This is the reason the compass needle, despite having a north-seeking magnet, points in the direction of the geographic north pole.
Hi! The phenomenon you're referring to can be explained through the concepts of magnetism and Earth's magnetic field. Although it may seem that the north pole of a compass needle is attracted to the Earth's north pole, it's actually attracted to the magnetic south pole of the planet.
This attraction occurs because the Earth itself acts as a giant magnet, generating a magnetic field with poles that are approximately aligned with the geographic poles. The Earth's magnetic south pole is near the geographic north pole, and the magnetic north pole is near the geographic south pole.
As you mentioned, the needle of a compass is a magnet with its own north and south poles. According to the laws of magnetism, opposite poles attract each other.
Consequently, the north pole of the compass needle is attracted to the magnetic south pole of the Earth, which is near the geographic north pole. This is why the compass needle points towards the geographic north pole, despite it being a north-seeking magnet.
To learn more about : magnet
https://brainly.com/question/26257705
#SPJ11
If the magnitude of the drift velocity of free electrons in a copper wire is 8. 32 10-4 m/s, what is the electric field in the conductor
The electric field in the copper wire is approximately 7.63 x [tex]10^{-5}[/tex] V/m. The drift velocity of free electrons in a copper wire is given as 8.32 x [tex]10^{-4}[/tex] m/s.
The electric field in a conductor is directly proportional to the drift velocity. The relationship between drift velocity and electric field is given by:
vd = (eEτ)/(m)
where,
vd = drift velocity of electrons
e = charge of an electron
E = electric field
τ = relaxation time of electrons
m = mass of an electron
Assuming the values of e, m, and τ for copper, we can solve for the electric field:
E = (vd x m)/(eτ)
E = (8.32 x [tex]10^{-4}[/tex] m/s x 9.11 x [tex]10^{-31}[/tex] kg)/(1.6 x [tex]10^{-19}[/tex] C x 2.3 x [tex]10^{-14}[/tex] s)
E ≈ 7.63 x [tex]10^{-5}[/tex] V/m
Therefore, the electric field in the copper wire is approximately 7.63 x [tex]10^{-5}[/tex] V/m.
To know more about drift velocity, refer here:
https://brainly.com/question/31580648#
#SPJ11
which is a form of potential energy
A concrete column has a diameter of 350m and length of 2m. If the density (mass/volume) of the concrete is 2. 45mg/m^3 determine the weight of column in pounds
The weight of the concrete column with a diameter of 350mm and a length of 2m, having a density of 2.45 Mg/m³, is: approximately 1042 pounds.
To determine the weight of the concrete column with a diameter of 350mm and a length of 2m, we first need to calculate its volume. Since the column is cylindrical, we can use the formula for the volume of a cylinder: V = πr²h, where V is the volume, r is the radius, and h is the height.
The radius of the column is half of the diameter, so r = 350mm / 2 = 175mm, which is equivalent to 0.175m. The height is 2m. Plugging these values into the formula, we get:
V = π(0.175m)²(2m) ≈ 0.193m³
Now that we have the volume, we can use the given density of concrete, which is 2.45 Mg/m³, to determine the mass. The mass can be calculated using the formula: mass = density × volume.
Mass = 2.45 Mg/m³ × 0.193m³ ≈ 0.473 Mg
Next, we need to convert the mass from Mg (megagrams) to kg (kilograms) since 1 Mg = 1000 kg:
Mass = 0.473 Mg × 1000 kg/Mg = 473 kg
Now, to find the weight, we'll use the formula: weight = mass × gravity. The gravitational force is approximately 9.81 m/s².
Weight = 473 kg × 9.81 m/s² ≈ 4638.93 N (Newtons)
Finally, we'll convert the weight from Newtons to pounds using the given conversion factor: 1 pound = 4.4482 N.
