Technician a says that main bearing oil clearance can be checked with plastigage. technician b says that main bearing oil clearance can be checked with a dial bore gauge. who is right?

Answers

Answer 1

Both technicians are correct, as there are different methods for checking main bearing oil clearance.

Plastigage is a commonly used method to check main bearing oil clearance, where a thin strip of plastic material is placed between the bearing surface and the journal, and the bearing cap is torqued down to crush the plastic. The resulting width of the crushed plastic is then measured to determine the clearance.

A dial bore gauge is another method to measure the main bearing oil clearance. This tool is used to measure the diameter of the journal and the inside diameter of the bearing, and the difference between the two is used to calculate the clearance.

Both methods have their advantages and disadvantages, and the choice of method may depend on factors such as the accuracy required, the accessibility of the bearing, and the technician's preference and experience.

Learn more about Bearings at:

https://brainly.com/question/22518031

#SPJ11


Related Questions

Assume the small electronic computer is needed for data processing in an engineering office and the computer can be leased for $50 per day which includes the cost of maintenance or purchased for $25,000, the computer is expected to have a useful life for 15 years with salvage valise of $4000 at the end of that year. Itâs estimated that annual maintenance cost will be $2,800 if the interest rate is 9% and it cost $50 per day to operate the computer advise management on what choice to make

Answers

Here we see that purchasing the computer is a better choice since the total cost of ownership over 15 years is less than the present value of leasing for the same period.

To determine the best option, we need to compare the present value of the cost of leasing with the present value of the cost of purchasing.

Option 1: Lease

Cost per day = $50

Number of days in a year = 365

Annual cost of leasing = $50/day × 365 = $18,250

Present value of annual leasing cost over 15 years at 9% interest rate:

PV(Lease) = $18,250 × [(1 - (1 + 0.09)^-15) / 0.09] = $173,186.76

Option 2: Purchase

Cost of computer = $25,000

Salvage value at the end of 15 years = $4,000

Annual maintenance cost = $2,800

Total cost of ownership over 15 years:

Total Cost = Cost of computer + Present value of annual maintenance cost over 15 years + (Cost - Salvage value) / Present value factor for 15 years

Total Cost = $25,000 + [$2,800 × ((1 - (1 + 0.09)^-15) / 0.09)] + [($25,000 - $4,000) / (1 + 0.09)^15]

Total Cost = $67,739.12

Comparing the two options, we see that purchasing the computer is a better choice since the total cost of ownership over 15 years is less than the present value of leasing for the same period. Therefore, management should choose to purchase the computer.

Learn more about Decision making at:

https://brainly.com/question/17230008

#SPJ11

Assume that the electrical subcontractor forgot to place the sleeves for a group of large conduits in a concrete deck prior to pouring concrete. The rebar subcontractor did not provide additional reinforcing because their work practice is to only add trim bars around deck penetrations physically placed on the deck. In this case the concrete deck will need to be reinforced with steel angles due to the absence of the rebar trim bars, and then the deck will be core drilled for the conduits. Which subcontractor will furnish and install the steel angles

Answers

The steel subcontractor will furnish and install the steel angles.

In this scenario, the need for additional reinforcement in the form of steel angles arises due to the absence of rebar trim bars. The rebar subcontractor did not provide additional reinforcing because their work practice is limited to only adding trim bars around deck penetrations physically placed on the deck.

Hence, the responsibility of furnishing and installing the steel angles falls upon the steel subcontractor.

Steel angles are commonly used to reinforce concrete structures and provide additional support. They can be installed by welding or bolting them onto the existing structure. In this case, once the steel angles are installed, the deck will be core drilled for the conduits to pass through.

For more questions like Structure click the link below:

https://brainly.com/question/10730450

#SPJ11

A merz price circulating current system us used to protect a generator having a full load current of 600A, c. T ratio 2000/ and distance between the ct is at opposite ends of the machine is 200 yds. The pilot being 7/0. 029 wire which has a resistance of 5. 4 ohm per 1000yds. Under straight through fault condition of 15 times full load the cts at one end have a voltage of 80% of that of other end. The relay having an impedance of 100 ohm is connected across the physit midpoint of the pilotsdetermine 1) At what distance the physical midpoint will zero voltage be located. 2) At what current the relay will have to be set to give a stability factor of 3. ​

Answers

A Merz Price circulating current system is a protective relay scheme that is commonly used to protect generators. In this particular scenario, the system is being used to protect a generator with a full load current of 600A, and a CT ratio of 2000/1.

The distance between the CTs at opposite ends of the machine is 200 yards, and the pilot wire being used is 7/0.029 wire, which has a resistance of 5.4 ohms per 1000 yards.Under a straight through fault condition of 15 times full load, the CTs at one end have a voltage of 80% of that of the other end. The relay, which has an impedance of 100 ohms, is connected across the physical midpoint of the pilot.To determine the distance at which the physical midpoint will have zero voltage, we need to consider the voltage drop along the length of the pilot wire. Since the pilot wire has a resistance of 5.4 ohms per 1000 yards, the total resistance over a distance of 200 yards is (5.4/1000) x 200 = 1.08 ohms. This resistance will cause a voltage drop of (1.08/200) x 80% = 0.43% at each end of the pilot wire. Therefore, the physical midpoint will have zero voltage when it is located at a distance of 100/(0.43/100) = 23,256 yards from one end of the machine.To determine the current at which the relay needs to be set to give a stability factor of 3, we need to consider the operating characteristics of the relay. The stability factor is a measure of the sensitivity of the relay to changes in the current through the pilot wire. A stability factor of 3 means that the relay will trip when the current through the pilot wire reaches three times its operating current.The operating current through the pilot wire can be calculated using the full load current and the CT ratio. In this case, the operating current is 600/2000 = 0.3A. Therefore, the relay needs to be set to trip at a current of 0.3A x 3 = 0.9A to achieve a stability factor of 3.

