In the reverse reaction NH4+ + OH- = NH3 + H2O, the acid is OH-. This is because OH- accepts a proton (H+) from NH4+, forming H2O.
In this reaction, OH- acts as a base, accepting the proton and becoming neutral water. When a base accepts a proton, it is called a Brønsted-Lowry acid, as it acts as an acid in the reverse reaction. This is because acids and bases are defined in terms of their behavior in reactions, rather than their chemical composition.
Acids are substances that donate protons (H+) in chemical reactions, while bases are substances that accept protons. When NH3 accepts a proton from H2O, it forms NH4+ and OH-, with NH3 acting as a base and H2O acting as an acid.
However, in the reverse reaction, OH- accepts a proton from NH4+, making it the acid and NH3 the base. Understanding these concepts is important in understanding acid-base chemistry, which has many practical applications in fields such as medicine, industry, and environmental science.
To know more about reverse reaction, visit:
https://brainly.com/question/16614705#
#SPJ11
If the reaction above has 118.3g of CS2 and 3.12 Mol of NaOH determine the limiting reactant in the reaction??3CS2+6NaOH— >2Na2CS3+Na2CO3+3H2O
Answer ASAP pls
[tex]CS_2[/tex] is the limiting reactant in the reaction.
The balanced chemical equation for the reaction is:
3 [tex]CS_2[/tex] + 6 [tex]NaOH[/tex] → 2 [tex]Na_2CS_3[/tex] + [tex]Na_2CS_3[/tex] + 3 [tex]H_2O[/tex]
To determine the limiting reactant, we need to calculate the amount of product that each reactant can produce and compare it to the actual amount of product that is formed.
First, we need to convert the mass of [tex]CS_2[/tex] to moles:
118.3 g [tex]CS_2[/tex] × (1 mol [tex]CS_2[/tex] /76.14 g [tex]CS_2[/tex]) = 1.555 mol [tex]CS_2[/tex]
Next, we need to calculate the amount of product that can be formed from 1.555 mol of [tex]CS_2[/tex]. According to the balanced equation, 3 mol of [tex]CS_2[/tex] will produce 2 mol of [tex]Na_2CS_3[/tex]. Therefore, 1.555 mol of [tex]CS_2[/tex] will produce:
(2/3) × 1.555 mol = 1.037 mol [tex]Na_2CS_3[/tex]
Now, let's calculate the amount of product that can be formed from 3.12 mol of [tex]NaOH[/tex]. According to the balanced equation, 6 mol of [tex]NaOH[/tex] will produce 2 mol of [tex]Na_2CS_3[/tex]. Therefore, 3.12 mol of [tex]NaOH[/tex] will produce:
(2/6) × 3.12 mol = 1.04 mol [tex]Na_2CS_3[/tex]
Comparing the amount of product that can be formed from each reactant, we see that 1.037 mol of [tex]Na_2CS_3[/tex] can be produced from the 1.555 mol of [tex]CS_2[/tex], while 1.04 mol of [tex]Na_2CS_3[/tex] can be produced from the 3.12 mol of [tex]NaOH[/tex]. Therefore, the limiting reactant in the reaction is [tex]CS_2[/tex].
For more such questions on reactant, click on:
https://brainly.com/question/29109077
#SPJ11
Please help ill give brainiest
red tape can be used to repair a broken taillight a car. in one or two sentences, explain how different colors of light are
transmitted, reflected, and absorbed by this kind of tape. (2 points)
Red tape is used to repair a broken red taillight of a car as it is transparent to red light, reflects and absorbs other colors of light.
When white light (which is made up of different colors of light) hits the red tape, it absorbs all colors except for red, which is transmitted through the tape.
This is due to the selective absorption property of the tape, which means that it absorbs certain colors of light while allowing others to pass through. Additionally, the tape also reflects red light, which allows it to mimic the original color of the taillight and appear red when viewed from behind.
This property of selective absorption and reflection makes red tape a suitable material for repairing a broken red taillight of a car.
To know more about Red tape refer to-
https://brainly.com/question/28601882
#SPJ11
Answer these questions, expressing each number to four decimal places.
An Erlenmeyer flask contains 25. 00 mL of 0. 10 M
HCl before titration. Which expression shows how
to find the moles of hydrogen ions present in the
flask?
How many moles of hydrogen ion are present in
the flask?
moles H+
There are 0.0025 moles of hydrogen ions present in the flask and the expression that shows how to find it is : moles H+ = Molarity × Volume in liters
The expression to find the moles of hydrogen ions present in the flask is:
moles H+ = Molarity × Volume in liters
First, we need to convert the volume of the solution from milliliters to liters:
Volume = 25.00 mL = 25.00 ÷ 1000 L = 0.02500 L
Substituting the given values into the expression, we get:
moles H+ = 0.10 M × 0.02500 L = 0.002500 mol
Therefore, there are 0.0025 moles of hydrogen ions present in the flask.
To know more about hydrogen ions, here
brainly.com/question/14736709
#SPJ4
Question 2:heat (5 points) a. Describe the following heat equations and identify the indicated variables. (3 points) I. Q= mct; identify c. (1 point) ii. Q=ml vapor; identify l vapor (1 point) iii. Q= ml fusion; identify l fusion (1 point)
I. Q = mct; c is the specific heat capacity, II. Q = ml vapor; l vapor is the latent heat of vaporization,III. Q = ml fusion; l fusion is the latent heat of fusion.