Weight = 4638.93 N × (1 pound / 4.4482 N) ≈ 1042 pounds
To know more about density, refer here:
https://brainly.com/question/28929608
#SPJ11
Complete question:
A concrete column has a diameter of 350mm and a length of 2m. If the density (mass/volume) of concrete is 2.45 Mg/m3 determine the weight of the column in pounds. 1 pound = 4.4482 N
27. A bicycle wheel on a repair bench can be
accelerated either by pulling on the chain that
is on the gear or by pulling on a string wrapped
around the tire. The tire's radius is 0. 38 m, while
the radius of the gear is 0. 14 m. What force would
you need to pull on the string to produce the
same acceleration you obtained with a force of
15 N on the chain?
You would need to pull on the string with a force of 5.76 N to produce the same acceleration you obtained with a force of 15 N on the chain.
To calculate the force needed to produce the same acceleration as a force of 15 N on the chain, we need to use the formula:
force = mass × acceleration
First, we need to calculate the acceleration of the bicycle wheel when a force of 15 N is applied to the chain. We can use the formula:
acceleration = [tex]\frac{acceleration}{mass}[/tex]
Assuming the mass of the wheel is negligible, we can simplify this to:
acceleration = [tex]=\frac{force}{0.38}[/tex] = [tex]\frac{15N}{0.38}[/tex]=39.47 N/m
Now we can calculate the force needed to produce the same acceleration when pulling on the string wrapped around the tire. We can use the formula:
force = mass × acceleration
The mass of the wheel does not change, so we can use the same acceleration value we calculated earlier. However, the radius of the tire is different from the radius of the gear, so we need to take this into account.
The circumference of the tire is 2π(0.38 m) = 2.39 m, while the circumference of the gear is 2π(0.14 m) = 0.88 m.
This means that the force needed to produce the same acceleration when pulling on the string is:
force = mass × acceleration × [tex](\frac{radius of the gear}{radius of the tire} )[/tex]
= 0.38 kg x 39.47 N/m x [tex](\frac{0.14 m}{0.38 m} )[/tex]
= 5.76 N
To know more about the different types of forces visit:
https://brainly.com/question/13191643
#SPJ11
Particles q1, q2, and q3 are in a straight line. Particles q1 = -5. 00 x 10^-6 C, q2 = +2. 50 x 10^-6 C
The net force acting on q₂ when Particle is positioned between q₁ and q₃ is 0.486N.
Inversely proportional to the square of the distance between charges and proportionate to the product of their magnitudes is the electrostatic force of attraction or repulsion.
Force on q₂ due to q₁
F₁₂ = kq₁q₂ / r₁₂²
Putting the values provided , may get
F₁₂ = 9 x 10⁹ x 5 x 10⁻⁶ x 2.5 x 10⁻⁶ / (0.5)²
F₁₂ = 0.414 N
Force on q₂ due to q₃ placed at distance 0.25m
F₂₃ =kq₂q₃ / r₂₃²
Substitute the values, can get
F₂₃ = 9 x 10⁹ x 2.5 x 10⁻⁶ x 2.5 x 10⁻⁶ / (0.25)²
F₂₃ = 0.9N
The net force can be calculated as
F =F₂₃ -F₁₂
F =0.9 - 0.414 = 0.486 N
Therefore, the net force of q₂ is 0.486 N.
The complete question is,
Particles q1, q2, and q3 are in a straight line. Particles q1 = -5.00 x 10^-6 C, q2 = +2.50 x 10^-6 C, and q3 = -2.50 x 10^-6 C. Particles q1 and q2 are separated by 0.500 m. Particles q2 and q3 are separated by 0.250 m. What is the net force on q2?
To know more about Particle
https://brainly.com/question/23267775
#SPJ4
The speakers in a sports stadium are
89. 5 m from a fan's seat. How much
time does it take sound to travel from
the speakers to the fan's seat?
Speed of sound = 343 m/s
(Unit = s)
This is also one I am confused on
The speakers in a sports stadium are 89. 5 m from a fan's seat. It takes approximately 0.261 seconds for sound to travel from the speakers to the fan's seat in the sports stadium.
The time it takes for sound to travel from the speakers to the fan's seat can be calculated using the formula
Time = distance / speed
Where distance is the distance between the speakers and the fan's seat, and speed is the speed of sound in air.
In this case, the distance between the speakers and the fan's seat is 89.5 m, and the speed of sound in air is 343 m/s (at standard temperature and pressure).
