Reactions of lithium with various oxidizing


agents have been examined for use in batteries. A particularly well studied case is that of the lithium-sulfur battery. What is the


potential that is possible for a battery that


operates on the reaction of Li(s) with S(s)?


The individual reduction potentials are given


here:


Li+ + eâ â Li E⦠= â3. 05 V


S + 2 eâ â S2â E⦠= â0. 48 V


Answer in units of V

Answers

Answer 1

The result is negative, this means the reaction is not spontaneous under standard conditions. In other words, a lithium-sulfur battery cannot be constructed under standard conditions.

To calculate the potential for the reaction of Li(s) with S(s), we need to use the reduction potentials and the Nernst equation:

Ecell = Ereduction(cathode) - Ereduction(anode)

where Ereduction is the reduction potential, cathode is the reduction half-reaction occurring at the cathode (where reduction occurs) and anode is the oxidation half-reaction occurring at the anode (where oxidation occurs).

In this case, Li(s) is the anode and S(s) is the cathode. So, we need to flip the sign of the reduction potential for the anode:

Ecell = E(S2-/S) - (-E(Li+/Li))

Ecell = 0.48 V - 3.05 V

Ecell = -2.57 V

To know more about lithium-sulfur battery refer to-

https://brainly.com/question/31104871

#SPJ11


Related Questions

Green tea has a ph of 8.2 what is the (oh-) and is it acidic or basic

Answers

The (OH⁻) concentration in green tea with a pH of 8.2 is 6.31 x 10⁻⁷ M.

This suggests that the solution is slightly basic in nature. pH is a measure of hydrogen ion concentration, and the higher the pH, the lower the hydrogen ion concentration.

This means that in green tea, there are more hydroxide ions than hydrogen ions present, making it a basic solution.

It is important to note that the pH of green tea can vary depending on the brand and preparation method. Nonetheless, overall, green tea is considered a healthy beverage due to its antioxidant properties and potential health benefits.

To know more about pH click on below link:

https://brainly.com/question/2288405#

#SPJ11

Use the scenario to answer the question. a student is examining scientific evidence to support the following claim. ""life is possible because of the unique mixture of gases that cycle through the earth’s spheres."" which evidence best supports the student’s claim?

Answers

The evidence that best supports the student's claim that "life is possible because of the unique mixture of gases that cycle through the Earth's spheres" is the presence and balance of oxygen, nitrogen, and carbon dioxide in the atmosphere.

These gases play a crucial role in maintaining life on Earth by supporting respiration, regulating temperature, and enabling the carbon cycle, which allows organisms to exchange and utilize carbon for growth and energy production.

Oxygen: Oxygen is a vital gas for sustaining life on Earth. It is a key component of the atmosphere, making up about 21% of its composition. Oxygen is essential for respiration, the process by which organisms extract energy from food.

Through respiration, organisms break down glucose (derived from food) and use oxygen to produce energy-rich molecules called adenosine triphosphate (ATP).

This energy is necessary for cellular functions and metabolic activities. Many organisms, including humans, require oxygen to survive.

Nitrogen: Nitrogen is the most abundant gas in the Earth's atmosphere, accounting for approximately 78% of its composition. Although nitrogen is relatively inert and does not directly participate in biological processes, it is crucial for life.

Nitrogen is an essential component of amino acids, proteins, and nucleic acids (DNA and RNA), which are fundamental building blocks of life. Nitrogen fixation, a process carried out by certain bacteria, converts atmospheric nitrogen into forms that can be used by plants and other organisms.

This allows nitrogen to enter the food chain and support the growth and development of living organisms.

Carbon Dioxide: Carbon dioxide is a greenhouse gas and an integral part of the Earth's carbon cycle. It plays a significant role in regulating the planet's temperature through the greenhouse effect.

Carbon dioxide traps heat in the atmosphere, preventing excessive heat loss into space and maintaining a suitable temperature range for life. Additionally, carbon dioxide is essential for photosynthesis, a process carried out by plants and other autotrophic organisms.

During photosynthesis, carbon dioxide is absorbed, and with the help of sunlight, it is converted into glucose and oxygen. This process not only provides oxygen for respiration but also allows organisms to utilize carbon for growth, energy production, and the formation of organic compounds.

To learn more about glucose, refer below:

https://brainly.com/question/30548064

#SPJ11

Limiting and Excess Reactants POGIL (Extension Questions)

Answers

Limiting reactants are the reagents that are used up first in a chemical reaction, and determine the amount of product that can be formed.

Excess reactants are reagents that, once the limiting reactant has been used up, are still present in the reaction mixture.

The limiting reactant is important because it is the reagent that limits the amount of product that can be produced. When excess reactants are present, they do not contribute to the amount of product that can be produced and are thus considered to be "excess" material.

This excess material can cause problems in a reaction, such as unwanted byproducts or the formation of side reactions. Therefore, it is important to carefully control the amounts of reactants that are used in a reaction to ensure that the desired product is formed in the maximum possible yield.

Know more about Chemical reaction here

https://brainly.com/question/29039149#

#SPJ11

Decomposers, such as bacteria, earthworms, and fungi, are not shown in the food web. How do these organisms receive energy?
A.
Decomposers break down the remains of dead plants and animals.
B.
Decomposers use energy from the Sun to make their own food.
C.
Decomposers consume living plants and animals.
D.
Decomposers do not need energy to survive.