What is vaporization?Vaporization is the process of a substance changing from its liquid form to its gaseous form. It occurs when the substance absorbs heat, causing its molecules to move faster and further apart, converting it from a liquid to a gas. Vaporization is a process that occurs when a liquid is heated to its boiling point and then cooled, causing the molecules to break apart and form a vapor. Vaporization can also occur when a solid is heated until it sublimates, or when the molecules of the solid are broken down into a gas. Vaporization is an important part of the water cycle, and it is also used in many industries, such as chemical production, pharmaceutical manufacturing, and food processing.
To learn more about vaporization
https://brainly.com/question/26306578
#SPJ4
The decomposition reaction of calcium carbonate is represented by the following balanced equation:
CaCO3(s) --> CaO(s) + CO2(g)
After a 15. 8−g sample of calcium carbonate was heated in an open container to cause decomposition, the mass of the remaining solid was determined to be 9. 10 g. The reaction may or may not have gone to completion, so the solid could contain unreacted CaCO3. Calculate the percent yield of CO2.
Please help! Thank you!
The percent yield of CO2 in the decomposition reaction of calcium carbonate is 96.20%.
The decomposition reaction of calcium carbonate (CaCO3) is represented by the balanced equation:
CaCO3(s) --> CaO(s) + CO2(g)
To calculate the percent yield of CO2 from a 15.8-g sample of calcium carbonate that decomposed, leaving a solid mass of 9.10 g, follow these steps:
1. Determine the molar mass of CaCO3, CaO, and CO2.
- CaCO3: (40.08 + 12.01 + 3*16.00) = 100.09 g/mol
- CaO: (40.08 + 16.00) = 56.08 g/mol
- CO2: (12.01 + 2*16.00) = 44.01 g/mol
2. Calculate the theoretical amount of CO2 produced by the complete decomposition of 15.8 g of CaCO3.
- moles of CaCO3: (15.8 g) / (100.09 g/mol) = 0.158 mol
- moles of CO2 produced: 0.158 mol (1:1 ratio with CaCO3)
- mass of CO2: (0.158 mol) * (44.01 g/mol) = 6.95 g
3. Calculate the actual amount of CO2 produced based on the remaining solid mass.
- mass of CaO and unreacted CaCO3: 9.10 g
- mass of CaCO3 in the remaining solid: 15.8 g - 9.10 g = 6.70 g
- moles of CO2 actually produced: (6.70 g) / (44.01 g/mol) = 0.152 mol
4. Calculate the percent yield of CO2.
- percent yield: (actual moles of CO2 / theoretical moles of CO2) * 100
- percent yield: (0.152 mol / 0.158 mol) * 100 = 96.20%
The percent yield of CO2 in the decomposition reaction of calcium carbonate is 96.20%.
To know more about decomposition reaction, visit:
https://brainly.com/question/16987748#
#SPJ11
Match these items. Match the items in the left column to the items in the right column. 1. Electronegativity sharing bond 2. Covalent tendency to attract electrons 3. Ionic stable electron configurations 4. Inert gas transferring bond
The correct matches are:
1.A chemical bond between atoms with similar electronegativities - covalent bond
2. a measure of the ability of an atom to attract electrons within a chemical bond - Electronegativity
3. a bond between atoms of greatly differing electronegativities - Ionic bond
4. the bond formed in metals, holding metals together - Metallic bond
A covalent bond is a bond formed by sharing electrons between two atoms that occur in the bond. It generally forms between atoms with similar electronegativity values.
An ionic bond is a bond formed between two oppositely charged ions of her and held by strong electrostatic attraction. It forms between atoms that have vastly different electronegativities.
Electronegativity is the tendency of an atom in a covalent bond to attract a shared pair of electrons.
A metallic bond is a bond formed by electrostatic attraction between a positively charged metal ion and a conduction electron.
To know more about chemical bonding here
https://brainly.com/question/1542575
#SPJ4
Answer:
Sharing bond: Covalent
Tendency to attract electrons: Electronegativity
Stable electron configurations: Inert gas
Transferred electrons bond: Ionic
flew by Mercury in 1974; took photographs, temperature readings, and gathered atmosphere information; sent the information back to earth through radio waves
In 1974, the 1973-launched Mariner 10 spacecraft made history by flying by Mercury for the first time.
What is spacecraft?A vehicle made specifically for space travel is a spaceship. It can encompass both spacecraft made for study, observation, and the deployment of satellites and other payloads as well as those made for human exploration, communication, and transportation. They typically consist of a propulsion system, navigation system, communications system, and numerous payloads, among other things. Typically, a spacecraft needs a launch vehicle to get off the ground and a re-entry mechanism to land safely.
It recorded temperature readings, snapped pictures, and gathered data on the planet's atmosphere during its flyby. Then, radio waves were used to transmit all of this data back to Earth. The mission was a great success and revealed a tonne of fresh Mercury-related data.
