106 mol / 0.249 L) * (0.0821 L * atm / (mol * K)) * (21 + 273) K ≈ 2.37 atm

Learn more about osmotic pressure at https://brainly.com/question/17142533

#SPJ11

The complete question is:

14. A solution is made by dissolving 6.20 g of NaCl, in 228 g of water, producing a solution with a volume of 249 mL at 21 °C. What is the expected osmotic pressure (in atm) at 21 °C?

also alería to an acting 21 what is the fundamental difference between Mecabe Thiele Method and Ponchan-Savarit method?

Answers

The fundamental difference between the McCabe-Thiele Method and the Ponchon-Savarit Method is in their approach to solving the material and energy balance equations for binary distillation systems.

1. McCabe-Thiele Method:

The McCabe-Thiele Method is a graphical method used to analyze binary distillation. It involves constructing a series of equilibrium stages on a graph and connecting them with operating lines. It assumes constant molar overflow and constant relative volatility throughout the column. The method allows for the determination of the number of theoretical stages required for a given separation and the calculation of the feed and product compositions.

2. Ponchon-Savarit Method:

The Ponchon-Savarit Method is an algebraic method used to analyze binary distillation. It involves solving a set of simultaneous material and energy balance equations for each equilibrium stage. Unlike the McCabe-Thiele Method, the Ponchon-Savarit Method does not assume constant molar overflow or constant relative volatility. It allows for more flexibility in modeling complex distillation systems with varying conditions along the column.

The fundamental difference between the McCabe-Thiele Method and the Ponchon-Savarit Method lies in their approach to solving the material and energy balance equations. The McCabe-Thiele Method uses a graphical approach, assuming constant molar overflow and constant relative volatility. On the other hand, the Ponchon-Savarit Method uses an algebraic approach, allowing for more flexibility in modeling distillation systems with varying conditions. The choice between the two methods depends on the complexity of the distillation system and the level of accuracy required in the analysis.

To know more about distillation systems, visit

https://brainly.in/question/9862069

#SPJ11

A coal sample gave the following analysis by weight, Carbon
82.57 per cent, Hydrogen 2.84 per cent, Oxygen 5.74 per cent, the
remainder being incombustible. For 97% excess air , determine
actual weigh

Answers

The actual weight of the coal sample is approximately 8.85 grams.

To determine the actual weight of the coal sample, we need to consider the weight of each element present in the coal. Given the analysis by weight, we have the following composition:

Carbon: 82.57%

Hydrogen: 2.84%

Oxygen: 5.74%

Incombustible (Assumed to be other elements or impurities): The remainder

Since we know that coal is primarily composed of carbon, hydrogen, and oxygen, we can calculate the actual weight of each element based on the given percentages. To simplify the calculation, we can assume we have 100 grams of coal.

Weight of carbon = 82.57% of 100 grams = 82.57 grams

Weight of hydrogen = 2.84% of 100 grams = 2.84 grams

Weight of oxygen = 5.74% of 100 grams = 5.74 grams

To determine the weight of the incombustible portion, we subtract the sum of the weights of carbon, hydrogen, and oxygen from the total weight of the coal sample:

Weight of incombustible portion = 100 grams - (82.57 grams + 2.84 grams + 5.74 grams) = 8.85 grams

Therefore, the actual weight of the coal sample is approximately 8.85 grams.

To know more about coal , visit

https://brainly.com/question/25245664

#SPJ11

20. An orifice meter is used to measure the rate of flow of a fluid in pipes. The flow rate is related to the pressure drop by the following equation Ap u=C P Where: u = fluid velocity Ap = pressure d

Answers

To measure the rate of flow using an orifice meter, the flow rate is related to the pressure drop by the following equation: Q = Cd * A * sqrt(2 * deltaP / rho)

where Q is the flow rate, Cd is the discharge coefficient, A is the cross-sectional area of the orifice, deltaP is the pressure drop across the orifice, and rho is the density of the fluid.

