species diversity, genetic diversity and habitat diversity are interlinked. explain the link between the different types of diversity

Answers

Answer 1

High genetic diversity increases the adaptability of species and causes speciation, therefore higher species diversity. High species diversity of plants indicates higher habitat diversity because plants are habitats for many species. High habitat diversity also increases the species diversity.

Genetic diversity is defined as the sum total of all the alleles in a population. More are the alleles more is the genetic diversity. High genetic diversity is necessary to resist diseases, changes in climate and other stresses.

Species diversity is the presence of various species in an ecosystem. The relative abundance is also considered in case of species diversity. When all the species are equally abundant then the diversity is highest.

To know more about species diversity, here

brainly.com/question/2982619

#SPJ4


Related Questions

as part of the rapid and primary assessments, you should use the opioid overdose triad. this includes pinpoint pupils, respiratory depression, and unconsciousness or severe sleepiness.
true
false

Answers

I think the answer is true.

What happens if you use more energy than food molecules taken in?

Answers

We require energy in order to move, grow, and function. This energy is derived from food. The chemical bonds of the molecules that make up the food we eat store energy.

Our bodies break down food into tiny pieces during digestion (molecules such as proteins, carbohydrates, and fats). When we consume more kilojoules than our bodies require, the excess energy is stored as fat. A kilogram of body fat can be gained in a single year by eating 100kJ more per day (or burning 100kJ less through exercise).

Learn more about food molecules

https://brainly.com/question/19445310

#SPJ4

dna strands are antiparallel because of: hydrogen bonds. glycosidic bonds. disulfide bonds. peptide bonds. phosphodiester bonds.

Answers

DNA strands are antiparallel because of phosphodiester bonds. These bonds occur when two strands of DNA join together.

DNA strands form when a phosphate group on one strand of DNA bonds with a hydroxyl group on the other strand of DNA. This type of bond is strong enough to hold the two strands together, yet weak enough to allow the strands to be separated. This allows for the strands of DNA to be pulled apart during replication. Additionally, hydrogen bonds between complementary bases on the two strands also help to keep the strands in their antiparallel orientation. Hydrogen bonds are weaker than phosphodiester bonds, but still, serve to help keep the strands in place. Together, these bonds help keep the strands of DNA antiparallel and help to ensure that DNA is properly replicated during cellular processes.

Learn more about DNA strands: https://brainly.com/question/30107282

#SPJ11

Examine the figure, the countercurrent arrangement of the arterial / venous blood vessels causes a. the temperature difference between the blood of the two sets of vessels to be minimized. b. the venous blood to be as cold near the abdomen as it is near the feet. c. the blood in the feet to be as warm as the blood in the abdomen. d. the temperature at the abdomen to be less than the temperature at the feet. e. the loss of the maximum possible amount of heat to the environment.

Answers

The answer would be A: the countercurrent arrangement of the arterial/venous blood vessels causes the temperature difference between the blood of the two sets of vessels to be minimized.

The countercurrent exchange system is a biological mechanism that is used by many animals to conserve heat in their extremities, such as the legs and feet, while maintaining warmer temperatures in their vital organs. This system works by transferring heat between arteries and veins in adjacent vessels flowing in opposite directions, creating a countercurrent exchange.

This exchange causes heat to be transferred from warmer arterial blood to cooler venous blood, which helps to minimize the temperature difference between the two sets of vessels. This mechanism is important for maintaining optimal body temperature and conserving heat energy in cold environments.

To learn more about blood vessels refer to:

brainly.com/question/4601677

#SPJ4

which phase on the growth curve for a bacterial population contains a high number of viable cells for the longest time

Answers

The growth curve for a bacterial population contains a high number of viable cells for the longest time on the stationary phase.

The bаcteriаl growth curve represents the number of live cells in а bаcteriаl populаtion over а period of time. There аre four distinct phаses of the growth curve: lаg, exponentiаl (log), stаtionаry, аnd deаth.