To learn more about spacecraft, visit:
brainly.com/question/29383012
#SPJ1
The complete question is,
passed past Mercury in 1974, taking pictures, measuring temperatures, and gathering data on the atmosphere before radio-transmitting the data back to Earth.
researcher studying the nutritional value of a new candy places a 3.60 g sample of the candy inside a bomb calorimeter and combusts it in excess oxygen. the observed temperature increase is 2.07 ∘c. if the heat capacity of the calorimeter is 29.40 kj⋅k−1, how many nutritional calories are there per gram of the candy?
The candy provides 4.04 nutritional calories per gram.
The researcher used a bomb calorimeter to determine the nutritional value of the candy. The nutritional value refers to the amount of energy that a food provides to the body when it is consumed. This energy is typically measured in calories, which are a unit of energy.
To determine the nutritional value of the candy, the researcher placed a 3.60 g sample of the candy in the bomb calorimeter and combusted it in excess oxygen. The observed temperature increase was 2.07 ∘C, and the heat capacity of the calorimeter was 29.40 kj⋅k−1.
Using these values, the researcher can calculate the number of nutritional calories per gram of the candy.
To do this, the researcher needs to use the following equation:
q = C × ΔT
where q is the heat released by the combustion of the candy, C is the heat capacity of the calorimeter, and ΔT is the observed temperature increase. By rearranging this equation, the researcher can solve for the heat released by the combustion:
q = C × ΔT
q = (29.40 kj⋅k−1) × (2.07 ∘C)
q = 60.93 kJ
To convert this value to nutritional calories per gram of the candy, the researcher needs to divide by the mass of the candy:
60.93 kJ / 3.60 g = 16.92 kJ/g
Finally, the researcher can convert this value to nutritional calories by dividing by 4.184 (the conversion factor between kJ and nutritional calories):
16.92 kJ/g / 4.184 = 4.04 nutritional calories per gram of the candy.
Therefore, the candy provides 4.04 nutritional calories per gram.
To know more about nutritional calories, visit:
https://brainly.com/question/2713545#
#SPJ11
A small piece of iron with a mass of 14. 1 grams is heated from 20 degrees Celsius to 32. 9 degrees Celsius. How much heat did the iron absorb? The specific heat of iron is 0. 450 J/gºC
Explanation:
To calculate the heat absorbed by the iron, we can use the formula:
Q = m * c * ΔT
where Q is the heat absorbed, m is the mass of the iron, c is the specific heat of iron, and ΔT is the change in temperature.
Given:
Mass of iron (m) = 14.1 g
Specific heat of iron (c) = 0.450 J/gºC
Change in temperature (ΔT) = 32.9ºC - 20ºC = 12.9ºC
Substituting these values into the formula, we get:
Q = 14.1 g * 0.450 J/gºC * 12.9ºC
Q = 81.47 J
Therefore, the iron absorbed 81.47 J of heat.
The nitric acid solution used in a lab had a hydronium ion concentration of 0.53 M.
a. Calculate the pH of the solution
b. Calculate the pOH of the solution.
c. Calculate the hydroxide ion concentration.
(a) The pH of the nitric acid solution is approximately 0.28.
(b) The pOH of the nitric acid solution is approximately 13.72
(c) The hydroxide ion concentration of the nitric acid solution is approximately 1.89 x 10^-14 M.
What is the pH of the solution?a. To calculate the pH of the solution, we can use the formula:
pH = -log[H3O+]
where;
[H3O+] is the hydronium ion concentration.Substituting the given value:
pH = -log(0.53) ≈ 0.28
b. The pOH of the solution can be calculated using the formula:
pOH = -log[OH-]
where;
[OH-] is the hydroxide ion concentration.To find the pOH, we need to first calculate the [OH-]. We know that:
Kw = [H3O+][OH-] = 1.0 x 10^-14
where;
Kw is the ion product constant for water.Rearranging the equation, we can solve for [OH-]:
[OH-] = Kw / [H3O+]
[OH-] = 1.0 x 10^-14 / 0.53
[OH-] ≈ 1.89 x 10^-14
Now, we can calculate the pOH:
pOH = -log(1.89 x 10^-14) ≈ 13.72
c. We can use the [OH-] concentration calculated in part (b) to find the hydroxide ion concentration:
[OH-] = 1.89 x 10^-14
Learn more about pH here: https://brainly.com/question/26424076
#SPJ1
Determine the mass of ammonium chloride, NH4Cl, required to prepare 0. 250 L of a 0. 35 M solution of ammonium chloride
We need 4.68 grams of ammonium chloride to prepare 0.250 L of a 0.35 M solution.
To determine the mass of ammonium chloride needed to prepare a 0.35 M solution in 0.250 L of solution, we can use the formula:
moles of solute = concentration x volume
We can rearrange this formula to solve for the mass of solute needed:
mass of solute = moles of solute x molar mass of solute
First, we need to calculate the number of moles of ammonium chloride needed for this solution:
moles of NH4Cl = concentration x volume
moles of NH4Cl = 0.35 mol/L x 0.250 L
moles of NH4Cl = 0.0875 mol
Next, we need to calculate the molar mass of ammonium chloride:
Molar mass of NH4Cl = 14.01 g/mol (mass of N) + 4(1.01 g/mol) (mass of H) + 35.45 g/mol (mass of Cl)
Molar mass of NH4Cl = 53.49 g/mol
Finally, we can calculate the mass of ammonium chloride needed:
mass of NH4Cl = moles of NH4Cl x molar mass of NH4Cl
mass of NH4Cl = 0.0875 mol x 53.49 g/mol
mass of NH4Cl = 4.68 g
to know more about ammonium chloride refer here:
https://brainly.com/question/23387600#
#SPJ11
If 5 mol of oxygen gas effuses through an opening in 10 seconds, how long will it take for the same amount of hydrogen gas to effuse under the same conditions?
