Answer:
x = 6
Step-by-step explanation:
In order for it to be a parallelogram, the 2 lines must be equal.
2x=3x-6
2x - 3x = 3x - 3x -6
-1x = -6
x = 6/1
x = 6
Pls help me find the exponent!
Answer:
1.6×10^-12..............
Answer quickly please
Given that A is a constant, the general solution to the differential equation dy dt -5y is Select one O a. 3t2 2 Ob. 3= Ae-56 Ос. y = Aest Od y=est +A The solution to the exact differential equati
The general solution to the differential equation dy/dt - 5y = A is y = Ce^(5t) + A/5, where C is a constant of integration. The general solution is y = (A/5) + Ce^(5t). so, the correct answer is D).
The general solution to the differential equation dy/dt - 5y = A, where A is a constant, is
y = Ce^(5t) + A/5
where C is an arbitrary constant determined by any initial or boundary conditions given.
The general solution is a combination of the homogeneous solution y_h = Ce^(5t) (which satisfies the differential equation without the constant term A) and the particular solution y_p = A/5 (which satisfies the differential equation with A but without any initial or boundary conditions).
so, the correct option is D).
To know more about differential equation:
https://brainly.com/question/14620493
#SPJ4
--The given question is incomplete, the complete question is given
" Answer quickly please
Given that A is a constant, the general solution to the differential equation dy/dt -5y = A is Select one O a. 3t2 2 Ob. 3= Ae-56 Ос. y = Aest Od y = Ce^(5t) +A/5 The solution to the exact differential equation"--
Qiang wants to style a 3ft x 3ft entryway. estimate to determine which style of tile will be the least expensive for this project. EXPLAIN.
The style that will be least expensive for the project, based on the product of the fractions representing the dimensions is the Style D that will yield a total cost of $25.92
What are fractions?A fraction is a representation of a part of a whole. It is a quantity which forms part of a whole number.
The area Qiang wants to tile = 3 ft × 3 ft
The price list and area of each tile, based on the product of the fractions of the tile dimensions are;
A; (5/6) × (1 1/12) = 65/72 cost 3.25
B; (5/6) × (2 1/12) = 125/72 cost 6.20
C; (5/6) × (5/6) = 5/16 cost 2.75
D; (5/12) × (3/4) = 5/16 cost 0.90
E; (5/12) × (5/12) = 25/144 cost 0.65
The areas of the tiles are;
The number of tiles required, are;
Cost of tiles style A = 9/(65/72) × 3.25 = 32.4
Cost of tiles style B = 9/(125/72) × 6.20 = 32.14
Cost of tiles style C = 9/(5/16) × 2.75 = 79.2
Cost of tiles style D = 9/(5/16) × 0.90 = 25.92
Cost of tiles style E = 9/(25/144) × 0.65 = 33.696
The least expensive style for the project is style D
Learn more on fractions here: https://brainly.com/question/29565692
#SPJ1
A farmer sell 7. 9 kilograms of pears and apples at the farmers market. 3/5 of this wieght is pears,and the rest is apples. How many apples did she sell at the farmers market?
The farmer sold 3.16 kilograms of apples at the farmers market.
What is division?
A division is one of the fundamental mathematical operations that divides a larger number into smaller groups with the same number of components. How many total groups will be established, for instance, if 20 students need to be separated into groups of five for a sporting event? The division operation makes it simple to tackle such issues. Divide 20 by 5 in this case. 20 x 5 = 4 will be the outcome. There will therefore be 4 groups with 5 students each. By multiplying 4 by 5 and receiving the result 20, you may confirm this value.
Let's start by finding out the weight of pears the farmer sold.
Weight of pears = 3/5 x 7.9 kg = 4.74 kg
To find the weight of apples, we can subtract the weight of pears from the total weight:
Weight of apples = Total weight - Weight of pears
Weight of apples = 7.9 kg - 4.74 kg
Weight of apples = 3.16 kg
Therefore, the farmer sold 3.16 kilograms of apples at the farmers market.
Learn more about weight here,
https://brainly.com/question/31528936
#SPJ4
A store sells four ears of sweetcorn for one dollar how much will nine ears cost
Nine ears of sweetcorn will cost $2.25 at this store.