The initiаl phаse is the lаg phаse where bаcteriа аre metаbolicаlly аctive but not dividing.The exponentiаl or log phаse is а time of exponentiаl growth.In the stаtionаry phаse, growth reаches а plаteаu аs the number of dying cells equаls the number of dividing cells.The deаth phаse is chаrаcterized by аn exponentiаl decreаse in the number of living cells.

For more information about bаcteriаl growth curve refers to the link: https://brainly.com/question/30674374

#SPJ11

which term refers to the vegetative portion of a cannabis plant from a strain containing low levels of thc?

Answers

The term used to refer to the vegetative portion of a cannabis plant from a strain containing low levels of THC is "low-THC cannabis".

Low-THC cannabis is defined as cannabis containing 0.3 percent or less of THC by dry weight. This type of cannabis is commonly used for medical or therapeutic purposes due to its low THC content. The low-THC cannabis plant is different from high-THC cannabis plants in that its flowers produce very little or no psychoactive effects.

Instead, low-THC cannabis can provide medical benefits such as pain relief, reduced inflammation, and decreased anxiety. Low-THC cannabis is grown and sold in a variety of forms, including flower buds, oils, tinctures, edibles, and topical products. While low-THC cannabis may not produce a “high,” it can still provide many medical benefits.

To learn more about vegetative, click here:

https://brainly.com/question/24052803

#SPJ11

What structure helps cells maintain homeostasis by regulating the movement of materials into and out of a cell?

Answers

Cell membranes enable organisms to maintain homeostasis by regulating the materials that may enter or leave a cell. Some materials easily cross the cell membrane without the input of energy; other materials require energy input in order to cross through the cell membrane.

Answer: CELL MEMBRANE

a cell that has just started interphase has four chromosomes. how would the same cell look when it is in metaphase?

Answers

In metaphase, the cell would contain eight chromatids and eight separate chromosomes.

A cell is growing and replicating DNA during the interphase as it gets ready to divide. Each chromosome at this point is made up of two sibling chromatids that are joined together at the centromere. With each chromosome comprised of two identical sibling chromatids, a cell with four chromosomes that have just entered interphase would therefore have a total of eight chromatids.

The same cell has finished interphase and advanced to mitosis, the step of cell division, when it reaches metaphase. The chromosomes condense and arrange themselves along the metaphase plate, which is the cell's equatorial axis, during metaphase. Each chromosome can be seen as a unique and compact structure during this stage.

Learn more about metaphase at

https://brainly.com/question/9360168

#SPJ4

suppose george washington completely removed the bark from around the base of a cherry tree but was stopped by his father before cutting the tree down. the leaves retained their normal green appearance for several weeks, but the tree eventually died. the tissue that george irreparably damaged was:

Answers

Suppose George Washington completely removed the bark from around the base of a cherry tree but was stopped by his father before cutting the tree down. The leaves retained their normal green appearance for several weeks, but the tree eventually died. The tissue that George irreparably damaged was the phloem.

Phloem is a vascular tissue that transports nutrients synthesized in the leaves to other parts of the plant, including the roots, flowers, and fruits. It also transports sugars produced by photosynthesis from the leaves to the other plant parts.The phloem is one of the two primary components of the vascular system in vascular plants.

The other vascular tissue is xylem, which transports water and minerals from the roots to other parts of the plant. The phloem and xylem work together to transport nutrients and water throughout the plant.

Learn more about phloem at:

https://brainly.com/question/15342686

#SPJ11

special bacterial cells in biofilms that do not divide and are resistant to many antibiotics are called what?

Answers

These cells are called persister cells. Persister cells are a subset of bacterial cells found in biofilms, which are communities of bacteria growing on a surface and protected by an extracellular matrix.

Unlike normal bacterial cells that actively divide and are susceptible to antibiotics, persister cells have the ability to arrest their growth and metabolism in response to various stimuli, allowing them to survive antibiotic treatments and other stressors.