Plugging in these values into the formula, we get
Time = 89.5 m / 343 m/s
Time = 0.261 seconds
Therefore, it takes approximately 0.261 seconds for sound to travel from the speakers to the fan's seat in the sports stadium.
To know more about time here
https://brainly.com/question/22594054
#SPJ4
Max, the student standing 80 meters from the metronome, heard something different than all the other students. what did the clapping sound like to him
Max would hear the clapping sound at a slightly slower tempo compared to the other students.
Assuming that the speed of sound in air is approximately 343 m/s at room temperature and sea level, we can calculate the time it takes for the sound wave to reach Max's ears.
Using the equation distance = speed x time, we can rearrange it to get time = distance/speed. Plugging in the values, we get time = 80/343 = 0.233 seconds.
The metronome produces sound waves at a constant frequency. At a distance of 80 meters, the sound waves would have to travel a longer distance to reach Max's ears compared to the other students who are closer.
This means that the time it takes for the sound waves to travel from the metronome to Max's ears is longer than for the other students. As a result, Max would hear the clapping sound at a slightly slower tempo compared to the other students.
To know more about metronome, refer here:
https://brainly.com/question/25667592#
#SPJ11
Blue jeans (blank) blue light, so that we see them as the color blue.
Answer:
Blue Jeans (are) blue light,
so that we see them as the color
young's double-slit experiment is performed with 568-nm light and a distance of 2.00 m between the slits and the screen. the tenth interference minimum is observed 7.08 mm from the central maximum. determine the spacing of the slits.
Answer:
yes
Explanation:
A force compresses a bone by 1. 0 mm. A second bone has the same cross-sectional area but twice the length as the first. By how much would the same force compress this second bone
The second bone has the same cross-sectional area and material as the first bone, the same force would create the same stress in both bones.
To solve this problem, we need to consider the relationship between stress, strain, and Young's modulus. Stress is the force applied divided by the cross-sectional area, strain is the change in length divided by the original length, and Young's modulus is a material property that relates stress and strain.
1. Calculate stress (σ) for the first bone:
σ = Force / Cross-sectional area
2. Calculate strain (ε) for the first bone:
ε = Compression / Original Length
ε = 1.0 mm / Original Length
3. Find Young's modulus (Y) for the bone material:
Y = σ / ε
4. Calculate the strain (ε') on the second bone, using the same force and Young's modulus:
ε' = σ / Y
5. Calculate the compression (ΔL) of the second bone, given that its length is twice the first bone:
ΔL = ε' * (2 * Original Length)
However, since the second bone is twice as long, it would experience a greater strain and, as a result, a larger compression. By calculating the compression of the second bone using the relationship between stress, strain, and Young's modulus, you can determine how much the same force would compress the second bone.
For more about cross-sectional area:
https://brainly.com/question/20532494
#SPJ11
Help me!
in your own words, describe how the marble-jar experiment explains newton's law of inertia.
The marble-jar experiment is a classic demonstration of Newton's Law of Inertia. The experiment consists of a jar filled with marbles and a card covering the jar's opening.
When the jar is inverted quickly, the card falls, and the marbles remain in place.
According to Newton's Law of Inertia, an object at rest will remain at rest, and an object in motion will continue to move in a straight line at a constant velocity unless acted upon by an external force.
In this experiment, the marbles' inertia keeps them in place when the jar is inverted, while the card falls due to the external force of gravity.
This experiment provides a simple and tangible way to understand Newton's Law of Inertia.
To know more about Law of Inertia, refer here:
https://brainly.com/question/1830739#
#SPJ11
What is the absolute index of refraction of medium x?
The refractive index of the wave in medium X is 0.577.
What is the refractive index?The refractive index of a substance or medium measures how much light can bend through it. The difference between the speed of light in an object or medium and the speed of light in a vacuum (or in air) is how it is defined. Usually, the letter n is used to denote the refractive index.
The refractive index of a substance or medium is a critical property that determines how light will behave when it passes through it.