( A ) 1. 6 s
( B ) 2. 5 s
( C ) 40 s
( D ) 160 s
So, it will take 2.5 seconds for the same amount of hydrogen gas to effuse under the same conditions. Your answer is (B) 2.5 s.
Graham's Law states that the rate of effusion of two gases is inversely proportional to the square root of their molar masses:
rate1 / rate2 = √([tex]\frac{M_{2} }{M_{1} }[/tex])
Here, rate1 is the rate of effusion for oxygen, and rate2 is the rate of effusion for hydrogen. [tex]M_{1}[/tex] and [tex]M_{2}[/tex] are the molar masses of oxygen and hydrogen, respectively.
Given that 5 mol of oxygen gas effuses in 10 seconds, the rate1 is 0.5 mol/s.
The molar mass of oxygen is 32 g/mol, and the molar mass of hydrogen (H2) is 2 g/mol.
Now we can plug in the values:
0.5 / rate2 = √(2 / 32)
rate2 = 0.5 / √(2 / 32) ≈ 2 mol/s
time = 5 mol / 2 mol/s = 2.5 s
So, it will take 2.5 seconds for the same amount of hydrogen gas to effuse under the same conditions. Your answer is (B) 2.5 s.
To know more about effusion visit:
https://brainly.com/question/31444163
#SPJ11
How many grams of Gold (Il) Sulfate were reacted if 4. 6 x 1022 atoms of Gold were produced? 3 Ca + AU2(504)3 =->3 CaS04 +2 Au
We can start by balancing the chemical equation:
3 Ca + Au2(SO4)3 → 3 CaSO4 + 2 Au
The equation shows that 2 moles of gold atoms are produced for every 1 mole of Au2(SO4)3 that reacts. We can use Avogadro's number to convert the number of atoms of gold to moles:
4.6 x 10^22 atoms of gold / 6.022 x 10^23 atoms/mol = 0.0764 moles of gold
Therefore, we know that 0.0764 moles of Au2(SO4)3 reacted in the equation. To find the mass of Au2(SO4)3, we can use its molar mass:
Au2(SO4)3 molar mass = (2 x 196.97 g/mol) + (3 x 96.06 g/mol) + (12 x 16.00 g/mol) = 842.09 g/mol
Finally, we can use the following conversion factor to calculate the mass of Au2(SO4)3:
0.0764 moles of Au2(SO4)3 x 842.09 g/mol = 64.3 g of Au2(SO4)3
Therefore, approximately 64.3 grams of Au2(SO4)3 were reacted to produce 4.6 x 10^22 atoms of gold.
To know more about chemical refer here
https://brainly.com/question/29237397#
#SPJ11
calculate the rate enhancement that could be accomplished by an enzyme forming one low barrier hydrogen bond
The rate enhancement that could be accomplished by the enzyme forming one low barrier hydrogen bond with transition state at 25 °C is 10⁷.
The decrease is about 5.7 kJ/mol that is observed in the free energy of the activation of the reaction when the 10 fold increase will occurs in the rate of the reaction at 25ºC.
The hydrogen bond free energy = 40 kJ/mol.
Now, for the hydrogen bond, the times of the 10 fold increase
= (40 kJ/mol) / (5.7 kJ/mol)
= 7 times.
Hence, the rate that show the 10 fold increase 7 times. Therefore, the enhancement in the rate will be 10⁷.
To learn more about rate here
https://brainly.com/question/31260701
#SPJ4
This question is incomplete, the complete question is :
calculate the rate enhancement that could be accomplished by an enzyme forming one low barrier hydrogen bond with transition state at 25 °C.
How does latitude affect climate?
A
The closer to the poles, the warmer it gets.
B
The closer to the equator, the warmer it gets.
C
The higher you go up a mountain, the colder it gets.
D
The higher you go up a mountain, the warmer it gets.
Latitude affect climate because the closer to the equator, the warmer it gets. The correct answer is B.
How distance from equator affects climateThe temperature rises as one goes nearer to the equator. One of the key elements that influences climate is latitude. The amount of solar radiation received per unit area rises as you get towards the equator. This raises the temperature and increases evaporation, which causes an increase in precipitation. As a result, the equator's vicinity is typically characterized by a tropical or subtropical climate, marked by warm temperatures and high humidity.
The amount of solar energy received per unit area drops as you move further from the equator, resulting in colder temperatures and less evaporation, which in turn causes less precipitation. As a result, the climate is often colder, with lower temperatures and less humidity, in regions close to the poles.
Learn more on the equator here https://brainly.com/question/1264608
#SPJ1
If there are 3 moles of Pb, how many particles of Pb3N2 are there in the balanced equation? *
In the balanced equation for the reaction of Pb with N2, 3 moles of Pb would react with 2 moles of N2 to form 6 moles of Pb3N2. Since 1 mole of a substance is equal to 6.02x1023 particles, 3 moles of Pb would be equal to 1.81x1024 particles of Pb.