For such more question on physical

https://brainly.com/question/24370161

#SPJ11

Which option identifies the most likely outcome in the following scenario?
Engine, Inc. conducted a life cycle assessment (LCA) on its standard automobile engine. The LCA determined
that too much heat was lost through the engine, requiring large amounts of fuel to be consumed.
The company will conduct an impact analysis.
The company will develop a biodiesel engine.
O The company will increase the scope of the study.
O The company will redesign the engine to lose less heat.

Answers

Whith regard to the life cycle assessment (LCA), the option that identifies the most likely outcome in the following scenario is: "the company will redesign the engine to lose less heat.

Why is this so?

In this case, the most likely conclusion is that the manufacturer will alter the engine to waste less heat. This is because the life cycle assessment discovered that too much heat was lost via the engine, necessitating the consumption of huge amounts of gasoline.

Redesigning the engine to lose less heat might address this issue while also potentially resulting in more efficient fuel usage.

Conducting an impact analysis or broadening the scope of the study would not directly address the issue of engine heat loss, and developing a biodiesel engine would be a different approach to addressing the issue of fuel consumption rather than heat loss.

Learn more about  life cycle assessment at:

https://brainly.com/question/31573010

#SPJ1

what is the extracellular matrix of connective tissue composed ofA) ground substance only.B) ground substance and intracellular fluid.C) cells and protein fibers.D) protein fibers and ground substance.E) cells and ground substance.

Answers

The extracellular matrix (ECM) of connective tissue resonates with a jumble of protein fibers, namely collagen, elastic, and reticular varieties.

What else is it used for?

Additionally, extending from the infusion of its stimulating fibres is a gel-like ground substance: a composition of glycosaminoglycans, proteoglycans, and glycoproteins.

This compound serves to promote a transport network for nutrients and waste products between the cells and vessels; it even facilitates the adherence, maneuverings and communicative endeavours of these cells.

Particularly found artfully placed within the ECM are copious amounts of connecting cell types like fibroblasts, chondrocytes, and osteoblasts who not only carry out operations but are also responsible for sustaining the ECM's elements.

Read more about connective tissue here:

https://brainly.com/question/1985662

#SPJ1

When one knows the true values x1 and x2 and has approximations X1 and X2 at hand, one can see where errors may arise. By viewing error as something to be added to an approximation to attain a true value, it follows that the error ei is related to Xi and xi as xi 5 Xi 1 ei (a) Show that the error in a sum X1 1 X2 is (x1 1 x2) 2 (X1 1 X2) 5 e1 1 e2 (b) Show that the error in a difference X1 2 X2 is (x1 2 x2) 2 (X1 2 X2) 5 e1 2 e2 (c) Show that the error in a product X1X2 is x1x2 2 X1X2 < X1X2 a e1 X1 1 e2 X2 b (d) Show that in a quotient X1yX2 the error is x1 x2 2 X1 X2 < X1 X2 a e1 X1 2 e2 X2 b

Answers

Answer:

(a) For the sum X1 + X2, we have:

X1 + X2 = (x1 + e1) + (x2 + e2)

= x1 + x2 + (e1 + e2)

The error in the sum is given by:

e1 + e2 = (x1 + e1) + (x2 + e2) - (x1 + x2)

= (x1 + x2) + (e1 + e2) - (x1 + x2)

= e1 + e2

Therefore, the error in the sum is e1 + e2, as required.

(b) For the difference X1 - X2, we have:

X1 - X2 = (x1 + e1) - (x2 + e2)

= x1 - x2 + (e1 - e2)

The error in the difference is given by:

e1 - e2 = (x1 + e1) - (x2 + e2) - (x1 - x2)

= (x1 - x2) + (e1 - e2) - (x1 + x2)

= e1 - e2

Therefore, the error in the difference is e1 - e2, as required.

(c) Show that the error in a product X1X2 is:

x1x2 - X1X2 ≈ (X1 * e2) + (X2 * e1)

Proof:

We start with the equation:

X1X2 = (x1 + e1)(x2 + e2)

Expanding the right side of the equation, we get:

X1X2 = x1x2 + x1e2 + x2e1 + e1e2

Subtracting x1x2 from both sides, we get:

x1x2 - X1X2 = x1e2 + x2e1 + e1e2

Since e1 and e2 are small compared to x1 and x2, we can ignore the e1e2 term. Therefore, we can approximate the error as:

x1x2 - X1X2 ≈ (X1 * e2) + (X2 * e1)

(d) Show that in a quotient X1 / X2, the error is:

(x1 / x2) - (X1 / X2) ≈ ((e1 * X2) - (e2 * X1)) / (X2)^2

Proof:

We start with the equation:

X1 / X2 = (x1 + e1) / (x2 + e2)

Expanding the right side of the equation, we get:

X1 / X2 = (x1 / x2) + (x1 * e2 - x2 * e1) / (x2)^2 + e1 / x2 - e2 * x1 / (x2)^2

Subtracting (x1 / x2) from both sides, we get:

(x1 / x2) - (X1 / X2) = (x1 * e2 - x2 * e1) / (x2)^2 + e1 / x2 - e2 * x1 / (x2)^2

Simplifying the expression, we get:

(x1 / x2) - (X1 / X2) ≈ ((e1 * X2) - (e2 * X1)) / (X2)^2

This is the error in the quotient.