We know that the refractive index can be obtained as;
n = sin i/sinr
Thus we have that;
sin i = sin 30
sin r = sin 60
n = sin 30/sin 60
n = 0.577
Learn more about refractive index:https://brainly.com/question/23750645
#SPJ1
A tourist follows a passage which takes her 160 m west, then 180 m at an angle of 45. 0∘ south of east and finally 250 m at an angle 35. 0∘ north of east. The total journey takes 12 minutes.
a. Calculate the magnitude of her displacement from her original position. (4)
b. She measures the distance she has walked to a precision of 5%. She times her total journey to ±20 s.
(i) What is her average speed?
(ii) What is the absolute uncertainty on her absolute speed?
The three components of the journey's vector is 267.7 m, the displacement by the time taken is 22.3 m/min, the average speed is 23 m/min and the average speed with a precision of ±5% and ±20 s is 21.9 m/min to 23 m/min.
What is magnitude?Magnitude is a measure of the size or intensity of something. It is usually a numerical quantity or value, such as size, energy, power, intensity, brightness, strength, or speed. Magnitude is a mathematical concept that is used to compare and evaluate different values.
Using this theorem, we can find the magnitude of the displacement (d) by taking the square root of the sum of the squares of the three components of the journey's vector.
d = √(160² + (180*cos45)² + (250*cos35)²)
d = √(25600 + 25600 + 20625)
d = √71725
d ≈ 267.7 m
To calculate the average speed, we need to divide the magnitude of the displacement by the time taken.
Average Speed = d/t
Average Speed = 267.7 m/12 min
Average Speed = 22.3 m/min
To account for the precision of ±5%, we can add or subtract 5% of the displacement, and ±20 s of the time taken.
Using the new values, we can calculate the average speed as follows:
Average Speed = (267.7 ± 13.4 m)/(12 min ± 20 s)
Average Speed = (254.3 m - 281.1 m)/(11 min 40 s - 12 min 20 s)
Average Speed = (254.3 m/11 min 40 s) - (281.1 m/12 min 20 s)
Average Speed = 21.9 m/min - 23 m/min
Therefore, the average speed with a precision of ±5% and ±20 s is 21.9 m/min to 23 m/min.
To learn more about magnitude
https://brainly.com/question/24256733
#SPJ4
Josh pushes a table with a force of 80. N at an angle of 30°
to the table. If he pushes the table 5 meters, how much
work has he done? Joules
Josh pushes a table with a force of 80. N at an angle of 30° to the table. If he pushes the table 5 meters then Josh has done 346.41 Joules of work on the table.
To calculate the work done by Josh on the table, we can use the formula:
[tex]W = F \times d \times cos(\theta)[/tex]
where W is the work done, F is the force applied, d is the distance moved, and theta is the angle between the force and the direction of motion.
Substituting the given values, we get:
[tex]W = 80 N \times 5 m \times cos(30^{\circ})[/tex]
W = 346.41 J
Therefore, Josh has done 346.41 Joules of work on the table. To understand the concept of work, it is important to note that work is done when a force is applied to an object and it causes it to move.
In this case, Josh applies a force of 80 N at an angle of 30° to the table, causing it to move 5 meters. The work done is calculated by multiplying the force, distance, and cosine of the angle between them.
In summary, to calculate the work done by Josh on the table, we use the formula [tex]W = F \times d \times cos(\theta)[/tex] , where W is the work done, F is the force applied, d is the distance moved, and theta is the angle between the force and the direction of motion.
By substituting the given values, we find that Josh has done 346.41 Joules of work on the table.
To know more about force refer here:
https://brainly.com/question/26115859#
#SPJ11
« A 100 kg stunt woman falls from a three-story
building that is 9. 9 m high. If she falls into a net,
which slows her down over the course of 1 s,
what force did she experience while landing?
The stunt woman experienced a force of 1393 N while landing in the net.
A 100 kg stunt woman falls from a 9.9 m high building and is slowed down by a net over the course of 1 s. To calculate the force she experienced while landing, we first need to determine her velocity when hitting the net.
We can use the formula: v^2 = u^2 + 2as
where v is the final velocity, u is the initial velocity (0 m/s), a is the acceleration due to gravity (9.81 m/s^2), and s is the distance fallen (9.9 m).
v^2 = 0 + 2(9.81)(9.9)
v^2 = 194.118
v = √194.118 ≈ 13.93 m/s
Now, we can use the impulse-momentum theorem to find the force: Ft = mv - mu
where F is the force, t is the time taken to slow down (1 s), m is the mass (100 kg), and v and u are the final and initial velocities, respectively.