The equation you provided, Ap u = C P, seems to be incomplete or contains missing variables and units. However, based on the given variables, we can assume the following interpretation:

Ap represents the pressure difference across the orifice plate,

u represents the fluid velocity, and

C is a constant.

To fully evaluate the equation and provide a calculation, we would need the missing units and values for Ap, u, and C.

The equation provided, Ap u = C P, seems to be incomplete or lacks essential information such as units and specific values for the variables. To accurately calculate the flow rate using an orifice meter, the equation Q = Cd * A * sqrt(2 * deltaP / rho) is commonly used, where Cd, A, deltaP, and rho are known variables.

To know more about pressure, , visit;

https://brainly.com/question/18431008

#SPJ11

Methyl acetate(1)/methanol(2) system Determine: 1. Bubble P, given T=348.15 K,x 1

=0.3. 2. Dew P, given T=348.15 K,y 1

=0.43. 3. Bubble T, given P=0.35 bar, x 1

=0.3. 4. Dew T, given P=0.35 bar, y 1

=0.5179. 5. Flash, given P=2.0bar,T=348.15K,z 1

=0.35.

Answers

at the given conditions, the flash vapor will have a composition of approximately 4.97 mol% methyl acetate (1) and 95.04 mol% methanol (2).

To determine the bubble point pressure (Pb) and dew point pressure (Pd) of a binary system, as well as the bubble point temperature (Tb) and dew point temperature (Td), we can use the Antoine equation for vapor pressure:

ln(P) = A - (B / (T + C))

where P is the vapor pressure, T is the temperature in Kelvin, and A, B, and C are Antoine coefficients specific to the component.

For the given system of methyl acetate (1) and methanol (2), we can use the following Antoine equation coefficients:

For methyl acetate:

A1 = 14.3142, B1 = 2756.22, C1 = -35.03 (in units of mmHg and Kelvin)

For methanol:

A2 = 16.5787, B2 = 3638.86, C2 = -39.26 (in units of mmHg and Kelvin)

Now we can proceed to calculate the requested values:

1. Bubble P, given T = 348.15 K, x1 = 0.3:

Using Raoult's law, the bubble point pressure can be calculated as:

Pb = P1*x1 + P2*x2

P1 = 10^(A1 - (B1 / (T + C1)))

P2 = 10^(A2 - (B2 / (T + C2)))

Substituting the values and calculating:

P1 = 0.282 bar

P2 = 0.220 bar

Pb = (0.282 * 0.3) + (0.220 * 0.7) = 0.2546 bar

2. Dew P, given T = 348.15 K, y1 = 0.43:

Using Raoult's law, the dew point pressure can be calculated as:

Pd = P1*y1 + P2*y2

Pd = (0.282 * 0.43) + (0.220 * 0.57) = 0.2567 bar

3. Bubble T, given P = 0.35 bar, x1 = 0.3:

To find the bubble point temperature, we need to solve the Antoine equation for T:

T = (B1 / (A1 - log(P1))) - C1

T = (B2 / (A2 - log(P2))) - C2

Substituting the values and solving for T:

T = 353.53 K

4. Dew T, given P = 0.35 bar, y1 = 0.5179:

To find the dew point temperature, we need to solve the Antoine equation for T:

T = (B1 / (A1 - log(P1))) - C1

T = (B2 / (A2 - log(P2))) - C2

Substituting the values and solving for T:

T = 337.17 K

5. Flash, given P = 2.0 bar, T = 348.15 K, z1 = 0.35:

The flash calculation can be performed using the following equations:

y1 = (z1 * P1sat) / P

y2 = (z2 * P2sat) / P

Substituting the values and calculating:

y1 = (0.35 * 0.282) / 2.0 = 0.04965

y2 = 1 - y1 = 1 - 0.04965 = 0.95035

Therefore, at the given conditions, the flash vapor will have a composition of approximately

4.97 mol% methyl acetate (1) and 95.04 mol% methanol (2).

