Q4 (a)Develop the Block diagram representation of a dosed loop controå system and Babel ail parts. (b) Name three types of Controllers used in chemical and process industries. [³] (c) A first order thermometer system having a time constant of 2 minute is placed in a temperature bath at 100°C end is allowed to come to equilibrium with the bath. At time t = O, the temperature of the bath begins to vary sinusoidal"y about its average temperature of 1000 with an 20 amplitude of 30. If the frequency of oscillation is cycles/min, Evaluate the following (1) Radian frequency (11) Amplitude ratio (iii) Phase lag (iv) Response equation of the thermometer

Answers

Answer 1

The evaluation of the first-order thermometer system provides the following results:

(i) Radian frequency (ω) ≈ π/30 radians/second

(ii) Amplitude ratio (Ar) ≈ 0.955

(a) Block Diagram of a Closed-Loop Control System:

A closed-loop control system typically consists of the following components represented in a block diagram:

Process or Plant: Represents the system or process being controlled.

Sensor or Transducer: Measures the output or a relevant variable of the process and provides feedback.

Controller: Compares the desired or setpoint value with the measured value and generates a control signal.

Actuator: A device that receives a control signal from a controller and transforms it into a signal or physical action to control a process.

Plant Output: Represents the output of the process that is affected by the control action.

Feedback Loop: Provides information from the process output back to the controller for comparison and adjustment.

Setpoint: Represents the desired value or reference value for the process variable.

The block diagram representation shows the flow of signals and actions in a closed-loop control system, with feedback to maintain the desired process variable.

(b) Three Types of Controllers used in Chemical and Process Industries:

Proportional (P) Controller: Adjusts the control signal proportionally to the error between the measured variable and the setpoint. It provides a control action that is directly proportional to the deviation from the setpoint.

Integral (I) Controller: Integrates the error over time and adjusts the control signal based on the accumulated error. It helps eliminate steady-state errors by continuously adjusting the control action to reduce the integral of the error.

Derivative (D) Controller: Estimates the rate of change of the error and adjusts the control signal accordingly. It provides a control action that is proportional to the rate of change of the error, helping to anticipate and respond to sudden changes in the system.

(c) Evaluation of the Given First Order Thermometer System:

Time constant (τ) = 2 minutes

Average temperature of the bath (Tavg) = 100°C

Amplitude of temperature variation (A) = 30°C

Frequency of oscillation (f) = cycles/minute

To evaluate the following parameters:

(i) Radian Frequency (ω):

The radian frequency is calculated by converting the frequency from cycles/minute to radians/second:

ω = 2πf

= 2π(cycles/minute) * (1 minute/60 seconds)

= π/30 radians/second

(ii) Amplitude Ratio (Ar):

The amplitude ratio represents the ratio of the amplitude of the output to the amplitude of the input. In this case, the output is the temperature of the thermometer system, and the input is the temperature variation of the bath. For a first-order system, the amplitude ratio is given by:

Ar = 1 / √(1 + (ωτ)²)

Substituting the values:

Ar = 1 / √(1 + ((π/30)*(2))²)

≈ 0.955

(iii) Phase Lag (φ):

The phase lag represents the delay between the input and output signals. For a first-order system, the phase lag is given by:

φ = -arctan(ωτ)

Substituting the values:

φ = -arctan((π/30)*(2))

≈ -0.321 radians

(iv) Response Equation of the Thermometer:

The response equation of a first-order system is given by:

T(t) = Tavg + Ar * A * exp(-t/τ) * cos(ωt + φ)

Substituting the given values:

T(t) = 100 + (0.955)(30) * exp(-t/2) * cos((π/30)t - 0.321)

The evaluation of the first-order thermometer system provides the following results:

(i) Radian frequency (ω) ≈ π/30 radians/second

(ii) Amplitude ratio (Ar) ≈ 0.955

(iii) Phase lag (φ) ≈ -0.321 radians

(iv) Response equation of the thermometer: T(t) = 100 + (0.955)(30) * exp(-t/2) * cos((π/30)t - 0.321)

To know more about Thermometer, visit

brainly.com/question/2339046

#SPJ


Related Questions

which shows a distillation column where water is being separated from methanol. The column is fed with a water and methanol mixture containing 60 wt% of water at 100 kg/h. A stream enriched with methanol is collected at the top of the column (stream 3), and a stream enriched in water at the bottom (stream 2). Part of the top stream of the column is recycled back (stream 4) and the other part leaves as a top product (stream 5). Stream 5 has a flow rate of 40 kg/h. It is known that 80% of the methanol in the feed goes to stream 3 and that stream 2 contains 85 wt% of water. Thus, Composition of water in stream

Answers

The water composition in stream 2, which is enriched in water and collected at the bottom of the distillation column, is approximately 93.33 wt%.

In the given distillation process, water is being separated from methanol using a distillation column. The feed to the column contains 60 wt% water and has a flow rate of 100 kg/h. The column operates in such a way that a stream enriched with methanol is collected at the top (stream 3), while a stream enriched in water is collected at the bottom (stream 2).

The top stream of the column is divided into two parts: one part is recycled back into the column (stream 4), and the other part leaves as a top product (stream 5) with a flow rate of 40 kg/h. It is mentioned that 80% of the methanol in the feed goes to stream 3. Therefore, stream 3 will contain the majority of the methanol.

To determine the water composition in stream 2, we need to consider the mass balance. Since stream 3 contains the majority of the methanol, stream 2 will be enriched in water. It is stated that stream 2 contains 85 wt% of water. Thus, the remaining component, methanol, will be 100% - 85% = 15%.

Now, we can calculate the water composition in stream 2. Since the feed contains 60 wt% water, and 80% of the methanol goes to stream 3, the remaining water in the feed will go to stream 2. Therefore, the water composition in stream 2 can be calculated as follows:

Water composition in stream 2 = (Feed water composition - Methanol composition) * (1 - Methanol fraction in stream 3)

= (60% - 15%) * (1 - 0.80)

= 45% * 0.20

= 9%

Thus, the water composition in stream 2 is approximately 9 wt%. However, it should be noted that this contradicts the provided information that stream 2 contains 85 wt% water. Therefore, there may be an error or inconsistency in the given data.

To learn more about distillation click here, brainly.com/question/31829945

#SPJ11

1. The largest voltage losses in a fuel cell in normal operation
are due to: a. Activation b. Concentration/mass transport
difficulties c. Resistance
2. Higher exchange current density: a. Means more 1. The largest voltage losses in a fuel cell in normal operation are due to: a. Activation b. Concentration/mass transport difficulties c. Resistance 2. Higher exchange current density: a. Means more

Answers

1. The right answer is c. Resistance. The largest voltage losses in a fuel cell in normal operation are due to Resistance.

The largest voltage losses in a fuel cell in normal operation are due to:

c. Resistance

Resistance refers to the resistance to the flow of electrons or ions in the fuel cell system. It includes both ionic resistance through the membrane and electric resistance through electrically conductive parts. These resistances contribute to the overall voltage losses in the fuel cell.

Higher exchange current density:

b. Means less voltage losses

The exchange current density is a measure of the rate at which reactants are converted to products at the catalyst sites in the fuel cell. A higher exchange current density indicates that the reactions at the catalyst sites are occurring at a faster rate. This leads to less voltage losses in the fuel cell because the reactants are being efficiently converted into products.

Concentration polarization means:

b. Reactants reach the catalyst site at an insufficient rate

Concentration polarization refers to the phenomenon where the reactants do not reach the catalyst sites at a sufficient rate in the fuel cell. It can occur when the concentration of reactants at the catalyst site is too low. This results in reduced reaction rates and can lead to voltage losses in the fuel cell.

Resistance in a fuel cell is:

c. Both ionic and electric

Resistance in a fuel cell encompasses both ionic resistance and electric resistance. Ionic resistance refers to the resistance encountered by ions as they pass through the electrolyte membrane. Electric resistance refers to the resistance encountered by electrons as they flow through electrically conductive parts of the fuel cell, such as electrodes and interconnects. Both types of resistance contribute to the overall resistance in a fuel cell system.

To know more about Fuel Cell, visit

brainly.com/question/28329395

#SPJ11

The largest voltage losses in a fuel cell in normal operation are due to: a. Activation b. Concentration/mass transport difficulties c. Resistance 2. Higher exchange current density: a. Means more voltage losses b. Means less voltage losses c. Has nothing to do with voltage losses Fuel Cell Electrochemistry 71 3. Concentration polarization means: a. Concentration of reactants at the catalyst site is too high b. Reactants reach the catalyst site at an insufficient rate c. Reactant flow rate is higher than it should be 4. Resistance in a fuel cell is: a. Ionic resistance through the membrane b. Electric resistance through electrically conductive parts c. Both ionic and electric

Which of the following statements concerning mixtures is correct?
a. The composition of a homogeneous mixture cannot vary.
b. A homogeneous mixture can have components present in two physical states.
c. A heterogeneous mixture containing only one phase is an impossibility
d. More than one correct response..

Answers

The correct option from the given statements concerning mixtures is (d) more than one correct response.

The statement (a) "The composition of a homogeneous mixture cannot vary" is incorrect as the composition of a homogeneous mixture can vary. For example, a mixture of salt and water is homogeneous and its composition can vary depending on the amount of salt and water mixed in it.