Answers

I believe the answer is A because decomposers breakdown the remains of the producers and consumers

Answer:

A

Explanation:

I believe the answer is A as bacteria feeds in a mode of nutrition known as saprophytism

0. 18 g of a
divalent metal was completely dissolved in 250 cc of acid
solution containing 4. 9 g H2SO4 per liter. 50 cc of the
residual acid solution required 20 cc of N/10 alkali for
complete neutralization. Calculate the atomic weight of
metal.
39.
Ans: 36​

Answers

0.18 g of a divalent metal was completely dissolved in 250 cc of acid solution containing 4. 9 g H₂SO₄ per liter. 50 cc of the residual acid solution required 20 cc of N/10 alkali for complete neutralization. The atomic weight of metal is 45 g/mol.  

First, we need to determine the moles of H₂SO₄ present in 250 cc of the acid solution:

4.9 g/L = 0.0049 g/cc

0.0049 g/cc x 250 cc = 1.225 g of H₂SO₄

Next, we can calculate the number of moles of H₂SO₄ that were neutralized by the alkali solution:

20 cc of N/10 NaOH = 0.002 mol NaOH

Since the reaction is:

H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O

then 1 mol of H₂SO₄ reacts with 2 mol of NaOH, therefore 0.004 mol of H₂SO₄ reacted with 0.002 mol of NaOH.

So, the remaining number of moles of H₂SO₄ is:

0.004 mol - 0.002 mol = 0.002 mol

Now we can calculate the moles of metal present in the solution:

0.18 g / atomic weight = moles of metal

We can use the remaining H₂SO₄ to find the number of moles of metal:

1 mol of H₂SO₄ reacts with 1 mol of metal, so the number of moles of metal is equal to the number of moles of H₂SO₄ remaining:

0.002 mol H₂SO₄ = 0.002 mol metal

Now we can solve for the atomic weight:

0.18 g / 0.002 mol = 90 g/mol

Since the metal is divalent, we need to divide by 2 to get the atomic weight:

90 g/mol / 2 = 45 g/mol

Therefore, the atomic weight of the metal is 45 g/mol.

To know more about the neutralization refer here :

https://brainly.com/question/15347368#

#SPJ11

Nicolaas' model demonstrates that and are primarily responsible for the movement of water on earth

Answers

Nicolaas' model is a scientific model that explains the movement of water on Earth. According to the model, the two primary factors responsible for the movement of water on Earth are evaporation and precipitation.

Evaporation occurs when water changes from a liquid to a gas state due to heat from the sun. This process results in the formation of water vapor that rises into the atmosphere. Precipitation occurs when water vapor condenses in the atmosphere and falls back to the surface as rain, snow, or hail. These two processes play a critical role in the water cycle, which is essential for the survival of life on Earth. Therefore, Nicolaas' model highlights the significance of evaporation and precipitation in the movement of water on Earth.

Learn more about Nicolaas' model at https://brainly.com/question/15923461

#SPJ11

Choosy moms choose JIF! Your mom is making PB & J sandwiches for you and her. When she looks in the cupboard, she realizes she has 3 slices of bread, 1 jar of peanut butter, and 1/2 jar of jelly. What is the limiting reactant?

Answers

In this scenario, the limiting reactant is the ingredient that will run out first and limit the number of sandwiches that can be made.

Assuming that each sandwich requires two slices of bread, one serving of peanut butter, and one serving of jelly, we can see that we have enough bread and jelly to make a maximum of 1.5 sandwiches. However, since we only have one serving of peanut butter, we can only make one sandwich.

Therefore, the peanut butter is the limiting reactant. It is important to identify the limiting reactant in chemical reactions to determine the maximum amount of product that can be formed and to avoid wasting resources.

To know more about the limiting reactant refer here :

https://brainly.com/question/14225536#

#SPJ11

Rogue waves are a rare occurrence in which the amplitude of the wave can reach as high as 15 meters. Calculate the energy of rogue wave of this amplitude

Answers

To calculate the energy of a rogue wave with an amplitude of 15 meters, we can use the following formula:

E = 0.5ρAv^2

where E is the energy of the wave, ρ is the density of the water, A is the amplitude of the wave, and v is the velocity of the wave.

Assuming the density of water is 1000 kg/m^3 and the velocity of the wave is the standard gravitational acceleration of 9.81 m/s^2 (since rogue waves are caused by the interaction of multiple waves), we can calculate the energy of the rogue wave:

E = 0.5 x 1000 kg/m^3 x π x (15 m)^2 x (9.81 m/s^2)^2

E = 1.22 x 10^9 J

Therefore, the energy of a rogue wave with an amplitude of 15 meters is approximately 1.22 x 10^9 joules.

To know more about rogue refer here

https://brainly.com/question/12121401#

#SPJ11

The electron configuration for the element bismuth, (Bi, atomic #83) is: ? 1s22s22p63s23p64s24d104p65s25d105p66s26d106p3 ? 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p3 ? 1s22s22p63s23p64s23d104p65s24d105p66s25d106p3 ? 1s22s22p63s23p64s24d104p65s25d105p66s26f146d106p3

Answers

The correct electron configuration for bismuth is 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p³. Option 2.

Electron configuration of elements

Bismuth has an atomic number of 83, and hence, has 83 electrons.

According to the Aufbau principle, electrons fill up orbitals in order of increasing energy levels; s, p, d, and f with a maximum electron of 2, 6, 10, and 14 respectively.