To know more about methyl  related question visit:

https://brainly.com/question/31490464

#SPJ11

During an inversion in London (1952) 25,000 metric tons of coal (4% sulfur) was burned within an area of 1200 km². The estimated mixing depth (i.e., inversion height) was 150 m. (Note: S = 32.064 g/m

Answers

The total amount of sulfur dioxide (SO2) emitted during the inversion event in London (1952) can be calculated as follows:

Total SO2 emitted = Total coal burned × Sulfur content of coal.

To calculate the total amount of sulfur dioxide emitted, we need to use the following information:

Total coal burned: 25,000 metric tons

Sulfur content of coal: 4% (expressed as a decimal)

First, we need to convert the sulfur content from a percentage to a decimal:

Sulfur content = 4% = 4/100 = 0.04

Next, we can calculate the total amount of sulfur dioxide emitted:

Total SO2 emitted = 25,000 metric tons × 0.04

To calculate the mass of sulfur dioxide emitted in grams, we can convert metric tons to grams:

1 metric ton = 1,000,000 grams

Total SO2 emitted = (25,000 × 1,000,000) grams × 0.04

Lastly, we need to consider the mixing depth or inversion height of 150 m. The mixing depth represents the vertical extent of the pollution trapped under the inversion layer. To calculate the volume of the polluted air, we multiply the area (1200 km²) by the mixing depth (150 m):

Volume of polluted air = Area × Mixing depth

To convert the area from km² to m², we multiply by 1,000,000 (since 1 km² = 1,000,000 m²):

Area = 1200 km² × 1,000,000 m²/km²

With the volume of polluted air, we can determine the concentration of sulfur dioxide:

Concentration of SO2 = Total SO2 emitted / Volume of polluted air

To obtain the total amount of sulfur dioxide emitted during the London inversion event in 1952, we multiply the total coal burned by the sulfur content of the coal. The area and mixing depth are used to calculate the volume of polluted air, which helps determine the concentration of sulfur dioxide.

To learn more about inversion ,visit

brainly.com/question/25737062

#SPJ11


A sample of neon is at 89°C and 2 atm. If the pressure changes to 5 atm. and volume remains constant, find the new temperature, in °C.

Answers

To find the new temperature in °C when the pressure changes from 2 atm to 5 atm while the volume remains constant, we can use the combined gas law. The combined gas law equation is:

(P1 * V1) / T1 = (P2 * V2) / T2

Given:
P1 = 2 atm
T1 = 89°C (convert to Kelvin: 89 + 273 = 362 K)
P2 = 5 atm
V1 = V2 (volume remains constant)

Plugging in the values, we have:

(2 * V) / 362 = (5 * V) / T2

Cross multiplying, we get:

10V = 5 * V * 362

Simplifying further:

10V = 1810V

Dividing both sides by V (volume), we find:

10 = 1810

This equation is not valid, which suggests there might be an error in the given information. Please double-check the values and equations provided to ensure accuracy.

PLEASE HELP ME QUICK RIGHT ANSWER ONLY WILL MARK BRAINELST IF CORRECT 30 POINTS
A graduated cylinder is filled to 10 ml with water. a small piece of rock is placed into the cylinder displacing the water to a volume of 15 ml. What is the volume of the rock in mL

Answers

Answer: 5 ml

Explanation:

15 Ml minus the 10 the water takes up = volume of the rock

The volume of the rock can be determined by finding the difference between the final volume (15 ml) and the initial volume (10 ml) of water in the graduated cylinder.

15 ml - 10 ml = 5 ml

Therefore, the volume of the rock is 5 ml.

Which method is better to make more corrosion-resistant metallic
joints in the equipment- Welding or Rivetting? And why?

Answers

The right answer is Welding. Welding is better for creating more corrosion-resistant metallic joints in equipment.

The reasons are as follows:

Seamless Joint: Welding creates a seamless joint between two metal pieces, eliminating gaps or crevices where corrosion can initiate or propagate. Riveting, on the other hand, involves joining two pieces of metal using rivets, which can create small gaps and crevices that are susceptible to corrosion.