The statement (b) "A homogeneous mixture can have components present in two physical states" is correct. Homogeneous mixtures are mixtures that are uniform throughout their composition, meaning that there is no visible difference between the components of the mixture. For example, a mixture of ethanol and water is homogeneous and its components are present in two physical states (liquid and liquid).

The statement (c) "A heterogeneous mixture containing only one phase is an impossibility" is incorrect. A heterogeneous mixture is a mixture where the components are not evenly distributed and the mixture has different visible regions or phases. However, it is possible for a heterogeneous mixture to contain only one phase. For example, a mixture of oil and water is heterogeneous but can have only one phase.

To know more about homogeneous visit:

https://brainly.com/question/30587533

#SPJ11

During an inversion in London (1952) 25,000 metric tons of coal (4% sulfur) was burned within an area of 1200 km². The estimated mixing depth (i.e., inversion height) was 150 m. (Note: S = 32.064 g/m

Answers

The total amount of sulfur dioxide (SO2) emitted during the inversion event in London (1952) can be calculated as follows:

Total SO2 emitted = Total coal burned × Sulfur content of coal.

To calculate the total amount of sulfur dioxide emitted, we need to use the following information:

Total coal burned: 25,000 metric tons

Sulfur content of coal: 4% (expressed as a decimal)

First, we need to convert the sulfur content from a percentage to a decimal:

Sulfur content = 4% = 4/100 = 0.04

Next, we can calculate the total amount of sulfur dioxide emitted:

Total SO2 emitted = 25,000 metric tons × 0.04

To calculate the mass of sulfur dioxide emitted in grams, we can convert metric tons to grams:

1 metric ton = 1,000,000 grams

Total SO2 emitted = (25,000 × 1,000,000) grams × 0.04

Lastly, we need to consider the mixing depth or inversion height of 150 m. The mixing depth represents the vertical extent of the pollution trapped under the inversion layer. To calculate the volume of the polluted air, we multiply the area (1200 km²) by the mixing depth (150 m):

Volume of polluted air = Area × Mixing depth

To convert the area from km² to m², we multiply by 1,000,000 (since 1 km² = 1,000,000 m²):

Area = 1200 km² × 1,000,000 m²/km²

With the volume of polluted air, we can determine the concentration of sulfur dioxide:

Concentration of SO2 = Total SO2 emitted / Volume of polluted air

To obtain the total amount of sulfur dioxide emitted during the London inversion event in 1952, we multiply the total coal burned by the sulfur content of the coal. The area and mixing depth are used to calculate the volume of polluted air, which helps determine the concentration of sulfur dioxide.

To learn more about inversion ,visit

brainly.com/question/25737062

#SPJ11

In Water 4.0, energy use and recovery becomes
more emphasized. Describe some of the energy reduction/conservation
methods being used or considered for the future.

Answers

Water 4.0 is a smart water management system that focuses on the sustainable usage and conservation of water. Energy use and conservation is emphasized more in the Water 4.0 management system.

As a result, different energy reduction and conservation methods are being employed or being considered for the future. Some of these methods are:
1. Use of Renewable Energy Sources:
This involves the use of sustainable and clean energy sources such as wind, solar, and hydroelectricity. It helps to reduce the amount of energy consumed while providing a continuous supply of power.
2. Smart Energy Management:
This method involves the use of energy-efficient technologies and practices such as artificial intelligence, automated metering, and control systems. It helps to reduce the amount of energy consumed and improve energy efficiency.
3. Energy Recovery Systems:
Energy recovery systems involve recovering the energy that is generated in the process of treating and purifying water. For example, the energy that is generated during wastewater treatment can be used to power other processes in the treatment plant.
4. Monitoring and Analysis:
Monitoring and analyzing energy usage patterns can help to identify areas where energy is being wasted and implement energy conservation measures. This includes conducting energy audits and utilizing energy management software.
In conclusion, Water 4.0 emphasizes energy conservation and reduction, and the use of renewable energy sources, smart energy management, energy recovery systems, and monitoring and analysis are some of the methods being used or considered for the future.

To know more about energy visit:

https://brainly.com/question/8630757

#SPJ11

PLEASE HELP ME REAL QUICK 35 POINTS WILL MAKRK BRAINLIEST IF CORRECT
How many formula units of NaCl are in 116 g NaCI? The molar mass of NaCl is about 58 g/mol. [?] * 10[?] fun NaCl Note : Avogadro's number is 6.02 * 1023 .

Answers

Answer:

Explanation:

To determine the number of formula units of NaCl in 116 g of NaCl, we need to use the concept of moles.

First, we calculate the number of moles of NaCl in 116 g:

Number of moles = Mass / Molar mass

Number of moles = 116 g / 58 g/mol = 2 moles

Next, we use Avogadro's number to convert the number of moles to the number of formula units:

Number of formula units = Number of moles * Avogadro's number

Number of formula units = 2 moles * (6.02 * 10^23 formula units/mol)

Number of formula units = 1.204 * 10^24 formula units

Therefore, there are approximately 1.204 * 10^24 formula units of NaCl in 116 g of NaCl.

To determine the number of formula units of NaCl in 116 g of NaCl, we need to follow these steps:

1) Calculate the number of moles of NaCl using its molar mass:
Moles of NaCl = Mass of NaCl / Molar mass of NaCl
Moles of NaCl = 116 g / 58 g/mol
Moles of NaCl = 2 moles

2) Convert the moles of NaCl to formula units:
Since 1 mole of NaCl contains Avogadro's number (6.02 * 10^23) formula units, we can multiply the number of moles by Avogadro's number to obtain the formula units:
Formula units of NaCl = Moles of NaCl * Avogadro's number
Formula units of NaCl = 2 moles * (6.02 * 10^23 formula units/mol)
Formula units of NaCl = 1.204 * 10^24 formula units

Therefore, there are approximately 1.204 * 10^24 formula units of NaCl in 116 g of NaCl.


A sample of neon is at 89°C and 2 atm. If the pressure changes to 5 atm. and volume remains constant, find the new temperature, in °C.

Answers

To find the new temperature in °C when the pressure changes from 2 atm to 5 atm while the volume remains constant, we can use the combined gas law. The combined gas law equation is:

(P1 * V1) / T1 = (P2 * V2) / T2

Given:
P1 = 2 atm
T1 = 89°C (convert to Kelvin: 89 + 273 = 362 K)
P2 = 5 atm
V1 = V2 (volume remains constant)

Plugging in the values, we have:

(2 * V) / 362 = (5 * V) / T2

Cross multiplying, we get:

10V = 5 * V * 362

Simplifying further:

10V = 1810V

Dividing both sides by V (volume), we find:

10 = 1810

This equation is not valid, which suggests there might be an error in the given information. Please double-check the values and equations provided to ensure accuracy.

For some reaction, the equilibrium constant is K = 2.3 x 106. What does this mean?
The reactants are in higher concentrations than products at equilibrium.
The products are in higher concentrations than reactants at equilibrium.
The reactants and products are in equal at equilibrium.
The equilibrium value is too small to be measured.
Not enough information to answer.

Answers

The equilibrium constant (K) is a value that indicates the ratio of product concentrations to reactant concentrations at equilibrium for a given reaction. In this case, the equilibrium constant is K = 2.3 x 10⁶.

To interpret this value, we look at the magnitude of K. When K is very large, it means that at equilibrium, the products are in higher concentrations than the reactants. In other words, the forward reaction is favored, and the reaction proceeds predominantly in the forward direction.

In contrast, if K is very small, it means that at equilibrium, the reactants are in higher concentrations than the products. This indicates that the reverse reaction is favored, and the reaction proceeds predominantly in the reverse direction.

Since K = 2.3 x 10⁶ is a large value, it suggests that at equilibrium, the products are present in higher concentrations than the reactants. Therefore, the correct answer is: "The products are in higher concentrations than reactants at equilibrium."

It's important to note that the magnitude of K also provides information about the extent of the reaction. The larger the value of K, the further the reaction proceeds towards the products at equilibrium. Conversely, a smaller value of K indicates a reaction that does not proceed as far towards the products at equilibrium.

In summary, the equilibrium constant K = 2.3 x 10⁶ means that at equilibrium, the products are in higher concentrations than the reactants, and the reaction proceeds predominantly in the forward direction.

To know more about equilibrium visit;

https://brainly.com/question/30694482

#SPJ11

A coal sample gave the following analysis by weight, Carbon
82.57 per cent, Hydrogen 2.84 per cent, Oxygen 5.74 per cent, the
remainder being incombustible. For 97% excess air , determine
actual weigh

Answers

The actual weight of the coal sample is approximately 8.85 grams.

To determine the actual weight of the coal sample, we need to consider the weight of each element present in the coal. Given the analysis by weight, we have the following composition:

Carbon: 82.57%

Hydrogen: 2.84%

Oxygen: 5.74%

Incombustible (Assumed to be other elements or impurities): The remainder

Since we know that coal is primarily composed of carbon, hydrogen, and oxygen, we can calculate the actual weight of each element based on the given percentages. To simplify the calculation, we can assume we have 100 grams of coal.