Similarly, 2 moles of N2 would be equal to 1.21x1024 particles of N2. When these two react to form Pb3N2, 6 moles of Pb3N2 would be formed, which is equal to 3.63x1024 particles of Pb3N2. Thus, if there are 3 moles of Pb, then there are 3.63x1024 particles of Pb3N2.
Molecules and atoms are the building blocks of all matter in the universe. A mole is a unit of measurement used to quantify the amount of a substance present in a given sample. It is defined as the amount of substance that contains the same number of particles as 12 grams of Carbon-12.
Moles are used to calculate the number of particles present in a given amount of a substance, as the number of particles in a mole of a substance is always the same. This allows us to easily calculate the number of particles present in any given amount of a substance.
In chemistry, the balanced equation of a reaction is used to calculate the amount of each reactant and product present in the reaction. Knowing the number of moles of each substance present in the reaction allows us to calculate the number of particles present in each substance as well.
Know more about Carbon-12 here
https://brainly.com/question/7666959#
#SPJ11
if potassium carbonate is used to selectively precipitate one of the cations while leaving the other cation in solution, which cation will precipitate first? what minimum concentration of will trigger the precipitation of the cation that precipitates first?
When potassium carbonate is added to a solution containing two cations, the cation that forms a less soluble compound with carbonate will precipitate first.
This is because the less soluble compound will exceed its solubility product and form a solid precipitate. The solubility product is a constant that indicates the maximum amount of solute that can dissolve in a solution at a given temperature and pressure. In the case of the two cations, calcium ion (Ca2+) forms a more insoluble compound with carbonate ion (CO32-) than strontium ion (Sr2+). Therefore, calcium carbonate (CaCO3) will precipitate first, leaving strontium ion in solution.
To know more about potassium carbonate, here
brainly.com/question/30231290
#SPJ4
3. 70 mol CO2 has a volume of 25. 12 L at a pressure of 968 mmHg.
What is the temperature of the CO2 in °C?
70 mol CO2 has a volume of 25. 12 L at a pressure of 968 mmHg The temperature of the CO2 in °C is 4.231.1.
What is Temperature?A thermometer is a device that quantitatively measures a system's temperature. The word "temperature" refers to the average kinetic energy of an object, which is a type of energy associated with motion and used to define how hot or cold an object is.
Volume = 25.12 L. Pressure= 968 mm Hg.
Number of moles = 70 moles.
P = nRT/V
968 = 70 * T * 0.0821 / 25.12 L
968* 25.12/ 70 * 0.0821 = T
24316.16/ 5.747 = T
4.231.1 = T
Therefore, 70 mol CO2 has a volume of 25. 12 L at a pressure of 968 mmHg The temperature of the CO2 in °C is 4.231.1. The temperature of the CO2 in °C is 4.231.1
To Learn more about Temperature, refer to the link:
https://brainly.com/question/7510619
#SPJ6
A long string is stretched and its left end is oscillated upward and downward. Two points on the string are labeled A and B. Points A and B are indicated on the string. Orient the two vectors, v⃗ A and v⃗ B, to correctly represent the direction of the wave velocity at points A and B. Rotate the given vectors to indicate the direction of the wave velocity at the indicated points
The resulting diagram should show VA and V B pointing to the right, parallel to V AB.
To determine the direction of the wave velocity at points A and B, we need to consider the direction in which the wave is traveling.
Assuming that the wave is traveling from left to right, the direction of the wave velocity at point A will be to the right, and the direction of the wave velocity at point B will also be to the right.
To represent the direction of the wave velocity at points A and B using vectors, we can use the following steps:
Draw a vector representing the direction from point A to point B. This vector, which we'll call V AB, represents the direction of the string itself.
Draw another vector, V A, originating from point A and pointing in the direction of the wave motion. Since the wave is traveling to the right, this vector should also point to the right.
Similarly, draw another vector, V B, originating from point B and pointing in the direction of the wave motion. This vector should also point to the right.
Rotate V A and V B so that they are both parallel to VAB. This represents the fact that the wave velocity is in the same direction as the direction of the string itself.
The resulting diagram should show VA and V B pointing to the right, parallel to V AB.
To know more about parallel
https://brainly.com/question/31744314
#SPJ4
A) Determine the [OH−] of a solution that is 0. 145 M in CO32− ( Kb=1. 8×10−4 ).
Express your answer using two significant figures.
B) Determine the pH of a solution that is 0. 145 M in CO32−.
Express your answer to two decimal places.
C) Determine the pOH of a solution that is 0. 145 M in CO32−.
Express your answer to two decimal places
A) The value of concentration [OH⁻] = √(Kb*[CO₃²⁻]) = √(1.8×10⁻⁴*0.145) = 0.0034 M.
B) The pH of the solution is pH = -log[H⁺] = -log(2.24×10⁻¹²) = 11.65.
C) The pOH of the solution is pOH = -log(0.0034) = 2.47.