To determine the cost of nine ears of sweetcorn, given that four ears cost one dollar, you can follow these steps:
1. Determine the cost of one ear of sweetcorn: Since four ears cost one dollar, we can calculate the cost per ear by dividing the total cost by the number of ears: $1 / 4 ears = $0.25 per ear.
2. Calculate the cost of nine ears: Multiply the cost of one ear by the number of ears desired: $0.25 per ear × 9 ears = $2.25.
So, nine ears of sweetcorn will cost $2.25 at this store.
To know more about cost price refer here:
https://brainly.com/question/30175345?#
SPJ11
If the energy of an object goes down by 50j...
-physics
If the energy of an object goes down by 50 joules, it means that the object has lost 50 joules of its energy.
If the energy of an object goes down by 50 joules, it means that the object has lost 50 joules of its energy. This could happen due to various reasons such as work done against a force, energy transferred to another object, or energy lost as heat. Here's a step-by-step explanation:
1. Identify the initial energy of the object.
2. Subtract 50 joules from the initial energy to find the final energy: Final energy = Initial energy - 50 J.
3. Analyze the situation to determine the reason for the energy loss, such as work done, energy transfer, or heat loss.
4. If necessary, calculate the amount of work done, energy transferred, or heat lost using appropriate equations and given data.
By following these steps, you can determine the final energy of the object after it has lost 50 joules and understand the reason for the energy loss.
To learn more about energy
https://brainly.com/question/31346995
#SPJ11
Section 15 8: Problem 3 Previous Problem Problem List Next Problem 3 (1 point) Find the maximum value of f(x, y) = xºy® for x, y > 0 on the unit circle. = fmax
The maximum value of f(x, y) = x^y on the unit circle can be found using the constraint x^2 + y^2 = 1, which defines the unit circle. To solve this, we can use the method of Lagrange multipliers.
Let g(x, y) = x^2 + y^2 - 1. Then, the gradient of f(x, y) and the gradient of g(x, y) should be proportional:
∇f(x, y) = λ∇g(x, y)
Calculating the gradients:
∇f(x, y) = (yx^(y-1), x^y * ln(x))
∇g(x, y) = (2x, 2y)
Equating the components and dividing the equations, we get:
y * x^(y-1) / 2x = x^y * ln(x) / 2y
Simplifying, we obtain:
ln(x) = y
Now, using the constraint x^2 + y^2 = 1, we can substitute y with ln(x) and solve for x:
x^2 + (ln(x))^2 = 1
Numerically solving this equation, we get x ≈ 0.90097 and y ≈ ln(0.90097) ≈ -0.10536. Since we are only interested in positive values of x and y, this is the only solution in our domain. Now, we can find the maximum value of f(x, y):
f_max = f(0.90097, -0.10536) ≈ 0.79307
So the maximum value of f(x, y) on the unit circle is approximately 0.79307.
Learn more about maximum value, here:
brainly.com/question/24866444
#SPJ11
A fountain is in the shape of a right triangle. The area of the fountain is
12 square meters. One leg of the triangle measures one and a half times the
length of the other leg. What are the lengths of all three sides of the fountain?
Answer:
4,6,[tex]\sqrt{52} \\[/tex]
Step-by-step explanation:
Area of right triangle= base x height/2=12, but if we remove the division then it's:
base x height=24
factors of 24= 6,4 8,3 24,1 and 12,2
we have the rule that "One leg of the triangle measures one and a half times the length of the other leg." and the pair that matches that is 6 and 4.
So leg a=4 and leg b=6. Using the Pythagorean theorem(a^2+b^2=c^2) we have:
4^2+6^2=c^2=16+36=52 so the answer is 4,6,[tex]\sqrt{52} \\[/tex]
Find the 2 consecutive integers whose squares have a difference of 259
Answer:
The integers are 129 and 130.
Step-by-step explanation:
[tex] {(x + 1)}^{2} - {x}^{2} = 259[/tex]
[tex] {x}^{2} + 2x + 1 - {x}^{2} = 259[/tex]
[tex]2x + 1 = 259[/tex]
[tex]2x = 258[/tex]
[tex]x = 129[/tex]
[tex]x + 1 = 130[/tex]
The two consecutive integers whose squares have a difference of 259 are 8 and 9.
Let x be the first of the two consecutive integers, then the next integer would be x+1. We are given that the squares of these two integers have a difference of 259, so we can write an equation as (x+1)^2 - x^2 = 259. Expanding the equation gives x^2 + 2x + 1 - x^2 = 259.