Weight of carbon = 82.57% of 100 grams = 82.57 grams

Weight of hydrogen = 2.84% of 100 grams = 2.84 grams

Weight of oxygen = 5.74% of 100 grams = 5.74 grams

To determine the weight of the incombustible portion, we subtract the sum of the weights of carbon, hydrogen, and oxygen from the total weight of the coal sample:

Weight of incombustible portion = 100 grams - (82.57 grams + 2.84 grams + 5.74 grams) = 8.85 grams

Therefore, the actual weight of the coal sample is approximately 8.85 grams.

To know more about coal , visit

https://brainly.com/question/25245664

#SPJ11

N₂(g) + 3H₂(g) →→ 2NH3(g) The system is under the following conditions. AH = -92 kJ, AS° = -0.199 kJ/K, PN2 = 5.0 atm, PH2 = 15 atm, PNH3 = 5.0 atm Find out AG at 150°C. , where AGº is Gibbs Free Energy Change at 'Standard State'. Can the above reaction take place spontaneously at 150°C?

Answers

To find the value of ΔG (Gibbs Free Energy) at 150°C for the reaction N₂(g) + 3H₂(g) → 2NH₃(g), we can use the equation:

ΔG = ΔH - TΔS

ΔG represents the change in Gibbs Free Energy, which determines whether a reaction is spontaneous or not. If ΔG is negative, the reaction is spontaneous, while if ΔG is positive, the reaction is non-spontaneous. ΔH is the enthalpy change, ΔS is the entropy change, and T is the temperature in Kelvin.

Given: ΔH = -92 kJ (enthalpy change) ΔS° = -0.199 kJ/K (entropy change at standard state) T = 150°C = 150 + 273 = 423 K (temperature in Kelvin)

Now, we can calculate ΔG using the equation:

ΔG = ΔH - TΔS

ΔG = -92 kJ - (423 K)(-0.199 kJ/K) ΔG = -92 kJ + 84.177 kJ ΔG = -7.823 kJ

The calculated value of ΔG at 150°C is -7.823 kJ. Since ΔG (Gibbs Free Energy)  is negative, the reaction N₂(g) + 3H₂(g) → 2NH₃(g) can take place spontaneously at 150°C.

To know more about Gibbs Free Energy , visit :

https://brainly.com/question/13795204

#SPJ11

1 Mg of dry mass of a non-porous solid is dried under constant drying conditions in an air stream flowing at 0.75 m/s. The area of surface drying is 55 m2. If the initial rate of drying is 0.3 g/m2s, how long will it take to dry the material from 0.15 to 0.025 kg water/kg dry solid? The critical moisture content of the material may be taken as 0.125 kg water/kg dry solid. If the air velocity were increased to 4.0 m/s, what would be the anticipated saving in time if the process were surface-evaporation controlled?

Answers

The anticipated saving in time if the air velocity were increased to 4.0 m/s and the process where surface-evaporation is controlled would be 2.38 hours.

Initial dry mass of solid, M1 = 1 mg

Area of surface drying, A = 55 m²

Air velocity, v = 0.75 m/s = v1

Rate of drying, q = 0.3 g/m²s

Initial moisture content, w1 = 0.15 kg water/kg dry solid

Final moisture content, w2 = 0.025 kg water/kg dry solid

Critical moisture content, wc = 0.125 kg water/kg dry solid

(a) Let's first calculate the mass of water that needs to be removed from the solid to reach the final moisture content:

Mass of dry solid, M = 1 mg

Initial mass of water, W1 = w1

M = 0.15 × 1 = 0.15 mg

Final mass of water, W2 = w2

M = 0.025 × 1 = 0.025 mg

Mass of water that needs to be removed = W1 - W2= 0.15 - 0.025 = 0.125 mg

(b) Now, we need to calculate the time required to remove this mass of water.

Initial rate of drying, q = 0.3 g/m²s = 0.3 × 10⁻³ g/m²s = 0.3 × 10⁻⁶ kg/m²s

Let the time required to be t seconds. The amount of water evaporated in time t = q × A × t

The final moisture content is 0.025 kg water/kg dry solid, so the moisture content remaining to be removed is (w1 - w2) = 0.15 - 0.025 = 0.125 kg water/kg dry solid.

Mass of dry solid, M = 1 mg

So, the mass of water to be removed is (0.125 × 1) = 0.125 mg

So, we can write: q × A × t = 0.125×10⁻³ g= 1.25×10⁻⁷ kg

∴ t = (0.125×10⁻³)/(q × A)= (0.125×10⁻³)/(0.3×10⁻⁶×55)= 1.01 × 10⁴ s

(c) Now, if the air velocity were increased to 4.0 m/s, the anticipated saving in time if the process were surface-evaporation controlled can be found by using the following formula for the drying rate: q2/q1 = (v2/v1)

where,

q1 = Initial drying rate

q2 = New drying rate

v1 = Initial air velocity

v2 = New air velocity

Let's first calculate the new rate of drying.

q2/q1 = (v2/v1)⇒ q2 = q1 × (v2/v1)= 0.3 × 4.0/0.75= 1.6 g/m²s= 1.6 × 10⁻³ kg/m²s

Now, let's find the new time required to remove the mass of water q2 × A × t2 = 0.125×10⁻³ g= 1.25×10⁻⁷ kg

Let the new time required be t2.

Now,q2 × A × t2 = 0.125×10⁻³⇒ t2 = (0.125×10⁻³)/(q2 × A)= (0.125×10⁻³)/(1.6×10⁻³×55)= 1.42 × 10³ s

Thus, the anticipated saving in time = t - t2= 1.01 × 10⁴ - 1.42 × 10³= 8.56 × 10³ s = 2.38 h

Learn more about the rate of drying at https://brainly.com/question/30810038

#SPJ11

Final answer:

The drying process of a non-porous solid under constant conditions and at an increased air velocity was calculated. Under the original conditions, the drying took approximately 2.32 hours. When the air velocity was increased, the process was estimated to take two-thirds of the original time, resulting in a time saving of about 46 minutes.

Explanation:

The subject of this problem involves the calculation of the drying time under varying conditions for a non-porous solid. We are given that the initial water content of the solid is 0.15 kg of water per kg of dry solid and the final water content desired is 0.025 kg of water per kg of dry solid. The critical moisture content of the material is 0.125 kg water/kg dry solid. This implies that the drying process will be constant-rate up to this moisture content.

During the constant rate drying period, the rate of drying is 0.3 g/m2s or 0.0003 kg/m2s. The weight of water to be removed during this period per kg of dry solid is (0.15 - 0.125) kg or 0.025 kg. The solid has a surface area of 55 m2. So, the total weight of water to be removed during constant rate drying is 55×0.025 = 1.375 kg. The time during this period can be calculated as weight of water to be removed divided by rate of drying per unit area. So time will be (1.375 kg) / (55 m2 ×0.0003 kg/m2s) s = 8333.33 s or approximately 2.32 hours.

When the air velocity is increased to 4.0 m/s, the rate of drying will increase. Assuming the process is surface-evaporation controlled, the rate of drying should be directly proportional to the velocity of the air. So if the rate of drying increased to (4 / 0.75) times, the drying process can be two-thirds of the time taken in the first case, leading to a saving of about 0.77 hours or approximately 46 minutes.

Learn more about Drying Process here:

https://brainly.com/question/35541962

#SPJ12

according to this chemical reaction, calculate the number of grams of Fe (55.85 g/mol) produced from 12.57 grams of H2 (2.02 g/mol). Report your answer to the hundredths.

Answers

347.69 grams of Fe are produced from 12.57 grams of[tex]H_2.[/tex]

The chemical reaction between Fe and H2 is[tex]:Fe + H_2 -> FeH_2[/tex]

To find out how many grams of Fe are produced from 12.57 grams of H2, we need to use stoichiometry. To do this, we need to first balance the equation. It's already balanced:[tex]Fe + H_2 -> FeH_2[/tex] .Now, we need to convert 12.57 grams of H2 to moles.

To do this, we need to use the molar mass of [tex]H_2[/tex], which is 2.02 g/mol:12.57 g.

[tex]H_2 * (1 mol H_2/2.02 g H_2) = 6.22 mol H_2[/tex]

Now that we know we have 6.22 moles of [tex]H_2[/tex], we need to figure out how many moles of Fe are needed to react with this amount of [tex]H_2[/tex].

We can see from the balanced equation that 1 mole of Fe reacts with 1 mole of H2, so we need 6.22 moles of Fe:6.22 mol FeNow that we know how many moles of Fe we need, we can convert that to grams of Fe using the molar mass of Fe, which is 55.85 g/mol:

6.22 mol Fe × (55.85 g Fe/1 mol Fe)

= 347.69 g Fe.

Therefore, 347.69 grams of Fe are produced from 12.57 grams of [tex]H_2.[/tex]

Know more about     here:

#SPJ8

If 46.4 g of CH₂OH (MM = 32.04 g/mol) are added to a 500.0 mL volumetric flask, and water is added to fill the flask, what is the concentration of CH3OH in the resulting solution?"

Answers

The concentration of CH3OH in the resulting solution is 2.898 mol/L.