The electron configuration for bismuth can be written by following this principle, starting from the first energy level and moving up to the sixth energy level.

Therefore, the electron configuration for bismuth is 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p³.

More on electron configurations can be found here: https://brainly.com/question/29757010

#SPJ1

40g of sodium chloride solution was made to react with 14. 50g of lead trioxonitrate (V)o produce 13. 20g of lead chloride precipitate and sodium
trioxonitrate (v] solution

Answers

When sodium chloride solution is added to lead nitrate solution then it results in the formation of a precipitate of lead chloride and sodium nitrate.

Precipitation reactions occur when cations and anions in aqueous solution combine to form an insoluble ionic solid called a precipitate. Whether or not such a reaction occurs can be determined by using the solubility rules for common ionic solids Percent composition tells you which types of atoms (elements) are present in a molecule and their levels. Percent composition can also tell you about the different elements present in an ionic compound as well.

To learn more about precipitation reaction check the link below-

https://brainly.com/question/13016165

#SPJ4

What is the in a 12. 2 L vessel that contains 1. 13 mol of Co2 at a temperature of 42 degrees C?

Answers

The pressure of the [tex]Co_{2}[/tex]  gas in the 12.2 L vessel at a temperature of 42°C with 1.13 mol of CO2 is 2.12 atm.

The volume of the vessel =  12.2 L

Number of moles of [tex]Co_{2}[/tex] =  1. 13 mol

Temperature = 42 degrees

To calculate the pressure of the gas we need to use the ideal gas law equation.

PV = nRT

P = nRT/V

Assuming that the Universal gas constant R =  0.0821 L·atm/(mol·K).

Converting the temperature degrees into Kelvin scale

T = 42°C + 273.15 = 315.15 K

Substituting the above values into the equation:

P = [(1.13 mol) * (0.0821 L·atm/mol·K)* (315.15 K)] / (12.2 L) = 2.12 atm

Therefore, we can conclude that the pressure of the gas is 2.12 atm.

To learn more about Pressure

https://brainly.com/question/25764275

#SPJ4

The complete question is:

What is the pressure required in a 12. 2 L vessel that contains 1. 13 mol of Co2 at a temperature of 42 degrees C?

If an 18 m solution was diluted to a 6.5 m solution that
had a new volume of 3.25 l, how many l of the original
solution were added?

Answers

To make a 6.5 m solution with a volume of 3.25 L from an 18 m solution, we need to add 1.14 L of the original solution.

To calculate the volume of the original solution added, we can use the equation:

C1V1 = C2V2

where C1 is the initial concentration, V1 is the volume of the initial solution added, C2 is the final concentration, and V2 is the final volume of the diluted solution.

Plugging in the given values, we get:

(18 M) V1 = (6.5 M) (3.25 L)

Solving for V1, we get:

V1 = (6.5 M) (3.25 L) / (18 M)

V1 = 1.1389 L or approximately 1.14 L

Therefore, about 1.14 L of the original solution was added to make the 6.5 m solution with a volume of 3.25 L.

To know more about the original solution refer here :

https://brainly.com/question/29850404#

#SPJ11  

4. For each of the following reactions, indicate whether you would expect the entropy of the


system to increase or decrease, and explain why. If you cannot tell just by inspecting the


equation, explain why.


(a) CH3OH() → CH3OH(g)


(b) N204(g) + 2NO2(g)


(c) 2KCIO3(s) → 2KCI(s) + 302


(d) 2NH3(g) + H2SO4(aq) →(NH4)2SO4(aq)

Answers

(a) The entropy of the system would increase. The transition from a liquid to a gas state involves an increase in the number of microstates, which leads to an increase in entropy. Therefore, the entropy of the system will increase as [tex]CH3OH[/tex] transitions from a liquid state to a gas state.

(b) The entropy of the system would increase. The reaction involves the formation of three molecules of gas from one molecule of gas and another molecule that contains two molecules of gas. The increase in the number of molecules leads to an increase in the number of microstates, which results in an increase in entropy.

(c) The entropy of the system would increase. The transition from a solid to a liquid or gas state involves an increase in the number of microstates, which leads to an increase in entropy. Therefore, the entropy of the system will increase as [tex]2KCIO3[/tex] transitions from a solid state to a liquid or gas state.

(d) The entropy of the system would increase. The reaction involves the formation of two molecules of gas from three molecules of gas and one molecule of aqueous substance. The increase in the number of molecules leads to an increase in the number of microstates, which results in an increase in entropy.

To know more about  entropy refer to-

https://brainly.com/question/13135498

#SPJ11

Assume that you put the same amount of room-temperature air
in two tires. if one tire is bigger than the other, how will air
pressure in the two tires compare?
the bigger tire will have greater air pressure.
b the smaller tire will have greater air pressure.
both tires will have the same air pressure.
dnot enough information is provided to know the
answer

Answers

The larger tire will have a greater volume, but the amount of air in each tire is the same, so the pressure in both tires will be the same. The correct answer is the option: C.

The pressure of a gas is related to its temperature, volume, and the number of molecules present, according to the Ideal Gas Law: PV = nRT,

Assuming the temperature, number of molecules, and the amount of air in both tires are the same, the pressure of the air in the tires will depend only on the volume of the tires. Therefore, both tires will have the same air pressure. The correct answer is C.