Persister cells can arise in a number of ways, including:

Spontaneous mutationExposure to stress conditions such as lack of nutrients, the presence of toxic substances and theThe presence of toxic substances Treatment with antibiotics

In conclusion, persister cells are special bacterial cells that can remain dormant in biofilms, allowing them to survive stressful conditions and antibiotic treatments.

Lear More About Cells

https://brainly.com/question/3717876

#SPJ11

fluoroacetate is a potent inhibitor of the tca cycle. which step of the tca cycle is inhibited as a result of fluoroacetate entering the tca cycle?

Answers

Fluoroacetate is a potent inhibitor of the TCA cycle. As a result of Fluoroacetate entering the TCA cycle, the step of the TCA cycle that is inhibited is aconitase, which is the second step of the TCA cycle

The TCA cycle or Krebs cycle is a series of chemical reactions that occur in the mitochondrial matrix in eukaryotic cells or the cytoplasm of prokaryotes. It is responsible for generating the majority of the energy in the body, in the form of ATP. It also produces some intermediate compounds that are utilized in various cellular processes.

Fluoroacetate is a potent inhibitor of the TCA cycle. Fluoroacetate enters the cycle and binds with coenzyme A to form fluoroacetyl-CoA, which then inhibits aconitase. The inhibition of aconitase blocks the next step of the TCA cycle, and as a result, the entire cycle is disrupted. This inhibition is specific and does not affect other metabolic pathways.

Here you can learn more about TCA cycle

https://brainly.com/question/30861460#

#SPJ11

Identify a type of mutation based on a description or a picture and predict the implications of the mutation.

Answers

Explanation:

Sure! I can do that. Can you please provide me with a specific description or picture of a mutation to work with?

The picture below shows the cellular processes that four rat cells, each holding 92 chromosomes, underwent. Use the picture to answer any questions that follow.



Which rat cell underwent meiosis?
A
Cell W

B
Cell X

C
Cell Y

D
Cell Z

Answers

The image below, which features four rat cells with 92 chromosomes each, demonstrates the cellular functions. The rat cell undergoing meiosis is Cell Z with four daughter cells having 46 chromosomes.

What is meiosis?

Meiosis, a special kind of cell division of germ cells in sexually reproducing organisms, produces gametes, such as sperm or egg cells. It involves two rounds of division, with the end result being four cells with just one copy of each chromosome (haploid). Before division, each chromosome also experiences genetic material cross-pollination between the maternal and paternal copies, creating new combinations of the genetic code on each chromosome. The zygote, a new cell with two copies of each chromosome, is generated later by the meiotic union of the haploid cells produced by the male and female.

What is the difference between meiosis and mitosis?

Meiosis and mitosis both involve cell division. The majority of cells in the body divide in a single process known as mitosis, which yields two identical, diploid daughter cells. The meiotic process results in the production of gametes.

To know more about Mitosis, visit:

https://brainly.com/question/29776367

#SPJ1

a nut falls from a tree limb. as the nut falls, its energy, associated with the nut's original position, is converted to energy, which is the energy associated with its .

Answers

A nut falls from a tree limb. as the nut falls, its potential energy associated with the nut's original position is converted to kinetic energy, which is the energy associated with its motion.

Potential energy is the energy that an object possesses as a result of its position or configuration. In simpler terms, it is the energy that is stored in an object or system as a result of its position, arrangement, or state.

The kinetic energy is the energy that an object has due to its motion is known as kinetic energy. The faster an object moves, the more kinetic energy it has, and the slower it moves, the less kinetic energy it has. Therefore, as the nut falls, its potential energy decreases as it moves away from its original position, and its kinetic energy increases as it picks up speed, allowing it to hit the ground with a lot of energy.