To determine the concentration of CH3OH in the solution, we need to follow these steps:Step 1: Calculate the number of moles of CH3OHStep 2: Calculate the concentration of CH3OH by dividing moles by volume

The molecular mass of CH3OH = 32.04 g/mol

The mass of CH₂OH added to the flask = 46.4 g

Number of moles of CH3OH = mass/molecular mass= 46.4/32.04 = 1.449 molThe volume of the solution = 500.0 mL = 0.5 L

The concentration of CH3OH = Number of moles of CH3OH / volume of the solution= 1.449 / 0.5= 2.898 mol/LSo, the concentration of CH3OH in the solution is 2.898 mol/L. This means that there are 2.898 moles of CH3OH per liter of solution.

Answer: The concentration of CH3OH in the resulting solution is 2.898 mol/L.

Learn more about concentration here,

https://brainly.com/question/9378259

#SPJ11

My compounds: Acetic acid and ethoxyethane. Suppose you took
your two compounds, dissolved them in tertbutyl methyl ether and
then added them to a separatory funnel. Now suppose you add in
aqueous sod

Answers

When acetic acid and ethoxyethane are dissolved in tert-butyl methyl ether and added to a separatory funnel, the addition of aqueous sodium hydroxide (NaOH) will result in the formation of different layers due to their varying solubilities and acid-base properties. Acetic acid, being a weak acid, will react with NaOH to form a water-soluble sodium acetate, while ethoxyethane, being an ether, will remain in the organic layer.

Acetic acid (CH₃COOH) is a weak acid that can react with sodium hydroxide (NaOH) to form sodium acetate (CH₃COONa) and water (H₂O) according to the following equation:

CH₃COOH + NaOH → CH₃COONa + H₂O

Sodium acetate is water-soluble and will dissolve in the aqueous layer. On the other hand, ethoxyethane (C₂H₅OC₂H₅), also known as diethyl ether, is an organic compound and will remain in the organic layer (tert-butyl methyl ether).

During the separation process in the separatory funnel, the aqueous sodium acetate layer and the organic ethoxyethane layer can be easily separated by opening the stopcock of the separatory funnel and allowing the layers to separate based on their differing densities. The denser aqueous layer (containing sodium acetate) will settle at the bottom, while the less dense organic layer (containing ethoxyethane) will float on top.

When acetic acid and ethoxyethane are dissolved in tert-butyl methyl ether and subjected to aqueous sodium hydroxide in a separatory funnel, the addition of NaOH will result in the formation of two distinct layers. The aqueous layer will contain sodium acetate formed from the reaction between acetic acid and NaOH, while the organic layer will retain ethoxyethane. This separation process allows for the isolation of the desired compounds based on their differing solubilities and acid-base properties.

To know more about acetic acid , visit

https://brainly.com/question/15231908

#SPJ11

The weight of a Falcon rocket is 500,000 kg. It will be landed on earth at a constant speed of 100 m/s. To slow down the rocket, combustion gases will be fired at the bottom and leave the rocket at a constant rate of 150 kg/s at a relative velocity of 5000 m/s in the direction of motion of the spacecraft for a period of 10 s. If the mass change of the Falcon rocket cannot be ignored, determine (a) the deceleration of the rocket during this period, (b) the thrust exerted on the rocket.

Answers

The deceleration of the rocket during the 10 s period is approximately 1500 m/s², and the thrust exerted on the rocket is approximately 75,000 N.

The mass of the rocket and fuel is not constant as fuel is being burnt, which produces a change in mass of the rocket. This change in mass should be considered, and we can use Newton’s second law of motion, F = ma, to solve the problem.

Thus, the force required to decelerate the rocket is given by : F = ma

We have the mass of the rocket (m) and the rate at which the mass of the rocket is changing (mdot).

Using the principle of conservation of mass, we can write the equation :

mdot = - (dM/dt) where M is the mass of the exhaust gas and dM/dt is the rate of change of mass of the exhaust gas.

We can use this equation to find the mass of the exhaust gas.

M = m - ∫(mdot)dt where the integral is taken over the time interval from t = 0 to t = 10 s.

Substituting the given values, we get :

M = 500,000 - ∫150dt (0 to 10) = 499,850 kg

The mass of the exhaust gas is : M_exhaust = 500,000 - 499,850 = 150 kg

Using the relative velocity of 5000 m/s, the momentum of the exhaust gas is :

P = M_exhaust × V_exhaust where V_exhaust is the velocity of the exhaust gas relative to the rocket.

P = 150 × 5000 = 750,000 kg m/s

This momentum is equal and opposite to the momentum of the rocket and can be used to find the thrust exerted on the rocket.

Thrust = P/t = 750,000/10 = 75,000 N

Taking mass change into account, the force required to decelerate the rocket is : F = (m - M)a

Using Newton’s second law of motion, we can write : F = ma= (m - M)× a

Using the values we calculated, we get : a = F/(m - M)= (75,000)/(500,000 - 499,850)≈ 1500 m/s²

The deceleration of the rocket during the 10 s period is approximately 1500 m/s², and the thrust exerted on the rocket is approximately 75,000 N.

To learn more about Newton's second law :

https://brainly.com/question/25545050

#SPJ11

Sand particles and silt particles – having a specific gravity of 2.5 and 1.8, respectively – have the same settling velocity. If the diameter of the silt is 50 m, and both of the particles settle in a liquid having a density of 500 kg per cubic meter under free settling motion and Stokes' range, what is then the diameter of the sand particles?

Answers

The diameter of the sand particles is 90.0 m if the diameter of the silt is 50 m, and both of the particles settle in a liquid having a density of 500 kg per cubic meter.

Given,Specific gravity of sand particles, gs = 2.5

Specific gravity of silt particles, gs' = 1.8

Diameter of silt particles, ds' = 50 m

Density of liquid, ρl = 500 kg/m³

Free settling motion and Stokes' range :

For free settling motion,v = [(2/9) * (ρp - ρl) * g * ds²] /η

For Stokes' range,v = [(ρp - ρl) * g * ds²] / (18 * η)

where,v = settling velocity

ρp = density of the particle

g = acceleration due to gravity

η = coefficient of viscosity of the liquid

1. For silt particles, settling velocity can be calculated using either of the formulae as given below,

v = [(2/9) * (ρp - ρl) * g * ds²] /η= [(ρp - ρl) * g * ds²] / (18 * η) ⇒ η/18 = (ρp - ρl) * g / (2/9) * (ρp - ρl) * g ⇒ η = 2.25 [(ds')²/ν] ... (i)

2. For sand particles, settling velocity is the same as for the silt particles; therefore, using the formula,

v = [(2/9) * (ρp - ρl) * g * ds²] /η ⇒ ds ∝ √ (ρp - ρl) * η ... (ii)

Solving for (i) and substituting it in (ii), ds ∝ √(ρp - ρl) * (2.25 [(ds')²/ν]) = [(ρp - ρl) * (2.25) * (ds')²] / √ν ∝ ds' * √[(ρp - ρl)/ν] ∴ d_s = d_s' * √(gs'/gs) * √(ρl/ρp)ds' = 50 m, gs' = 1.8, gs = 2.5, ρl = 500 kg/m³

Substituting the given values, d_s = 50 * √(1.8/2.5) * √(500/(500 * (2.5 - 1.8)))≈ 50 * √0.72 * √4.44≈ 50 * 0.85 * 2.11≈ 90.0

Ans: The diameter of the sand particles is 90.0.

Learn about specific gravity : https://brainly.com/question/13258933

#SPJ11

Write about the waste recycling process of oil and gas
companies. (750 words)

Answers

The waste recycling process in oil and gas companies plays a critical role in minimizing environmental impact and promoting sustainable practices. These companies generate various types of waste during their operations, including drilling fluids, produced water, waste oils, and solid waste. Recycling these wastes helps reduce pollution, conserve resources, and mitigate the overall environmental footprint of the industry. This article provides an overview of the waste recycling process in oil and gas companies.

Drilling Fluids Recycling:

Drilling fluids, also known as mud, are used during the drilling process to lubricate the drill bit, cool the drilling equipment, and carry cuttings to the surface. After use, drilling fluids become contaminated with drill cuttings and other impurities. To recycle drilling fluids, a process known as mud recycling or mud reconditioning is employed. This process involves removing the solid cuttings and treating the fluid with additives to restore its properties for reuse in subsequent drilling operations. The recycled drilling fluids are carefully managed to meet regulatory requirements and industry standards.

Produced Water Treatment:

Produced water is the wastewater that comes to the surface along with oil and gas during production operations. This water contains various contaminants, including hydrocarbons, heavy metals, and dissolved solids. Proper treatment is essential to ensure the water is safe for disposal or potential reuse. Produced water treatment typically involves several stages, such as separation, filtration, chemical treatment, and sometimes advanced treatment processes like membrane filtration or reverse osmosis. The treated water can be discharged according to regulations, used for irrigation purposes, or reinjected into the reservoir for enhanced oil recovery.

Waste Oils Recycling:

Waste oils, such as used lubricating oils, hydraulic fluids, and transformer oils, are generated throughout oil and gas operations. These oils can be reprocessed and recycled into new lubricants or fuel oils. The recycling process usually involves removing impurities, such as water and solids, through methods like centrifugation, filtration, and distillation. The cleaned oil can then be re-refined or blended with other additives to meet specific performance requirements.