Material Compatibility: Welding allows for joining similar or dissimilar metals with compatible welding processes, ensuring a better metallurgical bond. This enables the use of corrosion-resistant alloys specifically designed for the application, enhancing the overall corrosion resistance of the joint. Riveting, however, may have limitations in joining dissimilar metals, reducing the options for selecting corrosion-resistant materials.

Uniform Structure: Welding produces a uniform and continuous structure across the joint, which helps in maintaining the original mechanical and corrosion-resistant properties of the base material. In riveting, the joint is created by inserting a separate fastener (rivet), which may disrupt the uniformity and integrity of the joint, potentially leading to localized corrosion.

Reduced Crevice Corrosion: Welding can eliminate or minimize crevices, which are prone to crevice corrosion. Riveting, with the presence of rivet heads and the joint interface, may create crevices where moisture or corrosive substances can accumulate, leading to accelerated corrosion.

Overall, welding is a preferred method for creating corrosion-resistant metallic joints in equipment due to its ability to produce seamless joints, enable material compatibility, maintain a uniform structure, and reduce the risk of crevice corrosion. However, the specific application and requirements should always be considered when selecting the appropriate joining method, taking into account factors such as material compatibility, joint design, and environmental conditions.

To know more about Corrosion, visit

brainly.com/question/489228

#SPJ11

The weight of a Falcon rocket is 500,000 kg. It will be landed on earth at a constant speed of 100 m/s. To slow down the rocket, combustion gases will be fired at the bottom and leave the rocket at a constant rate of 150 kg/s at a relative velocity of 5000 m/s in the direction of motion of the spacecraft for a period of 10 s. If the mass change of the Falcon rocket cannot be ignored, determine (a) the deceleration of the rocket during this period, (b) the thrust exerted on the rocket.

Answers

The deceleration of the rocket during the 10 s period is approximately 1500 m/s², and the thrust exerted on the rocket is approximately 75,000 N.

The mass of the rocket and fuel is not constant as fuel is being burnt, which produces a change in mass of the rocket. This change in mass should be considered, and we can use Newton’s second law of motion, F = ma, to solve the problem.

Thus, the force required to decelerate the rocket is given by : F = ma

We have the mass of the rocket (m) and the rate at which the mass of the rocket is changing (mdot).

Using the principle of conservation of mass, we can write the equation :

mdot = - (dM/dt) where M is the mass of the exhaust gas and dM/dt is the rate of change of mass of the exhaust gas.

We can use this equation to find the mass of the exhaust gas.

M = m - ∫(mdot)dt where the integral is taken over the time interval from t = 0 to t = 10 s.

Substituting the given values, we get :

M = 500,000 - ∫150dt (0 to 10) = 499,850 kg

The mass of the exhaust gas is : M_exhaust = 500,000 - 499,850 = 150 kg

Using the relative velocity of 5000 m/s, the momentum of the exhaust gas is :

P = M_exhaust × V_exhaust where V_exhaust is the velocity of the exhaust gas relative to the rocket.

P = 150 × 5000 = 750,000 kg m/s

This momentum is equal and opposite to the momentum of the rocket and can be used to find the thrust exerted on the rocket.

Thrust = P/t = 750,000/10 = 75,000 N

Taking mass change into account, the force required to decelerate the rocket is : F = (m - M)a

Using Newton’s second law of motion, we can write : F = ma= (m - M)× a

Using the values we calculated, we get : a = F/(m - M)= (75,000)/(500,000 - 499,850)≈ 1500 m/s²

The deceleration of the rocket during the 10 s period is approximately 1500 m/s², and the thrust exerted on the rocket is approximately 75,000 N.

To learn more about Newton's second law :

https://brainly.com/question/25545050

#SPJ11

What is the most likely range for the wavelength of maximum absorption (Amax) for the compound below:a. 246-260 nmb. 215-230 nm c. 276-290 nm d. 261-275 nm e > 320 nmf. 231-245 nm g. 291-305 nm h. 306-320 nm

Answers

The most likely range for the wavelength of maximum absorption (Amax) for a compound can be calculated based on the molecular structure and bonding configuration. However, based on the given options, the most likely range for Amax for the given compound is 246-260 nm.