Simplifying the equation gives 2x + 1 = 259. Subtracting 1 from both sides gives 2x = 258, which means x = 129. Therefore, the two consecutive integers are 129 and 130. However, we need to check if their squares have a difference of 259. We find that 130^2 - 129^2 = 169 + 260 = 429, which is not equal to 259.
Therefore, the assumption that x is 129 is incorrect. Instead, we try x = 8. Then, the next integer is 9, and their squares are 64 and 81 respectively. The difference between their squares is 81 - 64 = 17, which is not equal to 259. However, if we reverse the order, we get 81 - 64 = 259. Therefore, the answer is 8 and 9.
For more questions like Integer click the link below:
https://brainly.com/question/490943
#SPJ11
One gallon of paint covers 50 square feet. A wall that measures 32 feet by 16 feet is going to be painted.
Area of Wall:
How many gallons of paint will it take?
If paint costs $27 per gallon, how much money will it take to paint the wall?
Answer:
10.24 gallons
$276.48
Step-by-step explanation:
The area of the wall can be calculated by multiplying the length and height of the wall:
Area of wall = length x height = 32 x 16 = 512 square feet
To calculate the number of gallons of paint needed, we need to divide the area of the wall by the coverage of one gallon of paint:
Number of gallons of paint = Area of wall / Coverage of one gallon of paint
Number of gallons of paint = 512 / 50
Number of gallons of paint = 10.24
Therefore, it will take approximately 10.24 gallons of paint to paint the wall.
To calculate the cost of the paint, we need to multiply the number of gallons of paint by the cost per gallon:
Cost of paint = Number of gallons of paint x Cost per gallon
Cost of paint = 10.24 x $27
Cost of paint = $276.48
Therefore, it will cost $276.48 to paint the wall.
For babysitting, Nicole charges a flat fee of $3, plus $5 per hour. Write an equation for the cost, C, after h hours of babysitting. How much will Nicole make after babysitting for 8 hours?
Answer:
Sure. Here is the equation for the cost, C, after h hours of babysitting:
```
C = 3 + 5h
```
This equation can be found by combining the flat fee of $3 with the hourly rate of $5. For example, if Nicole babysits for 2 hours, she will make $3 + (2 * $5) = $13.
To find how much Nicole will make after babysitting for 8 hours, we can simply substitute h = 8 into the equation. This gives us:
```
C = 3 + 5(8) = 3 + 40 = $43
```
Therefore, Nicole will make $43 after babysitting for 8 hours.
Answer:c= 3 + 5(8)
Step-by-step explanation:
3 is flat fee, and then plus $5 and hour. you know she's going for 8 hours, so you multiply hourly rate by the number of hours plus flat fee and you get your answer
Which is an expression in terms of π that represents the area of the shaded part of ⊙R
The expression in terms of π that represents the area of the shaded part of ⊙R is 3πR²/4, obtained by subtracting the area of the smaller circle from the larger circle.
How to find the area of the shaded region in terms of π?To find the area of circle of the shaded part of ⊙R, we need to subtract the area of the smaller circle from the area of the larger circle.
The area of a circle is given by the formula A = πr², where r is the radius of the circle.
Let the radius of the larger circle be R and the radius of the smaller circle be r. Then the area of the shaded part can be expressed as:
A(shaded) = A(large circle) - A(small circle)
= πR² - πr²
We can simplify this expression further by noticing that the radius of the smaller circle is half the radius of the larger circle, so r = R/2. Substituting this into the equation gives:
A(shaded) = πR² - π(R/2)²
= πR² - πR²/4
= 3πR²/4
Therefore, the area of the shaded part of ⊙R can be expressed as 3πR²/4. This expression represents the difference in the area between the larger and smaller circles, which gives us the area of the shaded region.
Learn more about area of circle
brainly.com/question/28642423
#SPJ11
The expression in terms of π that represents the area of the shaded part of ⊙R is 3πR²/4, obtained by subtracting the area of the smaller circle from the larger circle.
How to find the area of the shaded region in terms of π?To find the area of circle of the shaded part of ⊙R, we need to subtract the area of the smaller circle from the area of the larger circle.
The area of a circle is given by the formula A = πr², where r is the radius of the circle.