Learn more about kinetic energy at:

https://brainly.com/question/11592500

#SPJ11

describe in detail an experiment that could demonstrate that xyz is necessary for endocytosis. include a negative control.

Answers

One way to demonstrate that XYZ is necessary for endocytosis is to perform an experiment where cells are treated with an XYZ inhibitor and then their ability to perform endocytosis is tested.

The experiment could be conducted as follows: Select a cell line that is known to perform endocytosis, such as HeLa cells, and grow them in culture. Select a known XYZ inhibitor, such as dynasty or pitstop 2. Treat the cells with the inhibitor and then test their ability to perform endocytosis. This could be done by introducing a fluorescently labeled molecule, such as transferrin, into the culture and then monitoring its uptake into the cells using fluorescence microscopy. If the inhibitor effectively blocks endocytosis, then the cells should show reduced uptake of the fluorescently labeled molecule compared to untreated cells. This would indicate that XYZ is necessary for endocytosis. To include a negative control, a similar experiment could be performed using a non-specific inhibitor that does not affect XYZ. This would ensure that any effects observed are specific to the XYZ inhibitor and not due to non-specific effects of the inhibitor on cell function.

To learn more about Endocytosis :

https://brainly.com/question/276304

#SPJ11

the proton pumps in your stomach are examples of primary active transport. how do proton pumps work?

Answers

Proton pumps in the stomach are specialized proteins that are responsible for the secretion of hydrogen ions (H+) into the stomach. This process is essential for the digestion of food and is one of the primary mechanisms of gastric acid secretion.

What is Proton?

A proton is a subatomic particle with a positive charge found in the nucleus of an atom. It has a relative mass of 1 and a charge of +1. The number of protons in an atom's nucleus is called the atomic number, which determines the chemical properties of the element.

Proton pumps use ATP (adenosine triphosphate) as an energy source to transport H+ ions against the concentration gradient from the cytoplasm of the parietal cells to the lumen of the stomach. The protein pump is composed of two subunits: a catalytic alpha-subunit and a regulatory beta-subunit. The alpha-subunit contains the active site, which binds ATP and H+ ions, and a transmembrane domain that transports H+ ions across the membrane. The beta-subunit is involved in regulating the activity of the pump.

Learn more about  Proton from given link

https://brainly.com/question/1481324

#SPJ1

gene interactions in which an allele of one gene modifies or prevents expression of alleles of another gene is known as

Answers

Gene interactions in which an allele of one gene modifies or prevents the expression of alleles of another gene are known as epistasis. This occurs when the action of one gene masks or suppresses the action of a second gene.

Epistasis is thought to be an important factor in creating the variety of phenotypes observed in organisms, as the expression of one gene can affect the expression of other genes in the genome.  Epistasis can be seen in Mendelian genetics, where one gene masks or overrides the expression of another. Epistasis can also be seen in non-Mendelian genetics, such as in the expression of DNA methylation and gene regulation, where the effect of one gene may influence the expression of a second gene. These interactions can be complex and often depend on environmental conditions.

Learn more about Epistasis: https://brainly.com/question/17387527

#SPJ11

when stimulated by a particular hormone, there is an increase in the activity of g proteins in the membrane. the hormone is probably

Answers

When a hormone stimulates an increase in the activity of G proteins in the membrane, it is likely that the hormone is a GPCR agonist. GPCR stands for G protein-coupled receptor.

GPCRs are a large and diverse family of cell surface receptors that play a key role in mediating cellular responses to hormones, neurotransmitters, and other signaling molecules. When a GPCR is activated by a hormone or ligand, it triggers the activation of a G protein, which in turn activates downstream signaling pathways to produce a cellular response. The activation of G proteins is a crucial step in the GPCR signaling pathway and is often used as a marker for GPCR activation.