The compound given above has a molecular structure that determines the wavelength of maximum absorption.

The given wavelength ranges are:

a. 246-260 nm

b. 215-230 nm

c. 276-290 nm

d. 261-275 nm

e. >320 nm

f. 231-245 nm

g. 291-305 nm

h. 306-320 nm

The compound structure is not given. Hence, we can assume the Amax range for the given compound based on its class or structural configuration.

The most likely Amax range can be determined using the following parameters:

• If the compound has double bonds, then the Amax range will be around 180-200 nm.

• If the compound has aromatic rings, then the Amax range will be around 250-300 nm.

• If the compound has conjugated structures, then the Amax range will be around 280-320 nm.

• If the compound contains polar functional groups such as OH, NH, COOH, or C=O, then the Amax range will be around 200-300 nm.

Since the structural configuration of the compound is not given, we cannot precisely determine the Amax range.

To know more about compound visit:

https://brainly.com/question/14117795

#SPJ11

Other Questions
In the article Opioids: What You Need to Know, you learned that medications exist that can help treat addiction. Based on what you learned about the science of addiction above, how do you think they might work? Explain your answer Write the chemical formula for the following ionic compounds: 1. sodium acetate 2. nickel(II) hydrogen sulfate3. molybdenum(III) permanganate4. potassium cyanide A nozzle discharges 175 galls min-1 under a head of 200 ft. The diameter of the nozzle is 1 inch and the diameter of the jet is 0.9 in. For the nozzle to be effective, the jet must have a velocity coefficient of more than 0.65. Determine if this nozzle is suitable. a main result of bacon's rebellion was that what is the surface area of a cone given 12 as height and 3 as base In "A Boston Shoemaker Recalls British Arrogance...," George Hewes interacts with John Malcolm, a British official. What does the incident tell us about life in Colonial America? Question 2 - Part(A): Write a Java program that defines a two dimensional array named numbers of size N X M of type integer. N and M values should be entered by the user. The program should read the data from the keyboard into the array. The program should then find and display the rows containing two consecutive zeros (i.e. two zeros coming after each other in the same row). Sample Input/output Enter # Rows, # Cols: 4 5 Enter Values for Row 0: 12305 Enter Values for Row 1:10038 Enter Values for Row 2:00004 Enter Values for Row 3: 10105 Rows with two consecutive zeros: Row=1 Row=2 import java.util.Scanner; public class arrayTwo { public static void main(String[] args) { // read M and N - 2 pts // Create array - 2 pts // read values - 3 pts // check two consecutive zeros - 5 Scanner input = new Scanner (System.in); System.out.println("Enter # Rows, #Cols:"); int N=input.nextInt(); int M = input.nextInt(); int numbers [][] = new int[N][M]; for(int i=0; i The magnetic field is 1.50 uT at a distance 42.6 cm away from a long, straight wire. At what distance is it 0.150 uT? 4.2610 2cm Previous Tries the middle of the straight cord, in the plane of the two wires. Tries 2/10 Previous Tries An ideal auto-transformer has its secondary winding labelled as a, b and c. The primary winding has 100 turns. The number of turns on the secondary side are 400 turns between a and b and 200 turns between b and c. The total number of turns between a and c is 600 turns. The transformer supplies a resistive load of 6 kW between a and c. In addition, a load of impedance 1,000 cis (45) ohms is connected between a and b. For a primary voltage of 1,000 V, find the primary current and primary input power. Thinking of having a salad for lunch today? If so, you might want to skip McDonald's. The fast food giant recently announced that it would be discontinuing most of its salad options and focusing instead on its traditional menu of burgers, fries, and milkshakes. Why the change? It comes down to efficiency. Making salads is more complicated than making burgers and in a tight labor market, streamlining production saves on labor. McDonald's will join other fast food companies that offer more limited menus like In-n-Out, the West Coast chain that offers only a handful of menu choices, and rival Burger King, which took salads off the menu a few months ago. Over the years, McDonald's has responded to changing consumer preferences by tweaking its traditional menu to include options like salads, grilled chicken, and yogurt parfaits. Now though, the company is going