To know more about Ideal Gas Law, here

brainly.com/question/13821925

#SPJ4

--The complete Question is, Assume that you put the same amount of room-temperature air in two tires. if one tire is bigger than the other, how will air pressure in the two tires compare?

A. the bigger tire will have greater air pressure.

B. the smaller tire will have greater air pressure.

C. both tires will have the same air pressure. --

How many moles of O2 are needed to fully combust 5. 67 moles of C4H10?


C4H10(l) + O2(g)→ CO2(g) + H2O(l)

Answers

36.855 moles of O2 are needed to fully combust 5.67 moles of C4H10.

To determine the number of moles of O2 needed to fully combust 5.67 moles of C4H10, first, we need to balance the given chemical equation:

C4H10(l) + O2(g) → CO2(g) + H2O(l)

Balanced equation:
C4H10(l) + 13/2 O2(g) → 4 CO2(g) + 5 H2O(l)

Now, we can use stoichiometry to find the moles of O2 required. Here's a step-by-step explanation:

Step 1: Identify the given and unknown values.
Given: moles of C4H10 = 5.67 moles
Unknown: moles of O2

Step 2: Use the balanced equation to find the mole ratio between C4H10 and O2.
Mole ratio (C4H10 : O2) = 1 : 13/2

Step 3: Use the mole ratio to determine the moles of O2 required for complete combustion.
(5.67 moles C4H10) * (13/2 moles O2 / 1 mole C4H10) = X moles O2

Step 4: Calculate the moles of O2.
X = 5.67 * (13/2) = 36.855 moles O2

So, 36.855 moles of O2 are needed to fully combust 5.67 moles of C4H10.

To know more about moles, visit:

https://brainly.com/question/31597231#

#SPJ11




-in your own words explain the steps involved to write the name (Sodium Chloride) of a chemical formula let’s include at least three steps and use your notes)?



-In your own words explain the steps involved to write the chemical formula (NaCl) from the name (must


include at least 3 steps and use your notes).

Answers

To write the name "Sodium Chloride" from a chemical formula, follow these steps:

1. Identify the elements present in the formula: In this case, the formula is "NaCl," which contains the elements Sodium (Na) and Chlorine (Cl).
2. Write the name of the metal (cation) first: In this case, the metal is Sodium (Na). So, the first part of the name is "Sodium."
3. Write the name of the non-metal (anion) with the suffix "-ide": The non-metal is Chlorine (Cl), so the name changes to "Chloride."
4. Combine the names of the metal and non-metal: The final name is "Sodium Chloride."

To write the chemical formula "NaCl" from the name "Sodium Chloride," follow these steps:

1. Identify the elements from the name: In this case, the name is "Sodium Chloride," which contains the elements Sodium (Na) and Chlorine (Cl).
2. Determine the charges of the elements: Sodium has a +1 charge as a cation, and Chlorine has a -1 charge as an anion.
3. Balance the charges to form a neutral compound: Since the charges are +1 and -1, they balance out, and you don't need to add any subscripts.
4. Write the chemical formula using the element symbols: Combine the symbols to form the formula "NaCl."

To know more about Sodium Chloride :

https://brainly.com/question/1559859

#SPJ11

What volume of solution is required to create a solution of a concentration of 1.3x 10^-2 M from 1.0x 10^-3 moles of calcium hydroxide

Answers

Approximately 0.0769 liters (76.9 mL) of solution is required to create a 1.3 x [tex]10^-2[/tex] M concentration of calcium hydroxide using [tex]1.0 x 10^-3[/tex] moles of solute.


A solute is a material that a solvent can dissolve into a solution. A solute can take on various shapes. It might exist as a solid, a liquid, or a gas. Solvent refers to the component of a solution that is most prevalent. It is the fluid in which the solute has been dissolved.
Molarity (M) = moles of solute / volume of solution (L)
Here, you're given the desired molarity ([tex]1.3 x 10^-2[/tex] M) and the moles of solute ([tex]1.0 x 10^-3[/tex]moles). You need to find the volume of solution (in liters).

Volume (L) = moles of solute / Molarity (M)
Now, plug in the given values:
Volume (L) = [tex](1.0 x 10^-3[/tex] moles) / ([tex]1.3 x 10^-2[/tex]M)
Volume (L) ≈ 0.0769 L

For more such question on hydroxide
https://brainly.com/question/21393201

#SPJ11

Ensure the Sales worksheet is active. Enter a function in cell B8 to create a custom transaction number. The transaction number should be comprised of the item number listed in cell C8 combined with the quantity in cell D8 and the first initial of the payment type in cell E1. Use Auto Fill to copy the function down, completing the data in column B.


Enter a nested function in cell G8 that displays the word Flag if the Payment Type is Credit and the Amount is greater than or equal to $4000. Otherwise, the function will display a blank cell. Use Auto Fill to copy the function down, completing the data in column G.


Create a data validation list in cell D5 that displays Quantity, Payment Type, and Amount.


Type the Trans# 30038C in cell B5, and select Quantity from the validation list in cell D5.


Enter a nested lookup function in cell F5 that evaluates the Trans # in cell B5 as well as the Category in cell D5, and returns the results based on the data in the range C8:F32

Answers

In B8, enter the custom transaction number function: `=C8&D8&LEFT(E1,1)`. Use Auto Fill to copy it down column B.

In G8, enter the nested function: `=IF(AND(E8="Credit",F8>=4000),"Flag","")`. Auto Fill it down column G.