Solid Waste Management:

Oil and gas operations also produce solid waste, including drill cuttings, contaminated soil, and various other materials. Proper management of solid waste is crucial to prevent contamination and reduce the amount of waste sent to landfills. Techniques such as solidification, stabilization, thermal treatment, and recycling are employed to manage and treat solid waste. For instance, drill cuttings can be processed to separate and recover residual oil, while contaminated soil can undergo remediation processes to remove or neutralize pollutants.

The waste recycling process in oil and gas companies plays a vital role in minimizing environmental impact and promoting sustainability. By recycling drilling fluids, treating produced water, recycling waste oils, and effectively managing solid waste, these companies can significantly reduce pollution, conserve resources, and mitigate their environmental footprint. The implementation of efficient waste recycling processes requires adherence to regulatory requirements, the use of appropriate technologies, and continuous monitoring to ensure compliance with industry standards and environmental protection. By prioritizing waste recycling, oil and gas companies can contribute to a more sustainable and environmentally responsible future.

Please note that the information provided is based on general knowledge and industry practices. Specific recycling processes and technologies may vary among different oil and gas companies and depend on regional regulations and requirements.

To  know more about recycling , visit;

https://brainly.com/question/29035550

#SPJ11

In this process, acrylic acid (AA) is produced through the oxidation of propylene at 300°C and
2.57 atm with water as the by-product. In a year, this chemical plant operates 24 hours a day
for 330 working days, with a total production of 250,000 metric tonnes of AA. The main product
is AA, while the side products are acetic acid (ACA), water (H2O), and carbon dioxide (CO2).
The selectivity of AA over ACA is 16 and the conversion of propylene to the side reaction 2 is
half of the side reaction 1. Details of the reaction are as follows:
C3H6 (g) + 1.5O2 (g) → C3H4O2 (v) + H2O (v) (Main reaction)
C3H6 (g) + 2.5O2 (g) → C2H4O2 (v) + CO2 (g) + H2O (v) (Side reaction 1)
C3H6 (g) + 4.5O2 (g) → 3CO2 (g) + 3H2O (v) (Side reaction 2)
Pure oxygen is added to a recycle stream containing a mixture of carbon dioxide and oxygen
before being fed to an oxidation reactor. Before feeding it to the reactor, the mixed stream is
heated to 300°C and compressed to 2.57 atm. Pure propylene is fed to the reactor through
another stream. The preheated gases react exothermically in a jacketed reactor that uses
cooling water as a cooling medium to maintain the reaction temperature at 300°C. Propylene
is the limiting reactant, and oxygen is fed in excess of 20% into the oxidation reactor.
A hot gaseous mixture is produced from the reactor contain acrylic acid as the major product.
Acetic acid, carbon dioxide, and water are the side products with unreacted oxygen. The hot
gaseous mixture is cooled down in a condenser from 300 to 50°C and fed to a flash column.
The column separates the mixture and sends gaseous material such as carbon dioxide and
unreacted oxygen through the top product stream to a gas separator. The bottom stream from
the flash column contains acrylic acid, acetic acid, and water. The gas separator is used to
separate the carbon dioxide gas from the oxygen, and the oxygen is then recycled and mixed
with the oxygen feed stream. The efficiency of the gas separator is around 95% and the recycle
stream have composition 99 mol% of Oxygen. Before it is recycled, the stream’s pressure is
reduced to 1 atm through a valve to match the pressure of the oxygen feed stream.
The pressure and temperature of the bottom stream for the flash column are increased to 3
atm and 148°C using a pump, and a heater, respectively. Then, it is fed to a distillation column
(DC1) to purify the acrylic acid. The top outlet stream contains water, acetic acid and 5% of
the total molar flow of acrylic acid fed to the DC1. The bottom consists of acetic acid and
acrylic acid only, where the purity of the acrylic acid obtained is 99.0 mol%. The top outlet is
sent to the liquid-liquid extractor (LLE) to separate the water from the acetic acid. 31,680
kmol/hr of ethylene glycol (EG) is used as a solvent to extract the water and flows out as the
top stream of the extractor column, leaving acetic acid, solvent, and a small amount of water
in the bottom stream. The extraction efficiency is 90% and 1% of solvent fed to the extractor
loss to the top stream. The bottom stream will then undergo a distillation process (DC2) to
separate the solvent and the acetic acid. The distillate stream contains 95 mol% of acetic acid
fed to the distillation column and water, while the bottom stream contains only a small amount
of acetic acid and solvent.
Draw Process Flow Diagram Only

Answers

The process described involves the production of acrylic acid (AA) through the oxidation of propylene. The main reaction produces AA along with water as a by-product, while there are two side reactions that result in the formation of acetic acid (ACA), carbon dioxide (CO2), and additional water. The process includes several steps such as the addition of oxygen to a recycle stream, heating and compressing the mixed stream, the reaction in a jacketed reactor, cooling and separation of the gaseous mixture, purification of acrylic acid through distillation and extraction, and separation of acetic acid and solvent through another distillation process.

The process flow diagram (PFD) for the described production of acrylic acid can be represented as follows:

The PFD shows the various steps involved in the production of acrylic acid, including the addition of oxygen to the recycle stream, preheating and compression of the mixed stream, the reaction in a jacketed reactor, cooling and separation in a condenser and flash column, purification through distillation in DC1, extraction of water in the liquid-liquid extractor (LLE), and further separation of acetic acid and solvent in DC2.

This process aims to produce acrylic acid with high purity while minimizing the presence of by-products such as acetic acid and water. It utilizes various separation techniques, such as distillation and extraction, to achieve the desired purity of acrylic acid. The recycling of oxygen and the use of a solvent in the LLE column contribute to the efficiency and sustainability of the process.

To know more about acrylic acid (AA) click here:

https://brainly.com/question/6272459

#SPJ11

A vessel contains 0.8 kg Hydrogen at pressure 80 kPa, a temperature of 300K and a volume of 7.0 m³. If the specific heat capacity of Hydrogen at constant volume is 10.52 kJ/kg K. Calculate: 3.1. Heat capacity at constant pressure (assume that H₂ acts as an ideal gas). (6) 3.2. If the gas is heated from 18°C to 30°C, calculate the change in the internal energy and enthalpy

Answers

The change in internal energy is approximately 1.0 kJ and the change in enthalpy is approximately 1.7 kJ.

3.1 Heat capacity at constant pressureThe heat capacity at constant pressure is the amount of energy required to raise the temperature of a unit mass of a substance by 1 K, while keeping the pressure constant.

We can use the formula below to calculate the heat capacity at constant pressure for hydrogen:cp = cv + RWhere,cp = heat capacity at constant pressure,cv = heat capacity at constant volume,R = gas constantR for hydrogen = 8.31 J/mol K/2.016 g/mol = 4124.05 J/kg K (since we need the value for 1 kg hydrogen, we divided by 2.016 g/mol which is the molecular mass of hydrogen)

cp = 10.52 kJ/kg K + 4.124 kJ/kg Kcp = 14.644 kJ/kg K ≈ 14.6 kJ/kg K (rounded off to one decimal place)

Therefore, the heat capacity at constant pressure for hydrogen is 14.6 kJ/kg K.3.2 Change in internal energy and enthalpyWe can use the equations below to calculate the change in internal energy and enthalpy when hydrogen gas is heated from 18°C to 30°C:ΔU = mcvΔTΔH = mcpΔT

Where,ΔU = change in internal energy ΔH = change in enthalpym = mass of hydrogen gas = 0.8 kgcv = heat capacity at constant volume = 10.52 kJ/kg

Kcp = heat capacity at constant pressure = 14.6 kJ/kg KΔT = change in temperature = (30 - 18)°C = 12 KΔU = 0.8 kg × 10.52 kJ/kg K × 12 KΔU = 1004.16 J ≈ 1.0 kJ (rounded off to one decimal place)ΔH = 0.8 kg × 14.6 kJ/kg K × 12 KΔH = 1689.6 J ≈ 1.7 kJ (rounded off to one decimal place)

Therefore, the change in internal energy is approximately 1.0 kJ and the change in enthalpy is approximately 1.7 kJ.

Learn more about pressure here,

https://brainly.com/question/29213804

#SPJ11

What is the most likely range for the wavelength of maximum absorption (Amax) for the compound below:a. 246-260 nmb. 215-230 nm c. 276-290 nm d. 261-275 nm e > 320 nmf. 231-245 nm g. 291-305 nm h. 306-320 nm

Answers

The most likely range for the wavelength of maximum absorption (Amax) for a compound can be calculated based on the molecular structure and bonding configuration. However, based on the given options, the most likely range for Amax for the given compound is 246-260 nm.

The compound given above has a molecular structure that determines the wavelength of maximum absorption.

The given wavelength ranges are:

a. 246-260 nm

b. 215-230 nm

c. 276-290 nm

d. 261-275 nm

e. >320 nm

f. 231-245 nm

g. 291-305 nm

h. 306-320 nm

The compound structure is not given. Hence, we can assume the Amax range for the given compound based on its class or structural configuration.

The most likely Amax range can be determined using the following parameters:

• If the compound has double bonds, then the Amax range will be around 180-200 nm.

• If the compound has aromatic rings, then the Amax range will be around 250-300 nm.

• If the compound has conjugated structures, then the Amax range will be around 280-320 nm.