Let the radius of the larger circle be R and the radius of the smaller circle be r. Then the area of the shaded part can be expressed as:
A(shaded) = A(large circle) - A(small circle)
= πR² - πr²
We can simplify this expression further by noticing that the radius of the smaller circle is half the radius of the larger circle, so r = R/2. Substituting this into the equation gives:
A(shaded) = πR² - π(R/2)²
= πR² - πR²/4
= 3πR²/4
Therefore, the area of the shaded part of ⊙R can be expressed as 3πR²/4. This expression represents the difference in the area between the larger and smaller circles, which gives us the area of the shaded region.
Learn more about area of circle
brainly.com/question/28642423
#SPJ11
A can of soda can be modeled as a right cylinder. Nicole measures its height as 11.4 cm and volume as 144 cubic centimeters. Find the can’s diameter in centimeters. Round your answer to the nearest tenth if necessary.
We can start by using the formula for the volume of a cylinder, which is:
V = πr^2h
where V is the volume, r is the radius (half of the diameter), and h is the height.
In this problem, we are given the height and volume of the can, but we need to find the diameter (which is twice the radius). We can rearrange the formula above to solve for the radius:
r = √(V/πh)
Substituting the given values, we get:
r = √(144/π x 11.4) ≈ 1.5 cm
Finally, we can find the diameter by doubling the radius:
d = 2r ≈ 3 cm
Therefore, the can's diameter is approximately 3 centimeters.
A recipe for maroon paint says, "mix 5 ml of red paint with 3 ml of blue paint."
use snap cubes to represent the amounts of red and blue paint in the recipe. then, draw a sketch of your snap-cube representation of the maroon paint.what amount does each cube represent?
Assuming that one snap cube represents one milliliter (ml) of paint, we can use five red snap cubes to represent 5 ml of red paint and three blue snap cubes to represent 3 ml of blue paint. We can arrange these snap cubes in a row to represent the recipe:
RRRRR BBB
This indicates that we mix 5 ml of red paint with 3 ml of blue paint to create the maroon paint.
To draw a sketch of the snap-cube representation of the maroon paint, we can combine the red and blue snap cubes into a single row:
RRRRR BBB
This gives us a row of eight snap cubes, which represents the maroon paint. Visually, the maroon paint will appear as a blend of red and blue, with a darker, richer hue than either color alone.
Each snap cube represents one milliliter (ml) of paint. Therefore, in this representation, each snap cube represents a fixed amount of paint, regardless of the color. In other words, each cube represents a unit of volume, rather than a unit of color or pigment.
Below are the steps for copying Line Segment DE using dynamic geometry software. Which sequence has the steps in the correct order?
1.) Draw Line Segment DE with endpoint H on the circle.
2.) Construct a circle centered at the point G with radius Line Segment DE.
3.) Line Segment DE ≅ Line Segment GH
4.) Draw a point and label it G.
~a.) 2,4,1,3
~b.) 4,2,1,3
~c.) 2,1,4,3
~d.) 3,4,2,1
The correct sequence of steps for copying Line Segment DE using dynamic geometry software is in the order of 2,1,4,3. So, correct option is C.
The correct sequence of steps for copying Line Segment DE using dynamic geometry software is:
1.) Draw Line Segment DE with endpoint H on the circle.
2.) Draw a point and label it G.
3.) Construct a circle centered at the point G with radius Line Segment DE.
4.) Line Segment DE ≅ Line Segment GH
Therefore, option c.) 2,1,4,3 is the correct sequence of steps. The first step is to draw the original line segment DE with endpoint H on the circle.
The second step is to draw a point and label it G. The third step is to construct a circle centered at G with the same radius as Line Segment DE. Finally, in the fourth step, the line segment GH is drawn such that it is congruent to Line Segment DE, completing the copy of Line Segment DE.
So, correct option is C.
To learn more about circle click on,
https://brainly.com/question/30947467
#SPJ1
Rachel currently has $836 in a savings account that has earned 4. 5% annual compound interest for the past year. What was Rachel's beginning balance one year ago if she has made no other deposits during the year. $873. 62 $800. 00 $576. 55 $798. 38
Rachel's beginning balance one year ago if she has made no other deposits during the year is $800.00. Therefore, the correct option is 2.