In D5, create a data validation list with Quantity, Payment Type, and Amount.

In B5, type Trans# 30038C. In D5, select Quantity.

In F5, enter the nested lookup function: `=IF(D5="Quantity",VLOOKUP(B5,C8:F32,2,FALSE),IF(D5="Payment Type",VLOOKUP(B5,C8:F32,3,FALSE),IF(D5="Amount",VLOOKUP(B5,C8:F32,4,FALSE),"")))`.

Follow these steps to achieve the desired result in your Sales worksheet.

To know more about nested function click on below link:

https://brainly.com/question/30186413#

#SPJ11

Algae produce oxygen. Tiny animals that live in the water eat the algae. Small fish eat the tiny animals, absorb oxygen with their gills, and give off carbon dioxide as waste. Plants use the carbon dioxide to grow.

Which of the following would happen if the algae disappeared?
Plants would lose some of the carbon dioxide they need to grow.
The tiny animals would not have enough food.
Fish would not have enough oxygen.

Answers

If the algae disappeared, the tiny animals would not have enough food.

Which of the following would happen if the algae disappeared?

Small fish that eat the tiny animals would also run out of food, which might lead to a drop in their number. As a result, less oxygen would be accessible for other organisms and the amount of oxygen the fish produce would decrease.

However, since the plants may still obtain their carbon dioxide from other sources, the loss of the algae would not have a direct impact on them.

Learn more about algae:https://brainly.com/question/4289110

#SPJ1

The acid dissociation constant (Ka) for benzoic acid is 6. 3 × 10 ^-5. Find the pH of a 0. 35 m solution of benzoic acid. ​

Answers

The equation for the dissociation of benzoic acid is:

C6H5COOH + H2O ↔ C6H5COO- + H3O+

The expression for Ka is:

Ka = [C6H5COO-][H3O+] / [C6H5COOH]

At equilibrium, the concentration of undissociated benzoic acid will be (0.35 - x), where x is the concentration of dissociated benzoic acid.

Assuming x is small compared to 0.35, we can make the approximation that the concentration of undissociated benzoic acid is 0.35. Therefore, we can write:

Ka = x^2 / (0.35 - x)

Solving for x, we get:

x = √(Ka × (0.35 - x))

x = √(6.3 × 10^-5 × 0.35 - 6.3 × 10^-5 × x)

Squaring both sides:

x^2 = 6.3 × 10^-5 × 0.35 - 6.3 × 10^-5 × x

Bringing all the x terms to one side:

x^2 + 6.3 × 10^-5 × x - 6.3 × 10^-5 × 0.35 = 0

Using the quadratic formula:

x = [-6.3 × 10^-5 ± √(6.3 × 10^-5)^2 + 4 × 6.3 × 10^-5 × 0.35] / 2

x = [-6.3 × 10^-5 ± 1.37 × 10^-3] / 2

x = 6.46 × 10^-4 or x = -7.03 × 10^-5

Since the concentration of benzoic acid cannot be negative, we choose the positive root:

x = 6.46 × 10^-4

The concentration of H3O+ ions is equal to x, so the pH of the solution is:

pH = -log[H3O+]

pH = -log(6.46 × 10^-4)

pH = 3.19

Therefore, the pH of a 0.35 m solution of benzoic acid is 3.19.

To know more about dissociation refer here

https://brainly.com/question/28330679#

#SPJ11

An empty 150 milliliter beaker has a mass of 45 grams. When 100 milliliters of oil is added to the beaker, the total mass is 100 grams. The density of the oil is …

Answers

The density of oil is 0.55 g/mL
To determine the density of the oil, first calculate the mass of the oil alone by subtracting the mass of the empty beaker from the total mass: 100 grams (total mass) - 45 grams (empty beaker mass) = 55 grams (mass of oil).

Now, use the formula for density, which is:

Density = Mass / Volume

In this case:

Density of oil = 55 grams (mass of oil) / 100 milliliters (volume of oil) = 0.55 g/mL.

So, the density of the oil is 0.55 g/mL.

To know more about density:

https://brainly.com/question/1354972

#SPJ11

Determine the number of moles present in each compound. 6.50 g ZnSO4.

Answers

The number of moles present in 6.50g of ZnSO4 is 0.0403 moles.

How to calculate no of moles?

The number of moles in a substance can be calculated by dividing the mass of the substance by its molar mass as follows:

no of moles = mass ÷ molar mass

According to this question, 6.50 grams of zinc sulphate is given. The number of moles in the substance can be calculated as follows:

molar mass of zinc sulphate = 161.47 g/mol

no of moles = 6.50g ÷ 161.47 g/mol

no of moles = 0.0403 moles

Learn more about moles at: https://brainly.com/question/20928252

#SPJ1

If a student starts with 300. 0 mL of a gas at 17. 0 °C, what would be its volume at 35. 0°C?

Answers

The volume of the gas at 35.0°C would be approximately 324.7 mL, assuming a constant pressure of 1 atm.

To solve this problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas. The formula :

[tex](P_1 * V_1)[/tex] ÷ [tex]T_1 = (P_2 * V_2)[/tex] ÷ [tex]T_2[/tex]

We can assume that the pressure is constant since it is not mentioned in the problem. Also, we need to convert the temperatures to Kelvin by adding 273.15 to each Celsius temperature.