F(1) = (100)(13.93) - (100)(0)
F = 1393 N
To know more about the force, click here;
https://brainly.com/question/13191643
#SPJ11
A typical color television draws about 2. 5 A
when connected to an 89 V source.
What is the effective resistance of the T. V.
set?
Answer in units of Ω
The effective resistance of the TV set is 35.6 ohms (Ω).
To find the effective resistance of the TV set, we can use Ohm's Law, which states that Voltage (V) = Current (I) × Resistance (R). We need to rearrange the formula to solve for resistance: R = V / I.
Given the information in your question:
Current (I) = 2.5 A
Voltage (V) = 89 V
Now we can calculate the resistance (R):
R = V / I
R = 89 V / 2.5 A
R = 35.6 Ω
The effective resistance of the TV set is 35.6 ohms (Ω).
To learn more about current, refer below:
https://brainly.com/question/13076734
#SPJ11
Day 58
1. Developing decision-making skills is a vital aspect that occurs during which stage of adolescent development?
social development
physical development
emotional development
intellectual development
4
Answer:
Developing decision-making skills is a vital aspect that occurs during the stage of intellectual development in adolescent development.
Explanation:
During adolescence, individuals undergo significant changes in their cognitive abilities, including an increase in abstract thinking, reasoning, and problem-solving skills. These changes allow adolescents to start thinking critically and independently, weigh options, and make more informed decisions about their lives.
As adolescents develop their intellectual abilities, they also gain more control over their lives and begin to make decisions about their education, career paths, relationships, and other important aspects of their lives. This is a critical time for developing decision-making skills, as the decisions made during adolescence can have significant and long-lasting effects on individuals' lives.
While other aspects of adolescent development, such as social, emotional, and physical development, are also important, intellectual development plays a crucial role in helping adolescents navigate the complex and challenging decisions they face as they transition to adulthood.
One form of energy that exists in every system but is difficult to quantify is heat. Think about how we formulated our spring resonance model. Did we account for the heat energy in the medium? why do we need to?.
No, our spring resonance model did not account for the heat energy in the medium. Heat energy is generated due to the friction between the spring and the medium during the oscillation of the spring.
This energy is dissipated into the medium in the form of thermal energy, causing the amplitude of the oscillation to decrease over time.
In order to develop an accurate and complete model of the spring resonance, we need to account for the heat energy generated during the oscillation.
This is important because the amount of heat generated depends on the mechanical properties of the medium and the frequency and amplitude of the oscillation, and can have a significant impact on the behavior of the system.
By accounting for heat energy, we can better understand the dynamics of the system and predict how it will behave over time.
This can be particularly important in practical applications, such as in engineering and design, where we need to know how a system will perform under different conditions and over long periods of time.
To know more about thermal energy refer here
brainly.com/question/30859008#
#SPJ11
a 1.90-m-long wire having a mass of 0.100 kg is fixed at both ends. the tension in the wire is maintained at 21.0 n.
The fundamental frequency of the 1.90-m-long wire with a mass of 0.100 kg and tension of 21.0 N is approximately 5.24 Hz.
Given the information provided, we have a 1.90-m-long wire with a mass of 0.100 kg that is fixed at both ends and has a tension of 21.0 N.
To find the linear mass density (µ) of the wire, we can use the following formula:
µ = mass/length
Using the given values, we can calculate µ as follows:
µ = 0.100 kg / 1.90 m = 0.05263 kg/m
Now that we have the linear mass density, we can find the fundamental frequency (f) using the formula:
f = (1 / 2L) × √(T / µ)
Where:
f = fundamental frequency
L = length of the wire
T = tension
µ = linear mass density
Substituting the values we found earlier, we get:
f = (1 / 2 × 1.90 m) × √(21.0 N / 0.05263 kg/m)
f ≈ 0.263 × √(399.2) ≈ 5.24 Hz
So, the fundamental frequency of the 1.90-m-long wire with a mass of 0.100 kg and a tension of 21.0 N is approximately
5.24 Hz.
Learn more about frequency here:-
https://brainly.com/question/5102661
#SPJ11
Which choice best explains the definition of a variable?