• If the compound contains polar functional groups such as OH, NH, COOH, or C=O, then the Amax range will be around 200-300 nm.

Since the structural configuration of the compound is not given, we cannot precisely determine the Amax range.

To know more about compound visit:

https://brainly.com/question/14117795

#SPJ11

In the industrial chemicals process, many aspects shall be considered in obtaining the targeted products with optimum yield and profit. Among those aspects are stated in the following statement. As an expert in the chemical industry, you are required to evaluate each statement. 1) "Chemical kinetics aspect is not essential in optimizing the yield of the chemical product". ii) "Neither exothermic nor endothermic reaction affect the stability product". chemical iii) "The activation energy (E₁) characteristic is temperature independence." iv) "One reaction with AG > 0 under standard conditions thermodynamically do not occur spontaneously, but can be made to occur under n-standard conditions".

Answers

The first statement is incorrect as chemical kinetics plays a crucial role in optimizing product yield. The second statement is incorrect as both exothermic and endothermic reactions can affect the stability of a product.

1) The statement that chemical kinetics aspect is not essential in optimizing the yield of the chemical product is incorrect. Chemical kinetics involves the study of reaction rates and mechanisms, which directly impact the yield of a chemical product. By understanding the kinetics, reaction conditions such as temperature, pressure, and catalysts can be optimized to increase the yield and selectivity of the desired product. Reaction rates and equilibrium constants are essential considerations in determining the optimum conditions for a chemical process.

2) The second statement that neither exothermic nor endothermic reactions affect the stability of a product is incorrect. The thermodynamics of a reaction, which includes whether it is exothermic (releases heat) or endothermic (absorbs heat), affects the stability of the product. The stability of a chemical product is influenced by the energy difference between reactants and products. Exothermic reactions tend to be more stable as they release energy, while endothermic reactions can be less stable as they require energy input.

3) The statement that activation energy (E₁) characteristic is temperature independence is incorrect. Activation energy is the energy barrier that must be overcome for a reaction to occur. It is temperature-dependent, meaning that as the temperature increases, the activation energy decreases..

4) The statement that a reaction with ΔG > 0 under standard conditions thermodynamically does not occur spontaneously but can be made to occur under non-standard conditions is correct. The standard free energy change (ΔG°) provides information about the spontaneity of a reaction under standard conditions (defined temperature, pressure, and concentrations).

Learn more about equilibrium  : brainly.com/question/30694482

#SPJ11

What is the pOH of a 0.030 M solution of barium hydroxide?
A) 1.52
B) 1.22
C) 10.41
D) 12.78
E) 12.48

Answers

Therefore, the pOH of a 0.030 M solution of barium hydroxide is (B) 1.22.

Barium hydroxide is a strong base that dissociates completely in water to form hydroxide ions, according to the given equation below.

Ba(OH)2 (s) → Ba2+ (aq) + 2OH- (aq)

Molarity of barium hydroxide = 0.030M

Critical Data

pH of the given solution = ?

We need to calculate the pOH of a 0.030 M solution of barium hydroxide.

Formula

The relationship between pH, pOH, and [OH-] is:

pH + pOH = 14

pOH = 14 - pH

First, we need to calculate the concentration of OH- ions.

OH- = 2 × 0.030 M

= 0.060 M

Then, calculate the pOH of the given solution as follows:

pOH = 14 - pH

= 14 - (-log [OH-])

= 14 - (-log 0.060)

= 14 + 1.22

= 15.22

To know more about barium hydroxide visit:

https://brainly.com/question/30459931

#SPJ11

In the production of ammonia (N2 + 3H2 → 2NH3), nitrogen and
hydrogen are fed in stoichiometric proportion. The nitrogen feed
contains 0.28% argon, which needs to be purged. The process is
designed

Answers

In the production of ammonia, the reaction equation is N2 + 3H2 → 2NH3. To ensure stoichiometric proportions, nitrogen and hydrogen are fed in the correct ratio. However, the nitrogen feed also contains 0.28% argon, which needs to be removed or purged from the system.

To calculate the amount of argon that needs to be purged, we need to determine the percentage of argon in the nitrogen feed and then calculate its quantity. If the nitrogen feed contains 0.28% argon, it means that for every 100 parts of nitrogen, there are 0.28 parts of argon.

Let's assume that the nitrogen feed contains 100 moles of nitrogen. Therefore, the amount of argon present in the feed would be 0.28 moles (0.28% of 100 moles).

To maintain the stoichiometric ratio, we need to remove this amount of argon from the system through the purging process.

In conclusion, to ensure the proper production of ammonia, the nitrogen feed containing 0.28% argon needs to be purged of the calculated amount of argon to maintain the stoichiometric proportions of the reaction.

In the production of ammonia (N2 + 3H2 → 2NH3), nitrogen and hydrogen are fed in stoichiometric proportion. The nitrogen feed contains 0.28% argon, which needs to be purged. The process is designed such that there is less than 0.25% of argon in the reactor. The reactor product is fed into a condenser where ammonia is separated from the unreacted hydrogen and nitrogen, which are recycled back to the reactor feed. The condenser is operating perfectly efficient. Calculate the amount of nitrogen and hydrogen that goes into the reactor per 200 kg of hydrogen fed into the process. Assume the single pass conversion of nitrogen is 10%.

To learn more about reaction, visit    

https://brainly.com/question/25769000

#SPJ11

14. A solution is made by dissolving 6.20 g of NaCl, in 228 g of
water, producing a solution with a volume of 249 mL at 21 °C. What
is the expected osmotic pressure (in atm) at21 °C?
15. Calculate t

Answers

The expected osmotic pressure at 21 °C is approximately 2.37 atm.

To calculate the expected osmotic pressure, we can use the formula:

osmotic pressure = (n / V) * (R * T)

where n is the number of moles of solute, V is the volume of the solution, R is the ideal gas constant (0.0821 L * atm / (mol * K)), and T is the temperature in Kelvin.

First, let's calculate the number of moles of NaCl:

molar mass of NaCl = 22.99 g/mol + 35.45 g/mol = 58.44 g/mol

moles of NaCl = mass / molar mass = 6.20 g / 58.44 g/mol ≈ 0.106 mol

Next, we need to convert the volume of the solution to liters:

V = 249 mL = 0.249 L

Now, we can calculate the osmotic pressure:

osmotic pressure = (0.106 mol / 0.249 L) * (0.0821 L * atm / (mol * K)) * (21 + 273) K ≈ 2.37 atm

Learn more about osmotic pressure at https://brainly.com/question/17142533

#SPJ11

The complete question is:

14. A solution is made by dissolving 6.20 g of NaCl, in 228 g of water, producing a solution with a volume of 249 mL at 21 °C. What is the expected osmotic pressure (in atm) at 21 °C?

The following liquid catalytic reaction A B C is carried out isothermally at 370K in a batch reactor over a nickel catalyst. (a) If surface reaction mechanism controls the rate of the reaction which follows a Langmuir-Hinshelwood single site mechanism, prove that the rate law is; -TA 1+K C + KC where k is surface reaction rate constant while K4 and KB are the adsorption equilibrium constants for A and B. State your assumptions clearly. (1) KC (ii) (b) The temperature is claimed to be sufficiently high where all chemical species are weakly adsorbed on the catalyst surface under a reaction temperature of 2 300 K. Estimate the conversion that can be achieved after 10 minutes if the volume of the reactor is 1dm³ loaded with 1 kg of catalyst. Given the reaction rate constant, k is 0.2 dm³/(kg cat min) at 370K. € At 370 K, the catalyst started to decay where the decay follows a first order decay law and is independent of both concentrations of A and B. The decay constant, ka follows the Arrhenius equation with a value of 0.1 min¹ at 370K. Determine the conversion of the reactor considering the same reactor volume, catalyst weight and reaction time as in b(i).

Answers

(a) The rate law for the given reaction is -TA * (1 + K4 * [A] + KB * [B]). Assumptions include Langmuir-Hinshelwood mechanism and surface reaction control.

(a) Proving the rate law:

Assumptions:

The reaction follows a Langmuir-Hinshelwood single site mechanism, where A and B adsorb on the catalyst surface.

The rate-determining step is the surface reaction.

The Langmuir-Hinshelwood mechanism for the given reaction can be represented as:

A + C ⇌ AC (adsorption of A)

B + C ⇌ BC (adsorption of B)

AC + BC → C + A + B (surface reaction)

The rate law for the surface reaction can be expressed as:

Rate = k * [AC] * [BC]

Since AC and BC are intermediates, we need to express them in terms of A and B concentrations using the adsorption equilibrium constants K4 and KB, respectively.

Assuming steady-state approximation for the adsorbed intermediates, we have:

[AC] = (K4 * [A] * [C]) / (1 + K4 * [A] + KB * [B])

[BC] = (KB * [B] * [C]) / (1 + K4 * [A] + KB * [B])

Substituting these expressions into the rate law, we get:

Rate = k * [(K4 * [A] * [C]) / (1 + K4 * [A] + KB * [B])] * [(KB * [B] * [C]) / (1 + K4 * [A] + KB * [B])]

Simplifying the expression, we obtain:

Rate = k * [A] * [C] / (1 + K4 * [A] + KB * [B])

Therefore, the rate law is given as: Rate = -TA * (1 + K4 * [A] + KB * [B])

(b) Estimating the conversion after 10 minutes:

Given:

Temperature (T) = 370 K

Reaction rate constant (k) = 0.2 dm³/(kg cat min)

Volume of the reactor (V) = 1 dm³

Weight of catalyst (W) = 1 kg

To estimate the conversion after 10 minutes, we need to consider the reaction rate and the decay of the catalyst.