Using the formula and the given values, we get:

[tex](P_1 * V_1)[/tex]  ÷ [tex]T_1 = (P_2 * V_2)[/tex] ÷ [tex]T_2[/tex]

[tex]V_2 = (P_1 * V_1 * T_2)[/tex] ÷[tex](T_1 * P_2)[/tex]

We can plug in the values:

[tex]P_1 = unknown\\V_1 = 300.0 mL \\T_1 = 17.0 + 273.15 = 290.15 K \\P_2 = unknown \\T_2 = 35.0 + 273.15 = 308.15 K[/tex]

Now, we need to assume a pressure value. Let's assume the pressure is constant at 1 atmosphere (atm). We can now solve for [tex]V_2[/tex]:

[tex]V_2 = (P_1 * V_1 * T_2)[/tex]  ÷ [tex](T_1 * P_2)[/tex]

[tex]V_2 = (1 atm * 300.0 mL * 308.15 K)[/tex] ÷ [tex](290.15 K * 1 atm)[/tex]

[tex]V_2 = 324.7 mL[/tex]

To know more about combined gas law, here

brainly.com/question/30458409

#SPJ1

A 0. 495M solution of nitrous acid, HNO2, has a pH of 1. 83



a) Find the percent ionization of nitrous acid in this solution. You may assume the temperature is 25 oC.



b) Calculate the value of Ka for nitrous acid. You may assume the temperature is 25 oC.



c) Using the value of Ka you determined in b), calculate the pH of a solution formed by adding 1. 0 g of NaNO2 to 750 mL of 0. 0125M HNO2. You may assume the temperature is 25 oC

Answers

a) The percent ionization of nitrous acid in this 0.495M solution is 2.64%.

b) The value of Ka for nitrous acid is 4.45 x 10⁻⁴.

c) The pH of the solution formed by adding 1.0g NaNO₂ to 750mL of 0.0125M HNO₂ is 2.83.



a) Percent ionization = ([tex]10^-^p^H[/tex] / initial concentration) x 100
  Percent ionization = ( [tex]10^-^1^.^8^3[/tex] / 0.495) x 100 = 2.64%

b) Ka = [H⁺][NO₂⁻] / [HNO₂]
  Ka = ( [tex]10^-^1^.^8^3[/tex] )² / (0.495 -  [tex]10^-^1^.^8^3[/tex] ) = 4.45 x 10⁻⁴

c) 1. Calculate moles of NaNO₂: (1g / 69.0 g/mol) = 0.0145 mol
  2. Calculate initial concentration of NO₂⁻: 0.0145 mol / 0.750 L = 0.0193 M
  3. Use Henderson-Hasselbalch equation:

  pH = pKa + log([NO₂⁻]/[HNO₂])
  pH = -log(4.45 x 10⁻⁴) + log(0.0193 / 0.0125) = 2.83

To know more about Henderson-Hasselbalch equation click on below link:

https://brainly.com/question/31732200#

#SPJ11

Identify the limiting reactant and determine the mass of CO2 that can be produced from the reaction of 25. 0 g of C3H8 with 75. 0 g of O2 according to the following equation:



C3H8 + 5 O2 ---> 3 CO2 + 4 H2O



Help immediately PLEASE!!!

Answers

Oxygen (O₂) is the limiting reactant, and the maximum mass of CO₂ that can be produced is 61.6 g.

To determine the limiting reactant and the amount of CO₂ produced, we need to perform a stoichiometric calculation using the balanced chemical equation;

C₃H₈ + 5O₂ → 3CO₂ + 4HO

First, we need to determine which reactant is limiting by calculating the amount of CO₂ that can be produced from each reactant and comparing them. We assume that both reactants are completely consumed in the reaction.

For C₃H₈;

Molar mass of C₃H₈ = 44.1 g/mol

Moles of C₃H₈ = 25.0 g / 44.1 g/mol = 0.567 mol

Moles of CO₂ produced = 0.567 mol x (3 mol CO₂ / 1 mol C₃H₈) = 1.70 mol

Mass of CO₂ produced = 1.70 mol x 44.01 g/mol = 74.8 g

For O₂ ;

Molar mass of  O₂ = 32.0 g/mol

Moles of  O₂  = 75.0 g / 32.0 g/mol = 2.34 mol

Moles of CO₂ produced = 2.34 mol x (3 mol CO₂ / 5 mol O₂ ) = 1.40 mol

Mass of CO₂ produced = 1.40 mol x 44.01 g/mol

= 61.6 g

Since O₂ produces less CO₂ than C₃H₈, it is the limiting reactant.

Therefore, the maximum mass of CO₂ that can be produced is 61.6 g.

To know more about limiting reactant here

https://brainly.com/question/19654705

#SPJ4

Calculate the molar solubility of agbr in 2.8×10−2 m agno3 solution. the ksp of agbr is 5.0 * 10-13

Answers

The molar solubility of [tex]AgBr[/tex] in [tex]2.8 x 10^-2 M AgNO3[/tex] solution is [tex]7.1 x 10^-7 M[/tex].

To calculate the molar solubility of [tex]AgBr[/tex] in [tex]2.8 x 10^-2 M AgNO3[/tex] solution, we need to use the common ion effect. The [tex]Ag+[/tex] ion is a common ion in both [tex]AgBr and AgNO3[/tex]. When we add [tex]AgNO3[/tex] to a solution containing AgBr, it adds more [tex]Ag+[/tex] ions to the solution and causes a shift in the equilibrium to the left. The solubility of [tex]AgBr[/tex]decreases due to this effect.