Learn more about GPCR: https://brainly.com/question/30841587

#SPJ11

Choose the statement that is most likely made by an environmentalist rather than by an environmental scientist."On average, 52 animal species move one step closer to extinction each year because of overpopulation and habitat destruction.""Citizens must take matters into their own hands and start having fewer children to reduce the world’s population, starting now.""Human population growth is a current environmental issue, as is climate change.""When the number of existing humans exceeds the carrying capacity of the planet, we have reached the state of overpopulation."

Answers

The statement most likely made by an environmentalist rather than by an environmental scientist is (B) "Citizens must take matters into their own hands and start having fewer children to reduce the world’s population, starting now."


This statement advocates for a specific course of action and reflects a personal opinion or a call for action, which is typical for an environmentalist. Environmentalists are often concerned with promoting environmental conservation and sustainable living, and they may make recommendations based on their beliefs.

On the other hand, environmental scientists study the natural environment and the effects of human activities on it. They focus on collecting and analyzing data to better understand environmental issues and may present their findings in a more objective and neutral manner.

The other statements provided reflect more objective observations or analyses of environmental issues, such as population growth, climate change, and species extinction, which are more in line with the role of an environmental scientist. These statements focus on presenting facts or concepts without making specific recommendations for action or expressing personal opinions.

Therefore, (B) is the correct answer.

To know more about environmentalists, refer here:

https://brainly.com/question/14025328#

#SPJ11

why do you think biochemists tend to use one- and three-letter abbreviations instead of the condensed structural formulas to represent peptides and proteins? match the words in the left column to the appropriate blanks in the sentence on the right.

Answers

It can be said that biochemists tend to use one- and three-letter abbreviations instead of condensed structural formulas to represent peptides and proteins because it is more concise, standardized, precise, and easier to compare and remember sequences.

There are a variety of reasons why biochemists tend to use one- and three-letter abbreviations instead of condensed structural formulas to represent peptides and proteins. Firstly, these abbreviations are more concise and easier to use than full structural formulas. Biochemists frequently need to work with long sequences of peptides and proteins, and using abbreviations makes it simpler to read and compare different sequences.

Another reason is that one- and three-letter abbreviations have been standardized and accepted throughout the scientific community, making it easier for researchers to communicate with one another. These abbreviations are also easier to memorize, which makes it simpler for researchers to remember important sequences. Furthermore, condensed structural formulas are less precise than abbreviations. Abbreviations provide a clear representation of the amino acid sequence, which is essential for understanding the structure and function of proteins.

To learn more about Biochemists :

https://brainly.com/question/2256082

#SPJ11

If a population of non-flying insects is divided into two groups by a river, but every now and then some of them can cross the river on the backs of beavers, explain how this effects the potential of the two groups to become different species and why.

Answers

Gene flow can reduce speciation potential by homogenizing populations, which can occur when insects move across the river.

A periodic development of non-flying bugs across the stream can go about as a quality stream between the two populaces, decreasing the potential for the improvement of various species. Quality stream can carry new alleles to the populace, expanding hereditary variety and homogenizing the two gatherings. Accordingly, the recurrence of alleles that are liable for transformation to various conditions is diminished. The two populaces are bound to develop as a solitary unit, and the distinctions between them are probably going to be weakened after some time. Conversely, in the event that the quality stream is forestalled totally, the two populaces will develop freely and have a more noteworthy potential to form into particular species because of hereditary float, transformation, and normal determination.

To learn more about beavers, refer:

https://brainly.com/question/3895140

the disease-producing power of the microorganism is called group of answer choices resistance. superinfection. infection. virulence.

Answers

The disease-producing power of the microorganism is called virulence. The correct option is d.

What is virulence?

Virulence is the degree of pathogenicity, or the capability of a pathogen to cause disease. The virulence of a microorganism is dependent on its ability to infect a host and cause harm. The term virulence is derived from the Latin word virulentus, which means "poisonous" or "full of venom."The factors that influence virulenceVirulence factors are molecules or structures that aid microorganisms in establishing an infection or causing disease.