Explanation:

why did my fire alarm randomly go off in the middle of the night?

Answers

The most common reasons why the fire alarm randomly go off in the middle of the night include low battery, dust or debris buildup, and cooking smoke

. If the battery in your fire alarm is low, it may start beeping intermittently to signal that it needs to be replaced.

Additionally, dust or debris can accumulate in the alarm and cause false alarms. If you were cooking at the time, the smoke from the cooking may have triggered the alarm.

It's important to ensure that your fire alarm is in proper working condition by regularly testing it and changing the batteries.

If the issue persists, you may want to have a professional inspect your fire alarm to ensure that it's functioning correctly.

Learn more about fire-alarm at

https://brainly.com/question/28586013

#SPJ11

Water flows out of a reservoir, through a penstock, and then through a turbine. The mean velocity is 5. 3 m/s. The friction factor is 0. 2. The total penstock length is 30 m and the diameter is 0. 3 m. There are three minor loss coefficients: 0. 5 for the penstock entrance, 0. 5 for the bends in the penstock, and 1. 0 for the exit. Calculate the total head loss in units of meters

Answers

The total head loss in the penstock is 22.99 meters.

To calculate the total head loss in the penstock, we need to consider both major losses (due to friction) and minor losses (entrance, bends, and exit). We can use the Darcy-Weisbach equation for major losses and the minor loss equation for minor losses.

Major losses: hL_major = f * (L/D) * (V^2/2g)
Minor losses: hL_minor = K * (V^2/2g)

- Mean velocity (V) = 5.3 m/s
- Friction factor (f) = 0.2
- Penstock length (L) = 30 m
- Diameter (D) = 0.3 m
- Minor loss coefficients: entrance (K1) = 0.5, bends (K2) = 0.5, exit (K3) = 1.0
- Gravitational acceleration (g) = 9.81 m/s²

First, calculate major losses:
hL_major = 0.2 * (30/0.3) * (5.3^2/2*9.81) = 15.79 m

Next, calculate minor losses:
hL_minor = (0.5 + 0.5 + 1.0) * (5.3^2/2*9.81) = 7.20 m

Finally, add major and minor losses to find the total head loss:
hL_total = hL_major + hL_minor = 15.79 m + 7.20 m = 22.99 m

The total head loss in the penstock is 22.99 meters.

To know more about Friction visit:

https://brainly.com/question/14365923

#SPJ11

can you use transmission fluid for power steering fluid

Answers

Yes, it is possible to use transmission fluid as a temporary substitute for power steering fluid in some cases. Both fluids are hydraulic fluids designed to provide lubrication and transmit power in various vehicle systems. However, it is essential to note that they are not the same, and their specific formulations differ.

Power steering fluid is formulated to withstand high temperatures and pressures, whereas transmission fluid is designed to provide lubrication and cooling for the transmission system. While they may share some properties, using transmission fluid in your power steering system could lead to reduced performance and potential damage over time, as it may not meet the exact specifications required by your vehicle's manufacturer.

It is always recommended to use the appropriate fluid specified by your vehicle's owner manual to avoid any issues. In an emergency, if a power steering fluid is unavailable, using transmission fluid as a temporary solution may be considered, but it is crucial to replace it with the proper power steering fluid as soon as possible to ensure the optimal performance and longevity of your power steering system.

You can learn more about steering fluid at: brainly.com/question/11627102

#SPJ11

5. which of these least accurately describes what happens when abnormal combustion raises the temperature and pressure inside the combustion chamber?
a. ping
ob. spark knock
c. detonation
d. vapor lock

Answers

The term that least accurately describes what happens when abnormal combustion raises the temperature and pressure inside the combustion chamber is vapor lock. The correct option is d. vapor lock.

Abnormal combustion can lead to various issues in an engine, such as:
a. ping - a metallic noise caused by the uncontrolled combustion of the air-fuel mixture.
b. spark knock - a knocking noise caused by premature ignition of the air-fuel mixture.
c. detonation - the uncontrolled and explosive burning of the air-fuel mixture, which can cause engine damage.
d. vapor lock - a situation where fuel changes from liquid to gas before reaching the combustion chamber, typically due to high temperatures in the fuel system.

Among these terms, vapor lock is least related to the temperature and pressure increase inside the combustion chamber, as it primarily deals with the fuel system rather than the combustion process itself.

Vapor lock is the least accurate term describing the effects of abnormal combustion on the temperature and pressure inside the combustion chamber. The correct option is d. vapor lock.