A) To determine the [OH⁻] of a solution that is 0.145 M in CO₃²⁻ (Kb=1.8×10⁻⁴), we can use the Kb expression of CO₃²⁻ and the fact that Kw (the ion product constant) is equal to [H⁺][OH⁻] to solve for [OH⁻].
The Kb expression for CO₃²⁻ is: Kb = [HCO₃⁻][OH⁻]/[CO₃²⁻]. Since the concentration of HCO₃⁻ is negligible compared to the concentration of CO₃²⁻, we can assume that [HCO₃⁻] is equal to 0.
B) To determine the pH of a solution that is 0.145 M in CO₃²⁻, we need to find the concentration of H⁺ in the solution. Since CO₃²⁻ can act as a base, it can react with water to form HCO₃⁻ and OH⁻.
The Kb expression for CO₃²⁻ can be rewritten as: Kw/Kb = [H⁺][OH⁻]/[CO₃²⁻] = [H⁺][OH⁻]/0.145. Solving for [H⁺], we get [H⁺] = Kw/[OH⁻][CO₃²⁻] = 1.0×10⁻¹⁴/(0.0034*0.145) = 2.24×10⁻¹² M.
C) To determine the pOH of a solution that is 0.145 M in CO₃²⁻, we can use the fact that pOH = -log[OH⁻]. From part A, we know that the [OH⁻] of the solution is 0.0034 M.
To know more about ion product constant click on below link:
https://brainly.com/question/9876097#
#SPJ11
A chemist determined by measurements that 0.0750 moles of magnesium participated in a chemical reaction. calculate the mass of magnesium that participated in the chemical reaction.
To determine the mass of magnesium that participated in the chemical reaction, we need to use the concept of mole-mass relationship. The molar mass of magnesium is 24.31 g/mol. Therefore, we can use the following equation:
Mass of magnesium = number of moles of magnesium x molar mass of magnesium
We know that the number of moles of magnesium that participated in the chemical reaction is 0.0750 moles. Therefore, we can substitute these values in the equation to get:
Mass of magnesium = 0.0750 moles x 24.31 g/mol
Mass of magnesium = 1.823 g
Hence, the mass of magnesium that participated in the chemical reaction is 1.823 g.
In a chemical reaction, the reactants react with each other to form new products. During this process, the reactants undergo a chemical change, which involves the breaking and forming of chemical bonds. In this case, magnesium participated in a chemical reaction, which means it reacted with another substance to form a new product.
The chemist was able to determine the number of moles of magnesium that participated in the reaction by using measurements. This information was used to calculate the mass of magnesium that participated in the reaction using the mole-mass relationship. This relationship helps us to determine the mass of a substance when we know the number of moles of that substance.
To know more about magnesium refer here
https://brainly.com/question/1533548#
#SPJ11
If 25. 5 mL of a 0. 1 M base solution was required to titrate 60 mL of an unknown acid solution, what is the molarity of the acid solution?
The molarity of the acid solution is 0.0425 M.
Titration is a common laboratory technique used to determine the concentration of a substance in a solution. In a titration, a known solution (titrant) is added gradually to an unknown solution until the reaction between the two is complete.
The point at which the reaction is complete is called the endpoint, and it is typically identified by an indicator that changes color.
To calculate the molarity of the unknown acid solution, we can use the following formula:
Molarity of acid solution = (Molarity of base solution) x (Volume of base solution) / (Volume of acid solution)
In this case, we know that 25.5 mL of a 0.1 M base solution was required to titrate 60 mL of the unknown acid solution. Using the formula above, we can plug in the values:
Molarity of acid solution = (0.1 M) x (25.5 mL) / (60 mL)
Molarity of acid solution = 0.0425 M
Therefore, the molarity of the acid solution is 0.0425 M.
To know more about acid solution, visit:
https://brainly.com/question/13208021#
#SPJ11
the molar solubility of lead phosphate in a 0.202 m sodium phosphate solution is_______m.
the molar solubility of lead phosphate in a 0.202 M sodium phosphate solution is approximately 1.27 × 10^-7 M.
To calculate the molar solubility of lead phosphate in a sodium phosphate solution, we need to use the solubility product constant (Ksp) of lead phosphate and the common ion effect of sodium phosphate.
The balanced equation for the dissolution of lead phosphate (Pb3(PO4)2) is:
Pb3(PO4)2(s) ⇌ 3Pb2+(aq) + 2PO42-(aq)
The Ksp expression for lead phosphate is:
Ksp = [Pb2+]^3[PO42-]^2
The balanced equation for the dissociation of sodium phosphate (Na3PO4) is:
Na3PO4(s) ⇌ 3Na+(aq) + PO42-(aq)
In a 0.202 M sodium phosphate solution, the concentration of the PO42- ion is [PO42-] = 3 × 0.202 M = 0.606 M, due to the dissociation of sodium phosphate.
To calculate the molar solubility of lead phosphate, we can assume that x mol/L of Pb3(PO4)2 dissolves and forms 3x mol/L of Pb2+ and 2x mol/L of PO42-. Using the Ksp expression and the common ion effect, we can write:
Ksp = [Pb2+]^3[PO42-]^2
Ksp = (3x)^3(2x)^2 = 108x^5
Since the concentration of PO42- is 0.606 M, the concentration of Pb2+ is also 3x = 3(0.202 M - x). Substituting this into the Ksp expression gives:
Ksp = (3x)^3(2x)^2 = 108x^5
4.8 × 10^-27 = (3(0.202 - x))^3(2x)^2
Solving for x, we get:
x = 1.27 × 10^-7 M
Therefore, the molar solubility of lead phosphate in a 0.202 M sodium phosphate solution is approximately 1.27 × 10^-7 M.