The balanced equation for the dissolution of [tex]AgBr[/tex] is:

[tex]AgBr(s) ⇌ Ag+(aq) + Br-(aq)[/tex]

The Ksp expression for AgBr is:

Ksp = [Ag+][Br-] = 5.0 x 10^-13

Let x be the molar solubility of [tex]AgBr[/tex]in [tex]2.8 x 10^-2 M AgNO3[/tex]solution. Then the concentration of [tex]Ag+[/tex] ion is[tex][Ag+] = 2.8 x 10^-2 + x[/tex], and the concentration of [tex]Br-[/tex] ion is[tex][Br-] = x[/tex].

Substituting these values into the Ksp expression, we get:

[tex]Ksp = (2.8 x 10^-2 + x)(x) = 5.0 x 10^-13[/tex]

Simplifying the equation and neglecting x in comparison to [tex]2.8 x 10^-2[/tex], we get:

[tex]x^2 = 5.0 x 10^-13x = sqrt(5.0 x 10^-13) = 7.1 x 10^-7 M[/tex]

To know more about molar solubility  refer to-

https://brainly.com/question/28170449

#SPJ11

What is the percent dissociation of HNO2 when 0. 058 of sodium nitrate is added to 110. 0ml of a 0. 060 M HNO solution? K, for HNO2 is 4. 0x10^-4

Answers

The percent dissociation of HNO₂ comes out to be 5.2% which is shown in the below secion.

The calculations of pKa is done as follows-

pKa = - log Ka

      = - log (4.0 x 10⁻⁴)

     = 3.398

Mole of NaNO₂ = mass / molar mass

                          = 0.058 g / 68.9953 g/mole

                          = 8.406 x 10⁻⁴ mole

Mole of HNO₂ = 0.110 L * 0.060 mole / L = 6.6 x10⁻³ mole.

Resulting solution is buffer solution.

pH = pKa + log [salt] / [acid]

Substituting the known values in the above formula.

pH = 3.398 + log ( 8.406 x 10⁻⁴ / 6.6 x 10⁻³ )

pH = 2.503

The pH can also be evaluated using the below expression.

pH = -log[H⁺]

-log[H] = 2.503

[H⁺]= 3.14 x 10⁻³ M

Thus

Percent of ionization = 3.14 x 10⁻³ M x 100 / 0.060 = 5.2 %

To learn more about pH check the link below-

https://brainly.com/question/26424076

#SPJ4

9. Arrange the following ions in terms of increasing atomic radius (arrange then increasing from left [smallest] to right [largest]): Ca2+, K+, Rb+, Sr2+, Na+​

Answers

The ions arranged in terms of increasing atomic radius from left to right are: Ca²⁺, Sr²⁺, Na⁺, K⁺, Rb⁺.

As we move from left to right across the periodic table, due to the increasing nuclear charge the number of protons in the nucleus increases, pulling the electrons closer to the center and decreasing the atomic radius. However, as you move down a group, the number of electron shells increases, which increases the distance between the nucleus and outermost electrons, increasing the atomic radius.

Cations (positively charged ions) have smaller radii than their corresponding neutral atoms due to the loss of electrons and increased effective nuclear charge. Ca²⁺, Sr²⁺ have a +2 charge and; K⁺, Rb⁺, and Na⁺ have a +1 charge. Higher charge leads to a smaller atomic radius.

Ca²⁺, Sr²⁺  are located in Group 2, while K⁺, Rb⁺, and Na⁺ are located in Group 1 of periodic table. Arrange the ions based on their positions in the periodic table and their charges.

Based on these factors, the correct order of ions in terms of increasing atomic radius is: Ca²⁺ (smallest), Sr²⁺, Na⁺, K⁺, and Rb⁺ (largest).

To learn more about atomic radius visit:

https://brainly.com/question/15255548

#SPJ11

Calculate the volume of 3. 00 M H2SO4 required to prepare 200. ML of 0. 200 N H2SO4. (Assume the acid is to be completely neutralized. )

Answers

Approximately 13.3 mL of 3.00 M H₂SO₄ is required to prepare 200. mL of 0.200 N H₂SO₄.

To calculate the volume of 3.00 M H₂SO₄ required to prepare 200. mL of 0.200 N H₂SO₄, we can use the formula for molarity:

Molarity (M) = moles of solute / volume of solution in liters

We can rearrange this formula to solve for volume:

Volume (in liters) = moles of solute / molarity

First, let's calculate the moles of H₂SO₄ in 200. mL of 0.200 N solution:

0.200 N = 0.200 mol/L

Moles of H₂SO₄ = 0.200 mol/L x 0.200 L = 0.0400 mol

Next, we can use this value and the concentration of the 3.00 M H₂SO₄ to calculate the volume of the concentrated acid needed:

Volume = moles of solute / molarity

Volume = 0.0400 mol / 3.00 mol/L

Volume = 0.0133 L or 13.3 mL

So, to make 200 mL of 0.200 N H₂SO₄ , roughly 13.3 mL of 3.00 M H₂SO₄  is required.

To know more about the Volume, here

https://brainly.com/question/31482457

#SPJ4

Consider a gas cylinder containing 0. 100 moles of an ideal gas in a


volume of 1. 00 L with a pressure of 1. 00 atm. The cylinder is


surrounded by a constant temperature bath at 298. 0 K. With an


external pressure of 5. 00 atm, the cylinder is compressed to 0. 500 L.