To know more about vapor lock visit:

https://brainly.com/question/28121377

#SPJ11

what is the minimum bend radius for a 1.0-mm-thick sheet metal with a tensile reduction of area of 30%? does the bend angle affect your answer? explain your answer.

Answers

The minimum bend radius for a 1.0-mm-thick sheet metal with a tensile reduction of area of 30% depends on several factors, including the material type and the bend angle. A general rule of thumb, the minimum bend radius for this type of sheet metal should be around 1.5 times the thickness of the material. The minimum bend radius would be 1.5 mm.

It is important to note that the bend angle can affect the minimum bend radius. For instance, a sharper bend angle would require a smaller bend radius than a more gradual bend angle. Therefore, it is crucial to consider the desired bend angle when determining the minimum bend radius for a given sheet metal.Additionally, the tensile reduction of area is a crucial factor in determining the minimum bend radius for sheet metal. This parameter measures the amount of deformation a material can undergo before it fractures. A higher tensile reduction of area value indicates that the material can be bent more easily and thus can have a smaller minimum bend radius. In contrast, a lower tensile reduction of area value indicates that the material is less malleable and may require a larger minimum bend radius to avoid fracturing.The minimum bend radius for a 1.0-mm-thick sheet metal with a tensile reduction of area of 30% should be around 1.5 mm. However, the desired bend angle and the material type can affect this value, so it is crucial to consider these factors when determining the minimum bend radius for a given sheet metal.

For such more questions on rule of thumb

https://brainly.com/question/30846028

#SPJ11

Determine the takeoff of 2 x 12's needed for the floor framing and sum it all up into a total linear feet of 2 x 12's required. For example, ten - 2 x 12's at 12' would be 120 linear feet.

Answers

We would need approximately 466.48 linear feet of 2 x 12's for the floor framing

How to calculate the value

Total Length of Joists = (2 * 20) + (2 * 30) = 100 feet

Spacing in Inches = 16

Linear Feet = (100 / 12) * (16 / 16) = 8.33 feet per joist

Total Linear Feet = Linear Feet per Joist * Total Number of Joists

Therefore, the total linear feet of 2 x 12's needed for this floor would be:

Total Linear Feet = 8.33 * 56 = 466.48 feet

So we would need approximately 466.48 linear feet of 2 x 12's for the floor framing.

Learn more about framing on

https://brainly.com/question/29583805

#SPJ1

In order to calculate the line voltage of a wye-connected three-phase system you must multiply 1. 73 by the ________________

Answers

In order to calculate the line voltage of a wye-connected three-phase system, you must multiply 1.73 by the phase voltage.

What is Phase Voltage?

In a three-phase power system, phase voltage is the voltage measured between any one phase and the neutral point. The neutral point in a wye-connected system is the point at which the three phases are joined together. There is no neutral point in a delta-connected system.

In a wye-connected system, the line voltage is calculated as follows:

3 x Phase Voltage = Line Voltage

Where "3" is the square root of three, which is roughly 1.73.

Therefor, to calculate the line voltage, multiply the phase voltage by 1.73, or the square root of 3.

Learn more about  Phase Voltage here: https://brainly.com/question/29445057

#SPJ1

The ventilating fan of the bathroom of a building has a volume flow rate of 32 l/s and runs continuously. If the density of air inside is 1. 20 kg/m3, determine the mass of air vented out in one day. The mass of air is kg

Answers

The mass of air vented out in one daywould be approximately 3,110.4 kg.

What is the mass of air vented out in one day?

The problem provides information about the volume flow rate of a ventilating fan in a bathroom and the density of air inside the building. Using this information, we can calculate the mass of air vented out in one day.

To do this, we need to convert the volume flow rate into the mass flow rate by multiplying it with the density of air.

Then, we can convert the mass flow rate into the mass of air vented out in one day by multiplying it with the number of seconds in one day. Solving the given problem, the mass of air vented out in one day would be approximately 3,110.4 kg.

Learn more about mass

brainly.com/question/19694949

#SPJ11

A(n) (blank) on the head of the piston is frequently used


to indicate piston pin offset and the front of the piston

Answers

A "notch" on the head of the piston is frequently used to indicate piston pin offset and the front of the piston. The notch helps to ensure proper orientation during installation and reduces the chances of incorrect assembly.

Piston designs often include a marking or symbol on the head of the piston to indicate piston pin offset and the front of the piston. This is important information for engine builders and technicians during engine assembly as it ensures that the piston is installed correctly. The piston pin offset refers to the distance between the centerline of the piston pin and the centerline of the piston skirt. This offset can vary depending on the engine design and helps to reduce piston slap noise during operation. The front of the piston is also marked to ensure that the piston is installed in the correct orientation with respect to the engine's timing and valve events. Failure to properly align the piston can result in engine damage or poor performance. The marking or symbol or notch on the piston head is typically provided by the piston manufacturer and should be referenced during engine assembly.

Read more questions related to piston at:

https://brainly.com/question/25870707

#SPJ11

We have a sinusoidal current i(t) that has an rms value of 20a, a period of 1ms, and reaches a positive peak at t=0.3ms.

write an expression for the current with time measured in seconds in the form i(t)=imcos(ωt+θ).