1. A variable is one way that scientists collect and record data in a scientific investigation.
2. A variable is something that can change and may affect the outcome in a scientific investigation.
3. A variable is a type of testable question that scientists ask when beginning a scientific investigation.
4. A variable is an educated guess that scientists make before conducting a scientific investigation
The best choice that explains the definition of a variable is, a variable is something that can change and may affect the outcome in a scientific investigation. Option 2 is correct.
In scientific investigations, a variable is a factor or condition that can be changed or varied, and may have an effect on the outcome of the investigation. Variables are often classified into independent, dependent, and controlled variables. The independent variable is the factor that is intentionally changed by the researcher to observe its effect on the dependent variable, which is the factor that is being measured or observed.
While the other choices are related to scientific investigations, they do not accurately define what a variable is. A variable is a factor or condition that can change and potentially affect the outcome of an experiment or scientific investigation. Option 2 is correct.
To know more about variables, here
brainly.com/question/17344045
#SPJ4
45 N
15 N
Net Force:
Is it balanced or unbalanced?
net force: 60( not sure)
I would say it's unbalanced because these forces are not of the same magnitude.
The maximum allowable resistance for an underwater cable is one hundredth of an ohm per
meter and the resistivity of copper is 1. 54 x 10-80m.
a) Calculate the smallest cross sectional area of copper cable that could be used.
The copper cable's smallest possible cross-sectional area is 1.54 x 10-6 square meters.
To calculate the smallest cross-sectional area of the copper cable, we can use the formula for resistance:
R = ρ(L/A),
where R is the resistance (in ohms), ρ is the resistivity of the material (in ohm meters), L is the length of the conductor (in meters), and A is the cross-sectional area (in square meters).
Given the maximum allowable resistance (R) is 0.01 ohms per meter (one-hundredth of an ohm per meter) and the resistivity of copper (ρ) is 1.54 x 10^-8 ohm meters. Let's calculate the smallest cross-sectional area (A) that can be used.
First, we'll rewrite the formula for A:
A = ρ(L/R).
Since R is given as ohms per meter, we can set L to 1 meter for simplicity, and the formula becomes:
A = ρ(1/R).
Now, we can plug in the given values:
A = (1.54 x 10^-8)/(0.01).
A = 1.54 x 10^-6 square meters.
So, the smallest cross-sectional area of the copper cable that could be used is 1.54 x 10^-6 square meters.
Know more about Resistance here:
https://brainly.com/question/30799966
#SPJ11
If three crests pass Pin in one second, the wavelength is?
The wavelength of the wave as we have it is 3m
What is the wavelength of a wave?A wave's wavelength is the separation between two successive locations on the wave that are in phase, or at the same stage of their cycle. In other terms, it is the separation between two wave crests or troughs.
We know that the wavelength = Number of crests = 3m
Wave speed = 3 m/s
We would then have that;
v = λf
v = wave speed
f = frequency
λ = wavelength
Thus since there are three crests then the wavelength must be 3m
Learn more about wavelength:https://brainly.com/question/31143857
#SPJ1
Select the statement that is NOT true
the magnetic field lines always cross one another
the magnetic field lines have the same strength
magnetic field lines flow from north to south
magnetic field lines are concentrated at the poles
The statement that is NOT true is: "the magnetic field lines always cross one another."
What is the true statement?Magnetic field lines do not cross one other since they depict the direction of the magnetic field at every position in space. The crossing of two field lines would cause the magnetic field to have two opposite directions at the same spot, which is not possible.
The magnetic field's direction is determined by the orientation of the magnetic dipole moment at its source of starting.
Learn more about Lines of force:https://brainly.com/question/30422314
#SPJ1
NEED HELP FAST!!!! Please answer both questions
Answer:
1. 0.102 mol/kg.
2. 0.444 mol/kg.
Explanation:
Work on 1.To calculate molality, we need to know the moles of solute (NaCl) and the mass of the solvent (water) in kilograms. First, we need to convert the mass of NaCl to moles by dividing by its molar mass. Then we convert the mass of water to kilograms. Molality (m) is equal to moles of solute divided by kilograms of solvent.