Visit to know more about molar solubility:-
https://brainly.com/question/28202068
#SPJ11
A 98. 5°C metal bolt is placed in a calorimeter of 23. 1°C water. Which way will the heat energy flow?
Hi! The heat energy will flow from the 98.5°C metal bolt to the 23.1°C water in the calorimeter.
This is because heat always flows from a higher temperature object to a lower temperature object until thermal equilibrium is reached.
This principle is known as the second law of thermodynamics or the law of heat transfer. It describes the natural tendency for heat to move from regions of higher temperature to regions of lower temperature.
Heat transfer occurs through three main mechanisms: conduction, convection, and radiation.
In the given scenario, conduction is the primary mechanism of heat transfer. When the hot metal bolt comes into contact with the water in the calorimeter, the thermal energy from the bolt is transferred to the water molecules in direct contact with it.
The water molecules gain kinetic energy and begin to vibrate more rapidly, thereby increasing their temperature. As a result, the metal bolt loses thermal energy, and its temperature decreases.
This transfer of heat will continue until the metal bolt and water reach thermal equilibrium, where both objects have the same temperature. At this point, the heat flow between them will cease, as there is no longer a temperature difference to drive the transfer of thermal energy.
To learn more about heat, refer below:
https://brainly.com/question/1429452
#SPJ11
5. The reaction of magnesium oxide with hydrochloric acid carried out in a calorimeter caused the
temperature of water to change from 25. 0°C to 46. 0°C. In this reaction 4860J of energy was released. What
mass of water was present?
The mass of water present in the calorimeter was 110.6 g.
The heat released by the reaction of magnesium oxide with hydrochloric acid was absorbed by the water in the calorimeter, resulting in a change in the temperature of the water. Using the equation
Q = mcΔT
where Q is the heat released, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature, we can calculate the mass of water present:
Q = mcΔT
4860J = m x 4.18 J/g°C x (46.0°C - 25.0°C)
m = 4860J ÷ (4.18 J/g°C x 21.0°C)
m = 110.6 g
To learn more about mass follow the link:
brainly.com/question/15959704
#SPJ4
2. Draw four reasonable resonance structures for the PO3F
2- ion. The central P atom is bonded to the three O atoms and to the F atom. Show formal charges for all four structures.
Four reasonable resonance structures for the [tex]PO_3F^2^-[/tex] are:
Structure 1:
O- P(=O)-O- F
Structure 2:
O- P(-O•)-O•- F
Structure 3:
O•- P(-O)-O- F,
Structure 4:
O•- P(-O•)-O•- F
The [tex]PO_3F^2^-[/tex] ion has four reasonable resonance structures, which are shown below:
Structure 1:
O- P(=O)-O- F, with formal charges of +1 on the P atom, -1 on the F atom, and -1 on each of the two terminal O atoms.
Structure 2:
O- P(-O•)-O•- F, with formal charges of 0 on the P atom, -1 on the F atom, and -1 on each of the two terminal O atoms.
Structure 3:
O•- P(-O)-O- F, with formal charges of -1 on the P atom, -1 on the F atom, and 0 on each of the two terminal O atoms.
Structure 4:
O•- P(-O•)-O•- F, with formal charges of -2 on the P atom, -1 on the F atom, and 0 on each of the two terminal O atoms.
To draw four reasonable resonance structures for the [tex]PO_3F^2^-[/tex] ion, consider that the central phosphorus (P) atom is bonded to the three oxygen (O) atoms and to the fluorine (F) atom. Here are the four resonance structures with formal charges:
1. P is double bonded to one O, single bonded to the other two O atoms, and single bonded to F. The O atom with a double bond has a formal charge of 0, the other two O atoms have a formal charge of -1 each, P has a formal charge of +1, and F has a formal charge of 0.
2. P is double bonded to the second O, single bonded to the other two O atoms, and single bonded to F. The O atom with a double bond has a formal charge of 0, the other two O atoms have a formal charge of -1 each, P has a formal charge of +1, and F has a formal charge of 0.
3. P is double bonded to the third O, single bonded to the other two O atoms, and single bonded to F. The O atom with a double bond has a formal charge of 0, the other two O atoms have a formal charge of -1 each, P has a formal charge of +1, and F has a formal charge of 0.
4. P is single bonded to all three O atoms and single bonded to F. One O atom has a formal charge of 0, the other two O atoms have a formal charge of -1 each, P has a formal charge of +1, and F has a formal charge of -1.
These four resonance structures show the distribution of electrons and formal charges for the [tex]PO_3F^2^-[/tex] ion, illustrating its resonance stabilization.
For more question on resonance structures
https://brainly.com/question/419650
#SPJ11
h2o is a molecular compound that is a liquid at room temperature (22 degrees celsius). this is primarily due to the fact that it has relatively what strength of intermolecular forces?