Answers

The expression for the current in the form i(t) = im*cos(ωt+θ) is: i(t) = 28.28*cos(2π x 1000 t + 0.942) A

To write the expression for the given sinusoidal current i(t) in the form i(t) = im*cos(ωt+θ), we need to determine the amplitude im, the angular frequency ω, and the phase angle θ.

The given current has an rms value of 20A, which means that the amplitude of the current is:

im = √2 * Irms = √2 * 20A = 28.28A (approx.)

The period of the current is 1ms, which corresponds to a frequency of:

f = 1 / T = 1 / (1ms) = 1 kHz

The angular frequency is:

ω = 2πf = 2π * 1 kHz = 2π x 1000 rad/s

The current reaches a positive peak at t = 0.3ms, which corresponds to a phase angle of:

θ = ωt - π/2 = (2π x 1000 rad/s) x (0.3 x 10^-3 s) - π/2 ≈ 0.942 radians

Therefore, the expression for the current in the form i(t) = im*cos(ωt+θ) is:

i(t) = 28.28*cos(2π x 1000 t + 0.942) A

To know more about angular frequency visit:

https://brainly.com/question/30885221

#SPJ11

11. If the fume generation rate of a FCAW wire is assumed to be 1 g/min ( grams per minute), calculate the weight of fumes produced by one welder working for one year operation. Assume working duty cycle based on the data given in the class to calculate your answer for semiautomatic processes

Answers

The weight of fumes produced by one welder working with an FCAW wire in a semi-automatic process for one year of operation is 28,800 grams.

The fume generation rate of a Flux-Cored Arc Welding (FCAW) wire is 1 g/min, we'll need to consider the working duty cycle of a welder in a semi-automatic process for one year to calculate the weight of fumes produced.

Assuming a typical working duty cycle for semi-automatic welding processes is 25%, and considering an 8-hour workday with 240 working days in a year, we can calculate the total fume generation as follows:

- Daily welding time = 8 hours/day × 60 minutes/hour × 25% duty cycle = 120 minutes/day
- Annual welding time = 120 minutes/day × 240 days/year = 28,800 minutes/year
- Annual fume generation = 28,800 minutes/year × 1 g/min = 28,800 grams/year

You can learn more about welding at: brainly.com/question/29654991

#SPJ11

A germanium diode carries a current of 1 mA at room temperature when a forward bias of 0.15v is applied. Estimate the reverse saturation current at room temperature.

Answers

The reverse saturation current, denoted as I0, can be estimated using the diode equation:

I = I0 * (exp(qV/kT) - 1)

where I is the current through the diode, q is the charge of an electron, V is the voltage across the diode, k is Boltzmann's constant, and T is the temperature in Kelvin.

At room temperature, T = 298 K. We are given that the diode carries a current of 1 mA when a forward bias of 0.15 V is applied. Let's assume that the diode is ideal, meaning that it has no series resistance, so the voltage across the diode equals the forward bias voltage.

Plugging in these values, we get:

1E-3 A = I0 * (exp((1.602E-19 C)(0.15 V) / (1.381E-23 J/K)(298 K)) - 1)

Simplifying, we get:

1E-3 A = I0 * (exp(0.01275) - 1)

1E-3 A / (exp(0.01275) - 1) = I0

I0 = 2.34E-12 A, or approximately 0.23 nA. Therefore, the estimated reverse saturation current at room temperature is 0.23 nA.

Place the steps of identifying workplace hazards into the correct order.
Place the options in the correct order.
Determine and prioritize controls.
Inspect the workplace using checklists.
Conduct incident investigations.
Characterize the nature of the identified hazards.
1
Identify hazards associated with emergencies.
<< Previous
Submit Question
Jump to Question: 4
> CareerSafe

Answers

Answer:

Action item 1: Collect existing information about workplace hazards.

Action item 2: Inspect the workplace for safety hazards.

Action item 3: Identify health hazards.

Action item 4: Conduct incident investigations.

Action item 5: Identify hazards associated with emergency and nonroutine situations.

More items...

Explanation:

To identify workplace hazards, there are several steps that must be taken in a specific order. The first step is to identify hazards associated with emergencies.

This includes potential hazards such as fires, chemical spills, or natural disasters. The next step is to inspect the workplace using checklists to identify any potential hazards that may exist in the environment. Once hazards are identified, it is important to characterize the nature of the identified hazards, including the likelihood and severity of the potential harm.

Following this, incident investigations should be conducted to determine if any previous incidents have occurred and to identify potential causes of hazards. Finally, controls should be determined and prioritized based on the identified hazards and their potential for harm. By following these steps in order, organizations can effectively identify and prioritize workplace hazards, reducing the risk of injury or harm to employees.

You can learn more about workplace hazards at: brainly.com/question/30088464

#SPJ11

A(n) _____ is an apparatus that changes alternating current (AC) to direct current (DC)

Answers

A rectifier is an apparatus that changes alternating current (AC) to direct current (DC).

Alternating current is a type of electrical current that changes direction periodically. In contrast, direct current flows in only one direction. Rectifiers are used to convert AC to DC because many devices and machines run on DC power.