Bacterial virulence is influenced by a variety of factors, including:

Adherence: Bacteria must first adhere to the host to colonize and cause disease.

Invasion: Bacteria must overcome host defenses to enter and colonize host tissues.

Toxicity: Bacteria produce toxic substances that injure host tissues.

Survival in host: Bacteria must be able to avoid or survive host defenses, such as phagocytosis.

Avoidance of host defenses: Bacteria must avoid or resist host defenses, such as antibodies.

Specific virulence factors include adhesins, invasins, exotoxins, endotoxins, capsule, and various other cell wall and membrane components.

Here you can learn more about virulence

https://brainly.com/question/28301203#

#SPJ11  

a common way for cells to capture the energy released during the breakdown of large molecules is to add electrons to smaller, specialized molecules that can accept them. this process of electron acceptance is known as

Answers

This process of electron acceptance is known as oxidation-reduction (or redox) reactions.

Oxidation-reduction (or redox) reactions are a type of chemical reaction in which electrons are transferred between two different molecules. The molecule which accepts the electrons is known as the oxidizing agent, and the molecule which donates the electrons is known as the reducing agent.

During redox reactions, energy is released in the form of heat, light, and sound, and this energy is captured by cells to produce ATP, the molecule which provides energy to the cell. Redox reactions involve the breaking of chemical bonds and formation of new ones, resulting in the creation of new molecules. This process is essential for the production of energy and is used by cells to fuel all of their metabolic processes.

To know more about Redox reactions  click on below link:

https://brainly.com/question/13293425#

#SPJ11

the current scientific view concerning the roles of genetic and environmental influences in determining the characteristics of an adult organism would best be described as:

Answers

The current scientific view concerning the roles of genetic and environmental influences in determining the characteristics of an adult organism would best be described as interactive.

The interaction between genetics and the environment affects the phenotype (observable characteristics) of an individual. It is now understood that both genetic and environmental factors play a role in the development of the individual. The genes and the environment both interact to determine the final phenotype of an organism. The relative contribution of each factor varies based on the characteristic under consideration. For instance, some characteristics may be primarily influenced by genetics, while others may be primarily influenced by environmental factors. The combination of genes and environmental factors results in a variety of characteristics and behaviors.

Hence, the current scientific view concerning the roles of genetic and environmental influences in determining the characteristics of an adult organism would best be described as interactive.

Here you can learn more about genetic

https://brainly.com/question/30459739#

#SPJ11  

dysfunction of which of the following hypothalamic-pituitary axes is most likely after aneurysmal subarachnoid hemorrhage? hypothalamic-pituitary-adrenal hypothalamic-pituitary-mammary correct hypothalamic-pituitary-thyroidal your answer hypothalamic-pituitary-muscle bone and other tissues hypothalamic-pituitary-gonadal

Answers

The dysfunction of the hypothalamic-pituitary-thyroidal axis is most likely after an aneurysmal subarachnoid hemorrhage.

What is the Hypothalamic-Pituitary-Thyroidal Axis?

The hypothalamic-pituitary-thyroidal (HPT) axis is a neuroendocrine system that regulates thyroid hormone levels. The hypothalamus secretes thyrotropin-releasing hormone (TRH) in response to low thyroid hormone levels or a cold environment, which stimulates the pituitary gland to release thyroid-stimulating hormone (TSH).

TSH triggers the thyroid gland to produce and release thyroid hormones, including thyroxine (T4) and triiodothyronine (T3), which regulate metabolic processes throughout the body.In the case of aneurysmal subarachnoid hemorrhage, the hypothalamic-pituitary-thyroidal (HPT) axis is most likely to be dysfunctional. Subarachnoid hemorrhage is a type of stroke that affects the area between the brain and the thin tissues that cover it (subarachnoid space), and it can damage the hypothalamus and pituitary gland, causing various hormone imbalances.