To find Rachel's beginning balance one year ago, given that she currently has $836 in a savings account with a 4.5% annual compound interest rate, we'll use the compound interest formula:
A = P(1 + r/n)^(nt)
Where:
A = the final amount ($836)
P = the principal (beginning balance) - this is what we're trying to find
r = the annual interest rate (0.045 or 4.5%)
n = the number of times interest is compounded per year (assuming it's compounded annually, n = 1)
t = the number of years (1 year)
First, rearrange the formula to solve for P:
P = A / (1 + r/n)^(nt)
Now, plug in the values:
P = 836 / (1 + 0.045/1)^(1*1)
Simplify the equation:
P = 836 / (1.045)^1
Calculate the result:
P ≈ 800.00
So, Rachel's beginning balance one year ago was approximately $800.00 which corresponds to option 2.
Learn more about Compound interest:
https://brainly.com/question/28020457
#SPJ11
Choose the correct symbol to compare the expressions. Do not multiply. 7×
2
10
?7
The correct symbol to compare the expressions is < (less than).
7 × (2/10) is equivalent to 1.4, which is less than 7. Therefore, 7 is greater than 1.4, and we can write 7 × (2/10) < 7 as the comparison between the expressions.
To compare the two expressions, we can analyze their values without actually multiplying them. The expressions are:
1. 7 × (2/10)
2. 7
Now let's simplify the first expression without multiplying:
7 × (2/10) = 7 × (1/5) (since 2 and 10 have a common factor of 2)
Now let's compare:
7 × (1/5) ? 7
Since we're multiplying 7 by a fraction that is less than 1 (1/5), the result will be smaller than 7. Therefore, the correct comparison symbol is "<":
7 × (1/5) < 7
The correct expression so formed is 7 × (2/10) < 7.
To know more about expression, refer to the link below:
https://brainly.com/question/7097069#
#SPJ11
Jenelle draws one from a standard deck of 52 cards. Determine the probability of drawing either a two or a ten? Write your answer as a reduced fraction. Answer= Determine the probability of drawing either a two or a club? Write your answer as a reduced fraction. Answer=
The probability of drawing either a two or a ten is (4+4)/52, which simplifies to 2/13.
The probability of drawing either a two or a club is (3+13)/52, which simplifies to 4/13.
For the first question: In a standard deck of 52 cards, there are four 2s and four 10s. The probability of drawing either a two or a ten is the number of successful outcomes (drawing a 2 or a 10) divided by the total number of possible outcomes (52 cards). So, the probability is (4+4)/52 = 8/52. This can be reduced to the fraction 2/13.
For the second question: There are four 2s and thirteen clubs in a standard deck of 52 cards. Since one of the 2s is a club, there are three additional 2s that are not clubs. The probability of drawing either a two or a club is the number of successful outcomes (3 additional 2s + 13 clubs) divided by the total number of possible outcomes (52 cards). So, the probability is (3+13)/52 = 16/52. This can be reduced to the fraction 4/13.
Therefore,
1) Probability of drawing either a two or a ten: 2/13
2) Probability of drawing either a two or a club: 4/13
For more such questions on Probability.
https://brainly.com/question/30053671#
#SPJ11
A recipe for banana pudding calls for 2/3 of a cup of sugar for the flour mixture and 1/4 of a cup of sugar for the meringue topping. How many cups of sugar in all is required to make the banana pudding?
Answer: To find the total amount of sugar required to make the banana pudding, we need to add the amount of sugar needed for the flour mixture to the amount of sugar needed for the meringue topping.
The recipe calls for 2/3 of a cup of sugar for the flour mixture and 1/4 of a cup of sugar for the meringue topping. To add these two fractions, we need to find a common denominator. The least common multiple of 3 and 4 is 12, so we can convert these fractions to twelfths:
2/3 = 8/12
1/4 = 3/12
Now we can add these two fractions:
8/12 + 3/12 = 11/12
So the total amount of sugar required to make the banana pudding is 11/12 of a cup.
8. A square has a side length of 11 V2 meters. What is the length of the diagonal
of the square?
The length of the diagonal of the square is 22 meters.
Define squareA square is a four-sided two-dimensional geometric shape in which all sides are equal in length and all angles are right angles (90 degrees).It is a unique instance of a rectangle with equal sides. The opposite sides of a square are parallel to each other and the diagonals bisect each other at right angles.
A square is divided into two 45-45-90 triangles by its diagonal.
In a 45-45-90 triangle, the hypotenuse (the side opposite the right angle) is √2 times as long as each leg.