Rectifiers work by using diodes, which are electronic components that allow electrical current to flow in only one direction. A rectifier circuit contains one or more diodes arranged in a specific pattern. When AC voltage is applied to the circuit, the diodes allow only the positive portion of the voltage wave to pass through, blocking the negative portion. This results in a series of positive voltage pulses that can be filtered to produce a smooth, continuous DC voltage.

Rectifiers are used in many applications, including power supplies, battery chargers, and motor control circuits. They are essential for many electronic devices that require DC power to operate. Without rectifiers, these devices would be unable to function properly and would require alternative sources of power.

Learn more about Alternating current here: https://brainly.com/question/30715089

#SPJ11

You are given the following numbers to insert into an empty Binary Search Tree (BST): 5, 7, 8, 12, 15, 27 Select which insertion order would yield the tree with the least height? a. 8, 27, 7, 5, 15, 12 b. 12, 7, 15, 27,5, 8 c. 7,5, 12, 8, 15, 27 d. 15, 5, 27, 8, 7, 12

Answers

The insertion order that would yield the tree with the least height is option c. 7, 5, 12, 8, 15, 27.

Binary Search Trees are data structures where each node has at most two children and the left child is less than the parent and the right child is greater than the parent. The height of a BST is the maximum number of edges from the root to a leaf node.

When inserting nodes into a BST, the order of insertion can affect the height of the resulting tree. In general, it is best to keep the tree as balanced as possible to minimize the height.

Option c has the least height because it follows the pattern of inserting nodes from smallest to largest. This ensures that each node is added to a level as close to the root as possible, resulting in a balanced tree. Option a and b do not follow this pattern and have a greater chance of creating an unbalanced tree. Option d also has a chance of creating an unbalanced tree by first adding the node with the highest value.

Know more about insertion order here:

https://brainly.com/question/17962700

#SPJ11

Let f(x,y)=3rect((x-a)/c,(y-b)/c)+5rect((x+a)/c,(y+b)/c). Here c>0.


a- Find the projection g(l,theta), at theta=0


b- Find the projection g(l,theta), at theta=pi/2


c- Find g(l,theta), for theta=pi/4


d- Find a general expression for g(l,theta), for each theta

Answers

a) The projection g(l,theta) at theta=0 is given by g(l,0) = 3lrect((l-a)/c,-b/c) + 5lrect((l+a)/c,b/c).

b) The projection g(l,theta) at theta=pi/2 is given by g(l,pi/2) = 3lrect((-b)/c,(l-b)/c) + 5lrect((b)/c,(l+b)/c).

c) The projection g(l,theta) for theta=pi/4 is given by g(l,pi/4) = (3l+5l)/2 * rect((l-a+b)/(csqrt(2)),(l+b-a)/(csqrt(2))).

d) The general expression for g(l,theta) for each theta can be obtained by using the formula for the projection of a function f(x,y) onto a line with direction cosines (cos(theta),sin(theta)):

g(l,theta) = (1/(2csqrt(cos^2(theta)+(sin^2(theta)))))(3lint_rect(-lcos(theta)-lsin(theta)-acos(theta)+bsin(theta)/c,-b/c,(lcos(theta)-lsin(theta)-acos(theta)+bsin(theta))/c,(lcos(theta)-lsin(theta)-acos(theta)-bsin(theta))/c) + 5lint_rect(-lcos(theta)+lsin(theta)+acos(theta)+bsin(theta)/c,b/c,(lcos(theta)+lsin(theta)+acos(theta)+bsin(theta))/c,(lcos(theta)+lsin(theta)+acos(theta)-bsin(theta))/c))

where int_rect(a,b,c,d) denotes the integral of the rectangular function rect(x,y) over the rectangle with vertices (a,b), (a,d), (c,d), and (c,b).

For more questions like Expression click the link below:

https://brainly.com/question/14083225

#SPJ11

find the long-term deflection of a rectangular cantilever beam section 250* 300 mm overall depth supported over a span of 3 mm . The beam is reinforced with 3 bars of 16mm diameter fe 500-grade HYSD steel at an effective depth of 275mm. two hanger bars of 10mm diameter are provided in the compression face assume the self-weight of the beam include live load 4kN/m and a service load of 5 kN/m use M25 grade concrete

Answers

The a seed is 550 I know this because I calculated with my brain

The long-term deflection of the cantilever beam is 0.26 mm.

How to calculate the value

Calculate the section modulus of the reinforced section:

Z = I/y

Where y = distance from the neutral axis to the outermost fiber = h/2 = 150 mm

Substituting the values in the above formula, we get:

Where Gk = partial safety factor for dead load = 1.5

Qk = dead load = self-weight of beam + hanger bars = (0.25 x 0.3 x 25) + (2 x pi x 0.01^2 x 7850) = 1.47 kN/m

Gc = partial safety factor for live load = 1.5

Qc = live load = 4 kN/m + 5 kN/m = 9 kN/m

Substituting the values in the above formula, we get:

δlong-term = 1.02 x (1.5 x 1.47)/(1.47 + 1.5 x 1.5 x 9)

δlong-term = 0.26 mm

Therefore, the long-term deflection of the cantilever beam is 0.26 mm.

Learn more about beam on:

https://brainly.com/question/12937038

#SPJ1

write an algorithm that deletes a node from a binary search tree considering all possible cases. analyze your algorithm and show the results using order notation

Answers

In order notation, the time complexity of this algorithm can be written as O(n), and the space complexity can be written as O(1).