Here you can learn more about hypothalamic-pituitary-thyroidal axis

https://brainly.com/question/29869336#

#SPJ11

the transformation process was not very efficient. how did we eliminate all non-transformed bacteria so that only transformed bacteria would grow in the lb plates?

Answers

To eliminate all non-transformed bacteria so that only transformed bacteria would grow in the LB plates, the researchers added an antibiotic-resistant gene to the plasmid that was inserted into the bacteria during transformation.

Transformation is the process in which bacteria absorb free DNA that is present in the environment and integrate it into their genome. This process may occur naturally or be induced in a lab setting. Antibiotic resistance genes, fluorescent proteins, and enzymes that are useful in a variety of industrial applications can be introduced into bacteria using this technique. It is also used in genetic engineering to generate transgenic organisms. The bacterial transformation process was not very efficient because only a small number of cells take up the foreign DNA.

The elimination of all non-transformed bacteria so that only transformed bacteria would grow in the LB plates is accomplished by adding an antibiotic-resistant gene to the plasmid that is inserted into the bacteria during transformation. When the bacteria are exposed to the antibiotic on the LB plate, only those that have taken up the antibiotic-resistant plasmid will survive and multiply. This technique is referred to as antibiotic selection.

Learn more about non-transformed bacteria at https://brainly.com/question/30755527

#SPJ11

If protein kinase A Is activated in a liver cell in response to glucagon binding to the 2-adrenergic receptor, which of the following will result? - GLUT1 expression will be upregulated. - Glycogen degradation will be turned on. - Glycogen synthesis will be turned on. - Glucose synthesis will be turned off.

Answers

If protein kinase A is activated in a liver cell in response to glucagon binding to the β2-adrenergic receptor, glycogen degradation will be turned on. The correct option is (B).


Glucagon binds to the β2-adrenergic receptor on the liver cell surface.


This binding activates a G protein inside the cell.


The activated G protein then stimulates adenylyl cyclase to produce cyclic AMP (cAMP) from ATP.


cAMP activates protein kinase A (PKA) by binding to its regulatory subunits.


Activated PKA phosphorylates and activates glycogen phosphorylase, an enzyme that breaks down glycogen into glucose-1-phosphate.


As a result, glycogen degradation is turned on, releasing glucose molecules to be used as an energy source by the body.

To know more about glucagon binding, refer here:

https://brainly.com/question/28138146#

#SPJ11

How did the Egyptians use the Nile River in everyday life?
Egyptians relied on the river as a source of food and flax.
The swiftly moving river created stones for building pyramids.
Precious minerals that they traded came from the Nile.
Egyptians used the water only for farming, not for drinking.

Answers

Answer:

Explanation:

The Egyptians used the Nile River in many ways in their everyday life. They used it for farming, transportation, trade, religion, and technology. Egyptians did not rely on the Nile river for flax and food. The river did not create stones for the building stones for pyramids. Precious minerals were not traded from the Nile and Egyptians used the Nile for a lot of things, not just for farming. Therefore, none of these options are correct. They are either incomplete or inaccurate statements about how the Egyptians used the Nile River in everyday life.

most plant diseases caused by soilborne pathogens have disease cycles that are ... group of answer choices monocyclic polycyclic endoparasitic sedentary

Answers

Most plant diseases caused by soilborne pathogens have disease cycles that are monocyclic. The correct option is d.

What are monocyclic disease cycles?

Monocyclic disease cycles occur when a pathogen infects a plant once and only once in a growing season, resulting in a single cycle of disease. A monocyclic disease cycle involves the following steps:

1. A pathogen enters a host plant and develops, resulting in an infection.

2. The disease progresses to the point where the pathogen generates new inoculum.

3. The pathogen's inoculum is released and spreads to new host plants.

4. The disease-causing pathogen perishes when the growing season ends.

Monocyclic disease cycles are simple, with just one pathogen cycle occurring in a growing season. Polycyclic disease cycles, on the other hand, are much more complex, with several pathogen cycles occurring in a single growing season.