Using the rate law, we can write the differential equation for the reaction as:

d[A] / dt = -k * [A] * [C]

Given that the volume of the reactor (V) is constant, [C] can be approximated as [C] = [C]₀, where [C]₀ is the initial concentration of C.

Integrating the differential equation from t = 0 to t = 10 minutes, we get:

∫[A]₀^[A] / [A] * d[A] = -k * [C]₀ * ∫0^10 dt

Solving the integral and rearranging, we obtain:

ln([A]₀ / [A]) = k * [C]₀ * t

Now, considering the decay of the catalyst, the conversion can be expressed as:

Conversion (%) = ([A]₀ - [A]) / [A]₀ * 100

Since the decay follows a first-order decay law, the concentration of A at time t can be expressed as:

[A] = [A]₀ * exp(-ka * t)

Substituting this into the conversion equation, we get:

Conversion (%) = ([A]₀ - [A]₀ * exp(-ka * t)) / [A]₀ * 100

Now, we can plug in the given values and solve for the conversion after 10 minutes.

Please note that the values for K4, KB, [A]₀, and [C]₀ are not provided, so a specific numerical value for the conversion cannot be calculated without those parameters.

Learn more about Langmuir-Hinshelwood mechanism here: brainly.com/question/28526725

#SPJ11

Which method is better to make more corrosion-resistant metallic
joints in the equipment- Welding or Rivetting? And why?

Answers

The right answer is Welding. Welding is better for creating more corrosion-resistant metallic joints in equipment.

The reasons are as follows:

Seamless Joint: Welding creates a seamless joint between two metal pieces, eliminating gaps or crevices where corrosion can initiate or propagate. Riveting, on the other hand, involves joining two pieces of metal using rivets, which can create small gaps and crevices that are susceptible to corrosion.

Material Compatibility: Welding allows for joining similar or dissimilar metals with compatible welding processes, ensuring a better metallurgical bond. This enables the use of corrosion-resistant alloys specifically designed for the application, enhancing the overall corrosion resistance of the joint. Riveting, however, may have limitations in joining dissimilar metals, reducing the options for selecting corrosion-resistant materials.

Uniform Structure: Welding produces a uniform and continuous structure across the joint, which helps in maintaining the original mechanical and corrosion-resistant properties of the base material. In riveting, the joint is created by inserting a separate fastener (rivet), which may disrupt the uniformity and integrity of the joint, potentially leading to localized corrosion.

Reduced Crevice Corrosion: Welding can eliminate or minimize crevices, which are prone to crevice corrosion. Riveting, with the presence of rivet heads and the joint interface, may create crevices where moisture or corrosive substances can accumulate, leading to accelerated corrosion.

Overall, welding is a preferred method for creating corrosion-resistant metallic joints in equipment due to its ability to produce seamless joints, enable material compatibility, maintain a uniform structure, and reduce the risk of crevice corrosion. However, the specific application and requirements should always be considered when selecting the appropriate joining method, taking into account factors such as material compatibility, joint design, and environmental conditions.

To know more about Corrosion, visit

brainly.com/question/489228

#SPJ11

A gas is inside a cylindical container whose top face is attached to a movable piston, which can be either blocked in its position, or free to move according to changes in the pressure of the gas. The diameter of the base of the cylinder is 25.0 cm. At a cetain point, 4575 kJ of energy are provided to the gas by heating.
a) Detemine the change in intenal energy in the event that the piston is blocked in position.
b) Detemine the change in intenal energy if the piston is made free to move and the height of the cylinder raises by 50.0 cm (the pressure exeted by the piston is 1.20 atm).
c) Detemine the change in enthalpy if the piston is made free to move and the height of the cylinder raises by 50.0 cm (the pressure exeted by the piston is 1.20 atm)

Answers

a) Internal energy change when the piston is blocked in position is 4575 kJ. When the piston is blocked in position, the gas pressure remains constant. Therefore, only the amount of energy added to the gas and its initial internal energy affect the change in internal energy.

ΔU = Q

Where,Q = 4575 kJ (Given)

Therefore,ΔU = 4575 kJ

b) Internal energy change if the piston is allowed to move freely is 4571 kJ. When the piston is allowed to move freely, the gas does some work on the piston while expanding.

The amount of work done by the gas is given by the formula,

W = PΔV

where, P = Pressure = 1.20 atm (Given)

ΔV = πr²h = π x (0.125m)² x (0.50m) = 0.0247 m³

The amount of work done is, W = (1.20 atm) x (0.0247 m³) x (101.3 J/L atm) = 3.04 kJ

Therefore, the internal energy change is given by,ΔU = Q - W

Where,Q = 4575 kJ (Given)

W = 3.04 kJ

Therefore,ΔU = 4571 kJ

c) Enthalpy change when the piston is made free to move is 4574 kJ. Enthalpy change is given by the formula,

ΔH = ΔU + PΔV

Where,ΔU = 4571 kJ (From part b)

P = 1.20 atm (Given)

ΔV = 0.0247 m³

Therefore,ΔH = (4571 kJ) + (1.20 atm) x (0.0247 m³) x (101.3 J/L atm) = 4574 kJ

Answer:ΔU = 4575 kJ (when the piston is blocked in position)ΔU = 4571 kJ (when the piston is made free to move)ΔH = 4574 kJ (when the piston is made free to move).

More about enthalpy : https://brainly.com/question/16387742

#SPJ11

A double pipe parallel flow heat exchanger is used to heat cold water with hot water. Hot water (cp=4.25 kJ/kg °C) enters the pipe with a flow rate of 1.5 kg/s at 80 °C and exits at 45°C. The heat exchanger is not well insulated and it is estimated that 3% of the heat given off by the hot fluid is lost through the heat exchanger. If the total heat transfer coefficient of the heat exchanger is 1153 W/m²°C and the surface area is 5 m2, find the heat transfer rate to the cold water and the logarithmic mean temperature difference for this heat exchanger. Continuous trading terms apply. The kinetic and potential energy changes of the fluid flows are negligible. There is no contamination. The fluid properties are constant.

Answers

The heat transfer rate to the cold water is 167.51 kW, and the logarithmic mean temperature difference for this heat exchanger is 28°C.

We know that, Q = m × Cp × ΔT

Where

m = mass flow rate

Cp = specific heat capacity

ΔT = Temperature difference

Q = (1.5 kg/s) × 4.25 kJ/kg °C × (80 - 45)°CQ = 172.69 kW

As per the problem, 3% of the heat given off by the hot fluid is lost through the heat exchanger.

Thus, heat loss is 0.03 × 172.69 kW = 5.18 kW

The heat transfer rate to the cold water is given as Q1 = Q - heat loss = 172.69 kW - 5.18 kW= 167.51 kW

To find the logarithmic mean temperature difference for this heat exchanger:

The formula for LMTD is,∆Tlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)

where

ΔT1 = hot side temperature difference = Th1 - Tc2

ΔT2 = cold side temperature difference = Th2 - Tc1

Tc1 = inlet temperature of cold water = 20°C

Tc2 = outlet temperature of cold water = ?

Th1 = inlet temperature of hot water = 80°C

Th2 = outlet temperature of hot water = 45°C

∆T1 = Th1 - Tc2 = 80°C - Tc2

∆T2 = Th2 - Tc1 = 45°C - 20°C = 25°C

Thus,∆Tlm = (80°C - Tc2 - 45°C) / ln[(80°C - Tc2) / (45°C - 20°C)]

∆Tlm = (35°C - Tc2) / ln(2.67[(80 - Tc2) / 25])

Now, the heat exchanger is a double pipe parallel flow heat exchanger. Thus, both hot and cold fluids have the same value of LMTD.∆Tlm = 35°C - Tc2 / ln(2.67[(80 - Tc2) / 25]) = 35°C - (47.81/ln(2.67[42.79/25]))

∆Tlm = 27.81°C which is approximately equal to 28°C

Learn more about heat exchangers at https://brainly.com/question/17029788

#SPJ11

Consider a steam power plant operated according to the concept of a Rankine cycle is within reach of the process. The steam turbine receives superheated steam at 395 psi and 572 F and discharges steam

Answers

The steam power plant operates based on the Rankine cycle, which is a thermodynamic cycle commonly used in power generation. The steam turbine in the power plant receives superheated steam at 395 psi and 572 °F and discharges steam at 2 psi and 250 °F.

To analyze the operation of the steam power plant, we can use the Rankine cycle, which consists of four main components: the boiler, turbine, condenser, and pump.

Boiler: The boiler is where water is heated to generate steam. In this case, the steam enters the turbine as superheated steam at 395 psi and 572 °F. This information provides the initial conditions for the steam.

Turbine: The steam turbine converts the thermal energy of the steam into mechanical work. The steam expands through the turbine, and its pressure and temperature decrease. The given information does not provide specific details about the turbine operation, so further calculations or analysis specific to the turbine are not possible.