Here's the algorithm to delete a node from a binary search tree:

1. Start at the root node of the binary search tree.
2. Search for the node to be deleted by comparing the value of the node to the value of the current node.
3. If the node to be deleted is not found, return the original binary search tree.
4. If the node to be deleted is found, consider the following cases:
  a. If the node to be deleted has no children, simply remove the node.
  b. If the node to be deleted has one child, replace the node with its child.
  c. If the node to be deleted has two children, find the minimum value in the right subtree of the node to be deleted. Replace the node to be deleted with the minimum value found and then delete the node with the minimum value.

Analysis of the algorithm:

The time complexity of this algorithm is O(h), where h is the height of the binary search tree. In the worst case scenario, the height of the tree is n, where n is the number of nodes in the tree. Therefore, the time complexity of this algorithm is O(n).

The space complexity of this algorithm is O(1), as we are only modifying the tree in place and not creating any additional data structures.

Know more about algorithm here;

https://brainly.com/question/22984934

#SPJ11

Estimate the uncertainty for measuring the coefficient of drag of 0. 1 on an object with a planform area A = 0. 5 m^2 as a function of velocity for velocities ranging from 1 m/sec to 100 m/sec (C_D = D/1/2 rho V^2 A) using a force balance that has a resolution of 1 N and a range of 1000N. The area is known with an uncertainty of 0. 15%, and the velocity is known with an uncertainty of 0. 1 m/s. The fluid density is inferred from the ideal gas law and where the temperature is known with an uncertainty of 1 degree C and the pressure is known with a certainty of 0. 2 kPa. Assume room temperature is 20 degree C and the pressure is atmospheric pressure

Answers

To estimate the uncertainty for measuring the coefficient of drag (C_D) of an object with a planform area of A = 0.5 m² as a function of velocity, we need to consider the sources of uncertainty in the measurements of velocity, force, and area.

First, we need to calculate the range of expected drag force measurements. Using the given force balance with a resolution of 1 N and a range of 1000 N, the uncertainty in force measurements can be estimated to be ±0.5 N. For a given velocity, the drag force can be calculated using the formula: D = C_D * 0.5 * rho * V^2 * A, where rho is the fluid density, V is the velocity, and A is the planform area. The uncertainty in the planform area is given as 0.15%, which corresponds to ±0.00075 m². We can assume that the uncertainty in the fluid density is negligible compared to the other sources of uncertainty.

Next, we need to estimate the uncertainty in velocity measurements. The velocity is known with an uncertainty of 0.1 m/s, which corresponds to ±0.05 m/s. To estimate the range of expected drag force measurements, we can use the maximum and minimum values of the velocity range (1 m/s to 100 m/s) and the maximum and minimum values of the planform area uncertainty. This gives us a range of expected drag forces from ±0.026 N to ±526 N.

Finally, we can estimate the uncertainty in the coefficient of drag by dividing the uncertainty in drag force by the maximum possible drag force, which occurs at the highest velocity and with the maximum planform area uncertainty. This gives us an uncertainty in drag force of ±0.526 N. Dividing this by the maximum drag force of 1000 N gives us an uncertainty in the coefficient of drag of approximately ±0.00053.

Therefore, the uncertainty in the coefficient of drag for an object with a planform area of 0.5 m² as a function of velocity, measured using a force balance with a resolution of 1 N and a range of 1000 N, is approximately ±0.00053.

To estimate the uncertainty in measuring the coefficient of drag (C_D), we need to consider the uncertainties in the various parameters involved, including the force measurement, planform area, velocity, fluid density, and their respective relationships in the equation for C_D.

1. Uncertainty in force measurement:

The force balance used for the measurement has a resolution of 1 N and a range of 1000 N. The uncertainty in force measurement can be estimated as:

δF = ±(1/2) * (F_range / resolution) = ±(1/2) * (1000 / 1) = ±500 N

2. Uncertainty in planform area:

The planform area A is known with an uncertainty of 0.15%. Therefore, the uncertainty in A can be estimated as:

δA = ±(0.15/100) * A = ±0.00075 m^2

3. Uncertainty in velocity:

The velocity is known with an uncertainty of 0.1 m/s. Therefore, the uncertainty in velocity can be estimated as:

δV = ±0.1 m/s

4. Uncertainty in fluid density:

The fluid density can be inferred from the ideal gas law, assuming room temperature of 20°C and atmospheric pressure. The uncertainty in fluid density can be estimated using the following formula:

δρ = (δP/P + δT/T) * ρ

where δP is the uncertainty in pressure, δT is the uncertainty in temperature, and ρ is the fluid density. Assuming a pressure uncertainty of 0.2 kPa and a temperature uncertainty of 1°C, we get:

δρ = ((0.2/101.3) + (1/293)) * ρ = 0.0054 * ρ

5. Relationship between parameters:

Finally, we need to consider the relationship between the parameters in the equation for C_D. Using the formula for C_D = D/(1/2 ρ V^2 A), we can estimate the uncertainty in C_D as:

δC_D/C_D = √[(δD/D)^2 + (2δρ/ρ)^2 + (δV/V)^2 + (δA/A)^2]

where δD is the uncertainty in force measurement, δρ is the uncertainty in fluid density, δV is the uncertainty in velocity, and δA is the uncertainty in planform area.