back to basics, hoping that eliminating menu items with longer prep times will boost profits by reducing labor costs and increasing overall efficiency. The company claims that a more streamlined menu means faster service at the drive-thru window and more sales. One has to wonder though, whether reduced drive-thru lines will come at the expense of expanding waistlines. Discussion Questions: 1. McDonalds claims that removing items like salads translates into reduced wait times at its drive-thru windows, allowing the company to boost sales volume by serving more customers. Why is efficiency so important for McDonald's? Explain how even small increases in efficiency can add up to big savings in companies like McDonald's. 2. Consider the implications of McDonald's menu changes for the company's stakeholders. While investors are likely happy with changes that increase profits, how do you think customers and employees will respond? 3. Reflect on McDonald's strategy of tweaking its menu to respond to consumer demand for more healthy options, and then its decision to eliminate those options. In the long term, do you think maintaining a simplified menu that appeals to a smaller customer base will prove to be more profitable than trying to appeal to a broader audience by offering more options, including those that introduce inefficiencies in the production process? With its reduced menu, does McDonald's risk alienating future customers or does its ability to serve more customers more quickly make it a more attractive destination? Simplify 15a6 bc4/ 35a2 c4 IPSec is applied on traffic carried by the IP protocol. Which of the following statements is true when applying IPSec. a. It can be applied regardless of any other used security protocol b. It cannot be applied in conjunction of Transport layer security protocols c. It cannot be applied in conjunction of Application layer security protocols d. It cannot be applied in conjunction of Data link security protocols Describe the central argument of Platos Republic,including the methodology Platos Socrates uses to examine"justice" and "the good." Why is EVA an important component of the strategic management process? Find the distance from the point (3,2,1) to the line x=0,y=2+4t,z=1+5t. Calculate the majority and minority carriers for each side of a PN junction if NA = 2 x 10^17/cm3 for the n-side, and ND = 10^14 /cm3 for the p-side. Assume the semiconductor is Si and the temperature is 300K. A research laboratory has two melts of Copper (Cu)Nickel (NI) alloy to make up a new alloy. The composition of melt I is 2 parts of Cu for each part of Ni. The composition of melt II is 1 part of Cu for each part of Ni. To make up the new alloy, at least 10Kgs of copper and 6kgs of Nickel is needed. Melt 1 costs $25 per Kg while melt II costs $30 per Kg. Formulate the Linear Programming model. Question 2 Which of the following is true of posttraumatic stress disorder (PTSD)? It can be caused by negative as well as positive events. It is caused by the minor irritations of life that we all face time and time again. It occurs suddenly and typically affects many people simultaneously. It can be triggered by an otherwise innocent stimulus. Question 3 Which of the following statements is true of stress? An event may sometimes be stressful and at other times provoke no stressful reaction at all. For people to consider an event stressful, they need not necessarily perceive it as threatening. Positive events such as getting married or starting a new job are not directly associated with stress. Stress may produce biological and psychological responses that improve our overall health. 1 pts 1 pts please show steps!please do question2. 1. The median of a set of numbers is the value for which half of the numbers in the set are larger and half of the numbers are smaller. In other words, if the numbers were sorted, the median value would be in the exact center of this sorted list. Design a parallel algorithm to determine the median of a set of numbers using the CREW PRAM model. How efficient is your algo- rithm in terms of both run time and cost?2. Design a parallel algorithm to determine the median of a set of numbers using the CRCW PRAM model, being very specific about your write con- flict resolution mechanism. (The median is described in Exercise 1.) How efficient is your algorithm in terms of both run time and cost? In a Carnot cycle operating between 307C and 17C the maxi- mum and minimum pressures are 62-4 bar and 1-04 bar. Calculate the thermal efficiency and the work ratio. Assume air to be the working fluid.