Here you can learn more about monocyclic disease cycles

https://brainly.com/question/14288808#

#SPJ11  

What is the answer ??

Answers

Races do not follow the traditional Mendelian laws. There are several reasons why the genetics of race may be complex and not follow simple Mendelian inheritance patterns.

What are the reasons why genetics of races is more complex?Multiple genes: Many traits that are associated with race are controlled by multiple genes, not just one. These genes can interact with each other in complex ways, making it difficult to predict the phenotype based on genotype.Environmental factors: Environmental factors can also play a role in the expression of traits. For example, exposure to different environmental toxins or nutrients can affect the expression of genes related to skin colour.Population history: Populations are not static and can change over time due to factors such as migration and admixture. As a result, the genetic makeup of a population can be quite complex, and it may not be possible to neatly categorize individuals into discrete racial groups.Non-random mating: People tend to mate with others who are similar to them in terms of culture, religion, and ethnicity. This can lead to the formation of distinct subpopulations within larger racial groups, further complicating the genetics of race.

To find out more about genetics, visit:

brainly.com/question/30459739

#SPJ1

Other Questions
2 2/5 as an improper fraction in simplest form a man standing 11 feet from the base of a lamppost casts a shadow 3 feet long. if the man is 6 feet tall and walks away from the lamppost at a speed of 200 feet per minute, at what rate, in feet per minute, will the length of his shadow be changing? How many grams of neutral red would your instructor have used to create 100ml of a 4% w/v stock solution? ____ gm 4. Apunta 1 palabra que muestra que los interrogatorios eran infrahumanos,terribles :..........5. Explica por qu se enfad el teniente "Margarito" y cul fue la consecuencia.6. Qu pas en junio de 1976? Qu sentimientos piensas que experiment elprotagonista despus? 13. A group of students were asked if they play a sport or play an instrument. The results are shownin the Venn diagram below. If one of these students is chosen at random, find each probability.a) P(instrument)b) P(does not play a sport)(35)(36)d) P(sport but not an instrument)(38)Instrument1014Sport8 18c) P(both instrument and a sport)(37) which is an example of a class that would keep track of a total, i.e., a quantity that can go up and down? 19 less than a number is 28 how does the use of cloned prize plants and animals reduce the possiblity of improving these same species if the interest rate on aaa bonds is 5% and the high-yield spread is 1.0%, the rate on baa bonds is? when a manager evaluates alternatives until she comes to one that meets some minimum standard of sufficiency, selects it, and then goes on to other problems without considering the remaining rational alternatives, she has engaged in Which statement best compares the energy and frequency of green waves to orange waves? Green waves have a lower frequency and contain less energy than orange waves. Green waves have a higher frequency and contain more energy than orange waves. Orange waves have a higher frequency and contain less energy than green waves. Orange waves have a lower frequency and contain more energy than green waves. the attractiveness of the person delivering the message, the number of arguments presented, the expertise of the spokesperson, and the imagery or music presented along with the message are examples of . what is the volume of the large pyramid? (rounded to the nearest cubic meter) group of answer choices 20,833 41,666 10,417 16,817 375 Which of the filling best describes the expression 6(y+3) what is the answer to this ? Find all cube roots of the complex number 64(cos (219) + i sin (219)). Leave answers in polar formand show all work Can someone please help me a patient undergoes a nuclear medicine scan that visualizes the heart from several different angles after the injection of a radioactive tracer. in his medical report, this procedure is identified as HELP.I think I got digital eye strain but I think it got worse I played on my iPad yesterday for a long time and both my eyes got red like strings kinda big going towards my eyes when I slept and when I woke up today! My eyes were still kinda the same but I slept at 10pm and its kinda blurry when I look from far what is the significance of the standover man? what is a standover man? why does max draw himself as a bird in the standover man?