Therefore, in this square, the length of the diagonal (d) can be found by multiplying the length of one side (s) by √2:
d = s√2
In this case, the side length of the square is 11√2 meters, so:
d = 11√2 × √2 = 11 × 2 = 22 meters
Therefore, the length of the diagonal of the square is 22 meters.
To know more about rectangle, visit:
https://brainly.com/question/28993977
#SPJ1
given a standard deck of cards, what is the probability of choosing a diamond, then a heart, then a black card if no replacement is made
Answer:The probability of both is 1/4*13/51.
Step-by-step explanation:
There are 52 cards in the deck, 13 hearts and 13 spades. The probability of getting a heart is 13/52 or 1/4. Given an initial heart there are 51 cards remaining; the probability of a spade is now 13/51
Please help me with this math problem!! Will give brainliest!! :)
part a.
the percentage of eggs between 42 and 45mm is 48.48%
part b.
The median width is approximately (42+45)/2 = 43.5mm.
The median length is approximately (56+59)/2 = 57.5mm.
part c.
The width of grade A chicken eggs has a range of about 24mm.
part d.
I think its impossible to determine because we don't have the value for the standard deviation.
The second option should be correct.
What is a histogram?A histogram is described as an approximate representation of the distribution of numerical data.
part a.
From the histogram, we see that the frequency for the bin that ranges from 42 to 45mm is 4 and we have a total of 33 eggwe use this values and calculate the percentage of eggs between 42 and 45mm is 48.48%.
part b.
we have an estimation that the median of the width is 48mm and the median of the length is around 60mm.
part c.
Also from the histogram, we notice that the smallest value is around 36mm and the largest value is around 66mm, hence the width of grade A chicken eggs has a range of about 24mm.
In a histogram, the range is the width that the bars cover along the x-axis and these are approximate values because histograms display bin values rather than raw data values.
Learn more about histogram at:
https://brainly.com/question/2962546
#SPJ1
√50-√18+√8+√128-3√2
Please solve this
Step-by-step explanation:
the
answer
of
this
question
is
9 \sqrt{2}
Do you like this (^__^) ??
is this a linear function
2) You buy a brand new Audi R8 for $148,700 before taxes. If the car depreciates at a rate of 8%, how much will it be worth in 5 years?
To solve this problem, we will use the formula for exponential decay as follows: V = P * e^(-rt) where V is the value after t years, P is the initial value, r is the annual interest rate as a decimal, and t is the time in years.
What is Depreciation: Depreciation is dependent on a number of estimates.The method in which companies determine the depreciation value of their assets is different from one another. Some companies may use a straight line method of depreciation and another may count the depreciation according to asset's production value. What is exponential decay: An exponential function's curve is created by a pattern of data called exponential decay, which exhibits higher decreases over time .Given that a brand new Audi R8 is purchased for $148,700 before taxes, and the car depreciates at a rate of 8%, we can find how much it will be worth in 5 years. Using the formula for exponential decay, we have V = P * e^(-rt) where P = $148,700r = 0.08t = 5. Therefore,V = $148,700 * e^(-0.08 * 5), V = $148,700 * e^(-0.4)V ≈ $82,429.61. Therefore, the car will be worth approximately $82,429.61 in 5 years.
Learn More About Deprication of rate's: https://brainly.com/question/21212050
#SPJ11
FILL IN THE BLANK. Use part I of the Fundamental Theorem of Calculus to find the derivative of f(x) = x∫4 1/1+4t⁴ dt f'(x)=________
The derivative of f(x) is: f'(x) = [tan⁻¹(2)/2] - [tan⁻¹(1/2)/2]
The Fundamental Theorem of Calculus is a pair of theorems that link the concept of differentiation and integration. It states that if a function f(x) is continuous on an interval [a, b] and F(x) is the antiderivative of f(x) on the same interval, then:
Part I: The derivative of the integral of f(x) from a to x is equal to f(x):
d/dx ∫a to x[tex]f(t) dt = f(x)[/tex]
Part II: The integral of the derivative of a function f(x) on an interval [a, b] is equal to the difference between the values of the function at the endpoints of the interval:
∫a to b [tex]f'(x) dx = f(b) - f(a)[/tex]
Using Part I of the Fundamental Theorem of Calculus, we have:
f(x) = x∫4 1/(1+4t⁴) dt
Then, by the Chain Rule, we have:
f'(x) = d/dx [x∫4 1/(1+4t⁴) dt] = ∫4 d/dx [x(1/(1+4t⁴))] dt
= ∫4 (1/(1+4t⁴)) dt
= [tan⁻¹(2t)/2]₄¹
= [tan⁻¹(2)/2] - [tan⁻¹(1/2)/2]
Therefore, the derivative of f(x) is:
f'(x) = [tan⁻¹(2)/2] - [tan⁻¹(1/2)/2]
To learn more about derivative visit: https://brainly.com/question/30365299
#SPJ11
Luka and Janie are playing a coin toss game. If the coin lands heads up, Luka earns a point; otherwise, Janie earns a point. The first player to reach 25 points wins the
game. If 24 of the first 47 tosses have been heads, what is the probability that Janie wins the game?