Work on 2.
First, we need to convert the mass of glucose to moles by dividing by its molar mass. Then we convert the volume of water to kilograms. Molality (m) is equal to moles of solute divided by kilograms of solvent. Finally, we need to round the answer to three significant figures.
Help urgent- Two waves travel through the air: wave
A, at 680 Hz, and wave B, at 1760 Hz.
Which wave will travel faster? Why?
The speed of a wave in a medium depends on the properties of that medium, such as its density and elasticity. The frequency of the wave, or the number of cycles it completes in a second, does not affect its speed.
Therefore, both wave A and wave B will travel through the air at the same speed, which is approximately 343 meters per second at room temperature and atmospheric pressure.
However, the wavelength of a wave is inversely proportional to its frequency, so wave B will have a shorter wavelength than wave A.
This means that wave B will have a higher energy and be more directional than wave A, but it will not travel faster through the air.
In summary, the frequency of a wave does not affect its speed in a given medium, and both wave A and wave B will travel through the air at the same speed of approximately 343 meters per second.
To know more about elasticity refer here
https://brainly.com/question/28790459#
#SPJ11
in the diagram below are shown snapshots of the changing electric and magnetic field that make up a beam of light. each frame has a time stamp, given in terms of the period of oscillation of the fields. in what direction is the beam of light moving?
Answer:
yes
Explanation:
A ball bounces off the floor elastically as shown. The direction of the change in momentum of the ball is.
The direction of the change in momentum of the ball is in the opposite direction of its original momentum. This is because when the ball bounces off the floor, it experiences an equal and opposite force, which causes its momentum to change direction.
This is known as an elastic collision, and the change in momentum is equal in magnitude to the original momentum but in the opposite direction. This is because the total momentum is conserved in the collision. This means that the sum of the momentum of the ball after the collision is equal to the sum of the momentum of the ball before the collision.
Since the ball has no external forces acting on it, the only way for the momentum to remain the same is for the momentum to change direction. Therefore, the direction of the change in momentum of the ball is in the opposite direction of its original momentum.
Know more about elastic collision here
https://brainly.com/question/31356190#
#SPJ11
During the course of a hot, summer day the temperature of the wooden beam slowly increases from 15°C at night to a final temperature of 35°C during the day. Calculate the amount of heat transferred to the wooden beam if it has mass 60kg
The amount of heat transferred to the wooden beam is 2,040,000 Joules.
During the course of a hot, summer day, the temperature of the wooden beam slowly increases from 15°C at night to a final temperature of 35°C during the day.
To calculate the amount of heat transferred to the wooden beam with a mass of 60kg, follow these steps:
Step 1: Determine the temperature change (∆T)
∆T = [tex]T_{final} - T_{initial}[/tex]
∆T = 35°C - 15°C
∆T = 20°C
Step 2: Find the specific heat capacity (c) of the wooden beam
The specific heat capacity of wood varies depending on its type. For this example, let's use an average specific heat capacity of wood, which is approximately 1700 J/(kg·K).
Step 3: Calculate the amount of heat transferred (Q) using the formula:
Q = mc∆T
where
m is the mass of the wooden beam,
c is the specific heat capacity of wood, and
∆T is the temperature change.
Step 4: Plug in the values and solve for Q
Q = (60 kg)(1700 J/(kg·K))(20 K)
Q = 2,040,000 J
Therefore, the amount of heat transferred to the wooden beam is 2,040,000 Joules.
To know more about temperature refer here
brainly.com/question/11464844#
#SPJ11
How old was isaac newton when in 1666 he formulated the theory of universal gravity?
Isaac Newton was born on January 4, 1643, in England. He was 23 years old when he formulated the theory of universal gravity in 1666.
This was during a period when he was isolating himself to avoid the bubonic plague outbreak that was ravaging England at that time.
While in isolation, Newton engaged in extensive scientific research and discovered the laws of motion, optics, and gravity.
His theory of universal gravitation proposed that every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
This theory revolutionized the field of physics and remains a fundamental concept in modern science.
To know more about bubonic plague, refer here:
https://brainly.com/question/23399204#
#SPJ11