Calculate the q(gas) in J for this compression process.

Answers

According to the question the q(gas) in J for this compression process is 0J.

What is gas ?

Gas is a state of matter in which particles are spread out and have enough energy to move around freely. Gas is composed of molecules in constant motion and takes the shape and volume of its container. Gas can be either naturally occurring or man-made and is found in the atmosphere. Examples of naturally occurring gases include oxygen, nitrogen, and carbon dioxide. Man-made gases include helium, chlorine, and hydrogen. Gas is often used as a source of energy and is burned to produce heat, which can be used to power machines and vehicles. Gas is also used in many industries, such as in the production of chemicals and plastics.

In this case, n = 0.100 moles,
[tex]C_v[/tex] = (3/2)R = (3/2)(8.314 J/mol K) = 12.471 J/mol K, and
T₁ = 298.0 K,
T2 = 298.0 K.
Therefore, q(gas)
= nCv (T₂- T₁)
= 0.100 mol × 12.471 J/mol K × (298.0 K - 298.0 K)
= 0 J.

To learn more about gas

https://brainly.com/question/25736513

#SPJ4

Other Questions
Determine five (5) common functions the actors of globalization play in the global economy The events described in the passagecontributed most directly to which ofthe following developments in thelate 20th century? A consumer group is investigating two brands of popcorn, R and S. The population proportion of kernels that will pop for Brand R is 0. 90. The population proportion of kernels that will pop for Brand S is 0. 85. Two independent random samples were taken from the population. The following table shows the sample statistics. Number of Kernels in Samples Proportion from Sample that Popped Brand R 100 0. 92 Brand S 200 0. 89 The consumer group claims that for all samples of size 100 kernels from Brand R and 200 kernels from Brand S, the mean of all possible differences in sample proportions (Brand R minus Brand S) is 0. 3. Is the consumer groups claim correct? Yes. The mean is 0. 920. 89=0. 3. Yes. The mean is 0. 92 minus 0. 89 equals 0. 3. A No. The mean is 0. 92+0. 892=0. 905. No. The mean is the fraction 0. 92 plus 0. 89 over 2 equals 0. 905. B No. The mean is 0. 920. 892=0. 15. No. The mean is the fraction 0. 92 minus 0. 89 over 2 equals 0. 15. C No. The mean is 0. 90+0. 852=0. 875. No. The mean is the fraction 0. 90 plus 0. 85 over 2 equals 0. 875. D No. The mean is 0. 900. 85=0. 5 Select the correct answer.consider this equation.cos() = [tex]\frac{8}{9}[/tex]if is an angle in quadrant iv, what is the value of tan()? State the law of conversation of energy. (Use scientific language) Finally, they arrived at Anna Maria's aunt's apartment, in the middle of Bucharest, only six blocks from the People's House. Taking the elevator up to the fifth floor, they were greeted by Anna Maria's 12-year-old cousin Alexandra. "Buna," said Alexandra excitedly. "Buna," replied Anna Maria with the same amount of enthusiasm as her cousin. Alexandra and her mother led their guest into the apartment. The two girls then ate dinner and talked until it was time to rest for the day. What does the dialogue between Anna Maria and Alexandra reveal about their relationship? Question 2 options: They tolerate each other only because they are cousins. They are prim yet polite toward each other. They are delighted and eager to be together. They greet each other but do not have much to say a limited liability company: question 6 options: insulates its owners from pass-through taxation. has a decentralized management. will necessarily offer free transferability of interests. does not insulate the owners from conduit taxation. will necessarily have a continuity of life. What qualities in these stories do you think capture his imagination Determine whether the equation 486 + 222 = 6 has a solution such that , if yes, find x and y. if not, explain your answer. Find the moment of inertia about the y-axis of thefirst-quadrant area bounded by the curve y=9x^2and the coordinate axes find ly (answer as a fraction) A lab technician is filling vitamin C capsules. He has 2.87 ounces of vitamin C and is putting 0.014 ounces of vitamin C into each capsule. How many capsules will the lab technician be able to fill with vitamin C? A. 3 B. 25 C. 402 D. 205 Which excerpt from Letter from Birmingham Jail best supports the answer to Part A? Zamir is researching voting requirements. Which source is most credible?an article in a recent government publication describing who can vote in the USan opinion piece by a teenager wanting to lower the voting age to 14an interview with voters on election dayan advertisement for registering to vote One isotope of element J has an atomic mass of 78. 92u and a relative abundance of 50. 69%. The other major isotope of element J has an atomic mass of 80. 92u and a relative abundance of 49. 31%. Calculate the average atomic mass element J Imagine Math simple interest discuss the problems that can arise with a globally-accepted setof standards such as ISO27001. what are the answers to these questions? QUESTION 6Which two words are the closest antonyms?HINTA. accommodation and sanctuaryB. signified and obscuredC. makeshift and impromptuD. integrated and congregated At 10.30 a.m, a van left Town X travelling at an average speed of 64 Km/h.At 11.15 a.m., a car left Town X, travelling on the same road at an average speed of 80 Km/h.a) At what time did the car catch up with the van? b) How far from Town X did each vehicle travel when they passed each other? Day 1 and day 2 in kokomo started with the same amount of water vapor in the air parcels over kokomo. it rained at the end of day 1 it did not rain at the end of day 2. what could have happened to the air in the parcel to cause rainfall on day 1?