H2O, or water, is a molecular compound that is a liquid at room temperature (22 degrees Celsius). This state is primarily due to the fact that it has relatively strong intermolecular forces.
These forces are the attractive forces between the molecules of the compound, and in the case of water, these forces are called hydrogen bonds.
Hydrogen bonds are a type of dipole-dipole interaction that occurs between molecules containing a hydrogen atom bonded to a highly electronegative element, such as oxygen in water. The oxygen atom attracts the electrons in the bond, creating a partial negative charge on the oxygen and a partial positive charge on the hydrogen.
This causes an electrostatic attraction between the partially positive hydrogen atom and the partially negative oxygen atom of a neighboring water molecule.
These hydrogen bonds give water its unique properties, such as its relatively high boiling and melting points compared to other molecular compounds with similar molecular weights.
The strong intermolecular forces provided by hydrogen bonding are what make water a liquid at room temperature, as they are strong enough to hold the molecules together, but not so strong that they form a solid at this temperature.
To know more about H2O, visit:
https://brainly.com/question/13278693#
#SPJ11
What is the molar solubility of Ba3(PO4)2. Ksp Ba3(PO4)2 = 1. 3x10-29
The molar solubility of [tex]Ba_3(PO_4)_2[/tex] is [tex]6.1 * 10^{-10} M[/tex].
The molar solubility [tex]Ba_3(PO_4)_2[/tex] can be calculated using the solubility product constant (Ksp) expression:
[tex]Ksp = [Ba_2+ ]^3[PO_{43-} ]^2[/tex]
where [tex][Ba_2+][/tex] and [tex][PO_{43-}][/tex] are the molar concentrations of barium ions and phosphate ions in the saturated solution, respectively.
To find the molar solubility, we assume that x moles of [tex]Ba_3(PO_4)_2[/tex]dissolved in 1 liter of water give 3x moles of [tex]Ba_2[/tex]+ and 2x moles of [tex]PO_{43}[/tex]-. Substituting these values into the Ksp expression, we have:
Ksp = [tex](3x)^3(2x)^2 = 1.3*10^{-29}[/tex]
Solving for x, we get:
x =[tex]6.1 * 10^{-10} M[/tex]
This means that at equilibrium, the concentration of barium ions is three times this value, or [tex]1.8*10^{-9} M[/tex], and the concentration of phosphate ions is twice this value or [tex]1.2 * 10^{-9}[/tex] M.
To know more about molar solubility, here
brainly.com/question/28170449
#SPJ1
tests show that the hydrogen ion concentration of a sample of apple juice is 0.0003 and that of ammonia is . find the ph of each liquid using the formula , where is the hydronium ion concentration.
The pH of the apple juice is approximately 3.52.
The pH of ammonia is approximately 11.13.
The pH of the apple juice can be calculated using the formula pH = -log[H₃O⁺], where [H₃O⁺] is the hydronium ion concentration. Given that the hydrogen ion concentration of the apple juice is 0.0003, the hydronium ion concentration can be calculated as follows:
[H₃O⁺] = 10^(-pH)
0.0003 = 10^(-pH)
-pH = ㏒(0.0003)
pH = -㏒(0.0003)
pH = 3.52
As a result, the pH of apple juice is roughly 3.52.
Similarly, the pH of ammonia can be calculated using the same formula. However, we are given the hydrogen ion concentration for ammonia, so we need to calculate the hydronium ion concentration first. Ammonia is a base, so it reacts with water to produce hydroxide ions (OH⁻):
NH₃ + H₂O → NH₄⁺ + OH⁻
The equilibrium constant for this reaction is the base dissociation constant, Kb. For ammonia, Kb = 1.8 x 10⁻⁵ at 25°C. Using this value, we can calculate the concentration of hydroxide ions as follows:
Kb = [NH4⁺][OH⁻]/[NH₃3
1.8 x 10⁻⁵ = x²/0.05
x = 1.34 x 10⁻³
Therefore, the concentration of hydroxide ions is 1.34 x 10⁻³ M. Using the formula for pH, we can now calculate the pH of ammonia:
pOH = -㏒[OH⁻] = -㏒(1.34 x 10⁻³) = 2.87
pH = 14 - pOH = 14 - 2.87 = 11.13
As a result, the pH of ammonia is about 11.13.
To know more about the Concentration, here
https://brainly.com/question/28113949
#SPJ4
A car tire has a volume of 15 L at a temperature of 22. 0°C. What will the new volume
be if the temperature is increased to 34. 0°C?
The new volume of the tire is 15.6 L if the temperature is increased from 22° C to 34°C if the previous volume was 15 L.
The relation between pressure and volume in a system is explained by Charles's Law. It states that the temperature is inversely proportional to the volume in the system. It is expressed as:
[tex]T_2V_1=T_1V_2[/tex]
where T is the temperature
V is the volume
with no change in pressure and a number of moles of gases.
Given in the question,
[tex]V_1[/tex] = 15 L
[tex]T_1[/tex] = 22°C = 295 K
[tex]T_2[/tex] = 34°C = 307 K
307 * 15 = 295 * [tex]V_2[/tex]
[tex]V_2[/tex] = 15.6 L
Learn more about Charle's Law:
https://brainly.com/question/16927784
#SPJ4