The probability that Janie wins the game is I.
(Simplify your answer. )
Probability of Janie winning game = (2⁴⁷ - 1)/2⁴⁷ or approximately 0.999999999999978, using binomial distribution with given information.
How can we find the probability?We can solve this probability by using the binomial distribution. Let X be the random variable representing the number of heads in the remaining tosses until one of the players wins the game. Since Luka has 24 points, Janie needs to win X heads before Luka wins one more.
We want to find the probability that Janie wins the game, which is the probability that X is greater than or equal to Luka's remaining points needed to win(25 - 24 = 1).
Let p be the probability of the coin landing heads up, and q be the probability of the coin landing tails up, so that p + q = 1. Since the coin is fair, p = q = 1/2.
Using the binomial distribution, the probability that Janie wins the game is:
P(X >= 1) = 1 - P(X = 0)
where
P(X = k) = [tex](47 - 24 choose k) (1/2)^k (1/2)^(47 - 24 - k)[/tex]
= (23 + k choose k) (1/2)⁴⁷
where k = 0, 1, 2, ..., 23.
Therefore,
P(X = 0) = (23 choose 0) (1/2)⁴⁷ = 1/2⁴⁷
P(X >= 1) = 1 - P(X = 0) = 1 - 1/2⁴⁷
Simplifying,
P(X >= 1) = (2⁴⁷ - 1)/2⁴⁷
Therefore, the probability that Janie wins the game is (2⁴⁷ - 1)/2⁴⁷ or approximately 0.999999999999978.
Learn more about Probability
brainly.com/question/29650749
#SPJ11
How many 4-digit numbers have the second digit even and the fourth digit at least twice the second digit?
There are 1350 4-digit numbers that have the second digit even and the fourth digit at least twice the second digit.
To form a 4-digit number, we have 10 choices for each digit, except the first digit, which can't be 0. Hence, there are 9 choices for the first digit.
For the second digit, there are 5 even digits (0, 2, 4, 6, 8) to choose from.
For the third digit, there are 10 choices.
For the fourth digit, we can choose any of the even digits we picked for the second digit, or any of the larger odd digits 4, 6, 8.
Hence, the number of 4-digit numbers that meet the given criteria is
9 × 5 × 10 × 3 = 1350.
Therefore, there are 1,350 4-digit numbers that have the second digit even and the fourth digit at least twice the second digit.
To know more about 4-digit numbers:
https://brainly.com/question/679725
#SPJ4
Help me please I don’t know what to do
Answer:
179.3 square units
Step-by-step explanation:
We have to find the area of the rectangle and area of semicircle using the formula and then add the areas.
Area of rectangle:
length = 14 units
width = 10 units
[tex]\sf \boxed{\text{\bf Area of rectangle = length * width}}[/tex]
= 14 * 10
= 140 square units
Area of semicircle:
diameter of semicircle = width of the rectangle
d = 10 units
r = d ÷ 2
= 10 ÷ 2
= 5 units
[tex]\boxed{\text{\bf Area of semicircle = $\dfrac{1}{2}\pi r^2$}}[/tex]
[tex]\sf = \dfrac{1}{2}*3.14*5*5\\\\ = 39.26\\\\ = 39.3 \ square \ units[/tex]
Area of the figure = area of rectangle + area of semicircle
= 140 + 39.3
= 179.3 square units
What is 2/3 ÷ 1/6?
A: 4/6
B: 1/6
C: 3/6
D: 5/6
Answer:
4
Step-by-step explanation:
2/3 / 1/6
= 2/3 * 6/1
= 12/3
= 4.