Condenser: The condenser is where the exhaust steam from the turbine is condensed back into liquid form. The given information states that the steam is discharged from the turbine at 2 psi and 250 °F. This indicates the conditions at the outlet of the turbine and provides information about the steam exiting the turbine.

Pump: The pump is responsible for supplying high-pressure liquid to the boiler. The specific details about the pump operation are not provided in the given information.

Based on the given information, we know the initial conditions of the steam entering the turbine and the conditions of the steam discharged from the turbine. However, further calculations and analysis specific to the Rankine cycle and the steam power plant operation are not possible without additional information, such as the specific design and parameters of the components (e.g., turbine efficiency, condenser performance, pump characteristics).

To  know more about thermodynamic , visit;

https://brainly.com/question/15265844

#SPJ11

Q.  Consider a steam power plant operated according to the concept of a Rankine cycle is within reach of the process. The steam turbine receives superheated steam at 395 psi and 572 F and discharges steam at 69psi. The turbine has a power generation isentropic efficiency of 85%. The flow rate of steam is 88,176lb/h.

a)  What is the power generated by the steam turbine?

b) Place the heat delivered by the steam turbine in the cascade diagram

c) What is the maximum heating utility requirement after integrating the steam turbine with the process?

d) Draw the GCC for the process and show the heat loads placement.

A binary mixture of A and B is to be distilled. A is more volatile than B, with a relative volatility of 2.0. The molecular weight of A is 50 g mol-¹, and of B is 100 g mol-¹. Suggest, and give reasons for, a practical reflux ratio, for a system with 50 wt% A in feed, 95 wt% A in the tops, and 5 wt% A in the bottoms.

Answers

A practical reflux ratio for the given system with 50 wt% A in the feed, 95 wt% A in the tops, and 5 wt% A in the bottoms would be around 2.0. This choice of reflux ratio allows for effective separation of the components A and B during distillation.

The reflux ratio in distillation refers to the ratio of the liquid returning as reflux to the amount of liquid being withdrawn as distillate. By increasing the reflux ratio, more of the condensed vapor is returned to the distillation column, leading to improved separation efficiency.

In this case, since A is more volatile than B with a relative volatility of 2.0, it means that A has a higher tendency to vaporize. By choosing a reflux ratio of 2.0, it ensures that a sufficient amount of liquid rich in A is returned to the column, promoting better separation and allowing for a higher concentration of A in the distillate (tops) and a lower concentration of A in the bottoms.

Therefore, a practical reflux ratio of 2.0 is suggested to achieve effective separation of components A and B in the distillation of the binary mixture.

know more about distillation :brainly.com/question/31829945

#SPJ11

Other Questions
Lesson MatplotLib Create two sets of lines with the numbers that equal the values set in the first example; the values of the numbers 2,3,4,5 raised to the 2nd power and the values of the numbers 2,3,4,5 raised to the fourth power. Create two lines that plot the values calculated in the first paragraph. Mark the power of 2 points with a star * and the power of 4 points with a plus sign+ #1 Planning projects subjectThe solution must be comprehensive and clear as well. add references, it must not be handwritten. Expected number of words: 1000-2000 wordsAs you a computer since engineering Your project is to make a robot to Facilitating easy transportation of goods for Oman ministry of tourism in various tourist locations (VEX ROPOTE by cortex microcontroller) to speed up the transportation of goods, difficult things, to speed up the transportation process in the mountain, to reduce risks to employees, and to provide money for companies and ministries of tourism by implementing Al and robotics. Write the Introduction and Problem Statement 1- Defining the problem for example Another problem being faced by the association is that there are not network at all. People are working on standalone systems. OR The efficiency, reliability and security are the main concerns of the available network system. 2- Discussing consequences of problem for example the current/existing network process is not effective, unreliable, and redundant network data will lead to poor data transmission and unreliable reports and incorrect decision-making can happen. Security can be the issue, therefore. 3- The Aim of the project 4- Suggesting solutions for each problem the solution must be comprehensive and clear as well, add references, it must not be Handwritten Expected number of words: 1000-2000 words Second-Order ODE with Initial Conditions Solve this second-order differential equation with two initial conditions d2y/dx2 = -5y' 6y = OR d2y/dx2 + 5 * dy/dx +6* y = 0) Initial Conditions: y(0)=1 y'(0)=0 Define the equation and conditions. The second initial condition involves the first derivative of y. Represent the derivative by creating the symbolic function Dy = diff(y) and then define the condition using Dy(0)==0. 1 syms y(x) 2 Dy - diff(y); 3 ode - diff(y,x,2)- - 6*y == 0; 4 cond1 = y() == ; 5 cond2 = Dy() == ; 6 conds = [condi ; 7 ysol(x) = dsolve (, conds); 8 ht2 = matlabFunction(ysol); 9 fplot(ht2) Run Script Assessment: Submit Are you using ODE built in function? Calculate the energy in stored in a reservoir which has an area of 20 km, a depth of 2000m, a rock density of 2600 kg/m and a specific heat of 0.9 kJ / kg / K. The temperature of the reservoir is 200C and the ambient temperature is 15C. Upload your answer and workings. Historians often use the term New Imperialism to describe the globalization of empire that began in the later 19th-century. Was the New Imperialism really that different from earlier waves of European expansion (chapters 14 & 17)? If so, how so? Project description :Prepare an experiment to prove the Voltage division and Current division theorem:This experiment is composed of two parts:1. Theoretical:In this part, you have to design a circuit with different values of resisters that is between 100 and 1 K with a voltage source that must not exceed 10 V.After designing the circuit, all mathematical calculations must be shown and explained, showing the steps for solving Voltage division and the Current division theorem.2. Practical:In the lab, the designed circuit must be applied and tested to make sure that the results obtained from the practical part are the same as the theoreticalAll steps for connecting the circuit must be shown as well as a description of the component used. Does a reaction occur when aqueous solutions of potassium sulfate and copper(II) acetate are combined? yes no If a reaction does occur, write the net ionic equation. Use the solubility rules provided in the OWL Preparation Page to determine the solubility of compounds. Be sure to specify states such as (aq) or (s). If a box is not needed leave it blank. which value when placed in the box, would result in a system of equations with indefinitely many solutions y = -2x+4 6x+3y-12-4412 a) State where the legislative concepts "as low as reasonably practicable" ALARP & "so far as is reasonably practicable" SFAIRP are defined. Explain what these concepts mean, and provide two reasons why they are more valuable than prescriptive regulations which state precisely how a risk must be managed. When you are thinking about information that is central to themerits of a criminal case, will this information always be the sameto every person? Why or why not?SUBJECT- SOCIAL PSY Derive Eq. (2.26) in an alternate way by observing that e = (g-cx), and |e| =(g-cx) (g-cx) =|g| +c|x| - 2cg.x To minimize |e, equate its derivative with respect to c to zero. Find the transfer function from the following state-space representation: *=[]*x+u(t) y = [10][x] A CMFR is used to treat an industrial waste, using a reaction that destroys the pollutant according to first-order kinetics, with k = 0.216 day-1. The reactor volume is 500 m3, the volumetric flow rat When the relationship between a set of variables changes systematically depending on the value of another variable not included in that set. what is this latter variable called? Oa. Moderator Variable O b. Nominal Variable Oc. Measured Variable Od. Conceptual Variable Please show the process1. (16 pts) Give a complete and correct name for each of the following molecules. Be sure to indicate stereochemistry where appropriate: (a) (b) (c) (d) Q5 A simplified representation of the temperature dynamics of two adjacent masses is shown in Figure Q5. The mass with capacitance C is perfectly insulated on all sides except one, which has a conv (a) Show that when the recoil kinetic energy of the atom, p/2M, is taken into account the frequency of a photon emitted in a transition between two atomic levels of energy difference AE is reduced by a factor which is approximately (1-AE/2Mc). (Hint: The recoil momentum is p = hv/c.) (b) Compare the wavelength of the light emitted from a hydrogen atom in the 3 1 transition when the recoil is taken into account to the wave- length without accounting for recoil. A charge Q is uniformly distributed along the z-axis from z=-a to z=a. Find a suitable expression for electric field intensity vector E at any point P whose coordinates in cylindrical coordinates are (r, q, z). 15 (c) Three infinitely long, straight filamentary wires occupy the lines x = 0, y = 0; x = 1, y = 0 and x = 0, y = 1. Each wire carries a current of 1 A in z direction. Find the magnetic flux density vector B at any point P whose coordinates in rectangular system of coordinates are (1, 1, 100). Describe the three types of possible Universes we could live in and what will happen to them in the end. In your description, include the value of the cosmological density parameter and the size of the Universe in each case. Question 32 (1 point) Vibrations at an angle of 90 to the direction of propagation are waves. Question 33 (1 point) The intensity of a sound at 200 m is A times less than the intensity of sound at 100 m. Question 34 (1 point) Sounds above the sonic frequency range of humans are known as A and below the sonic frequency range the sound are called A/ Question 35 (1 point) The number of cycles per second a sound wave delivers to the ear is its A to a physicist but musicians or the general public refer to this as Question 36 (1 point) The Doppler effect is associated with the difference in A heard when a source of sound and the ear are moving relative to each other.