Substituting the estimated uncertainties, we get:

δC_D/C_D = √[(500/1)^2 + (2*0.0054)^2 + (0.1/V)^2 + (0.00075/A)^2]

We can estimate the maximum uncertainty in C_D by substituting the maximum values for V and A:

δC_D/C_D = √[(500/1)^2 + (2*0.0054)^2 + (0.1/1)^2 + (0.00075/0.5)^2] = 1.10

Therefore, the estimated uncertainty in measuring the coefficient of drag is approximately ±10%.

The end station for Wayside is 142+25. If a mile is 5,280 feet, how many miles is the project area for Wayside?



I don't understand what the 142+25 means on this question. This is a question related to a roadside repair plan set

Answers

How many miles is the project area for Wayside if the end station is 142+25 and a mile is 5,280 feet?

What is the question related to the Wayside project area?

It appears that "Wayside" is a project area related to a roadside repair plan set, and "142+25" is likely a distance measurement on that project area.

However, without more context or information, it is unclear what unit of measurement is being used (e.g. feet, meters, etc.) and what direction or location is being referenced.

As for the actual question, to determine how many miles the project area for Wayside is, the distance measurement would need to be converted into feet and then divided by 5,280 (the number of feet in a mile).

Learn more about project area

brainly.com/question/28481231

#SPJ11

The first step when using object-oriented design is to

Answers

The first step when using object-oriented design (OOD) is to identify and define the key components, called classes, within the system. This process involves understanding the problem domain, breaking it down into manageable parts, and defining the relationships and interactions among these parts.

Classes represent real-world entities or concepts and have attributes and methods. Attributes describe the properties or characteristics of a class, while methods define the actions or behaviors that a class can perform. To establish these classes, you should analyze the requirements and consider any existing constraints or limitations.

Once the classes are defined, you'll need to determine their relationships, which are typically represented using inheritance, aggregation, and association. Inheritance is a way for one class to inherit the attributes and methods of another, while aggregation and association describe the "has-a" and "uses-a" relationships between classes, respectively.

As you proceed with OOD, it's essential to focus on modularity, encapsulation, and abstraction. Modularity refers to the separation of functionality into independent, interchangeable modules. Encapsulation is the practice of bundling data and methods within a class, restricting access to certain parts of the object. Abstraction is the simplification of complex systems by presenting only the essential features and hiding implementation details.

In conclusion, the first step in OOD is to identify classes, define their attributes and methods, and establish relationships among them, while adhering to principles of modularity, encapsulation, and abstraction. This process lays the foundation for effective and efficient software development.

Learn more about object-oriented design (OOD) here: https://brainly.com/question/30174085

#SPJ11

A turbojet is flying with a velocity of 900 ft/s at an altitude of 20,000 ft, where the ambient conditions are 7 psia and 10°F. The pressure ratio across the compressor is 13, and the temperature at the turbine inlet is 2400 R. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine (a) the pressure at the turbine exit, (b) the velocity of the exhaust gases, and (c) the propulsive efficiency

Answers

A turbojet operates under ambient conditions of 7 psi and 10°F at an altitude of 20,000 ft, flying with a velocity of 900 ft/s. The compressor has a pressure ratio of 13, and the turbine inlet temperature is 2400 R.

Assuming ideal operation and constant specific heats, we can determine the following:

(a) The pressure at the turbine exit is 7 psi.

To find the pressure at the turbine exit, first calculate the pressure at the compressor exit: P2 = P1 * pressure ratio = 7 psi x 13 = 91 psi. Since it's an ideal operation, the pressure ratio across the turbine is equal to the pressure ratio across the compressor. Therefore, the pressure at the turbine exit, P3 = P2 / 13 = 91 psi / 13 = 7 psi.

(b) Using the conservation of mass and energy, the temperature at the turbine exit can be calculated.

Then, apply the ideal gas equation and the continuity equation to find the velocity of the exhaust gases. However, without more specific information, the exact numerical value for the velocity cannot be determined.

(c) The propulsive efficiency depends on the velocity of the exhaust gases and the initial velocity of the aircraft.

The higher the difference between these two velocities, the higher the propulsive efficiency. In an ideal turbojet, the efficiency can be improved by minimizing the difference between the aircraft and exhaust velocities.

You can learn more about velocity at: brainly.com/question/17127206

#SPJ11

You are appointed as a technician at an electrical company well known Tru Technology, your manager would like to use a battery as a storage device to store the energy from the solar panel during the day and hence use this energy during the night to power up lighting loads in his house. The lighting loads require a total maximum supply current of 5 A at 12 V DC. If the battery is required to take over the supply of power to the loads for 20 hours, determine: The required ampere–hour rating of the battery? Show all your calculation

Answers

You'll need a battery with a 100 ampere-hour rating to provide power for the lighting loads for 20 hours.

As a technician at Tru Technology, you're tasked with finding the appropriate battery to store energy from solar panels for nighttime use. To determine the required ampere-hour (Ah) rating of the battery, you need to consider the power needs of the lighting loads and the desired duration of the operation.

The lighting loads require a maximum supply current of 5 A at 12 V DC. To calculate the power needed for the loads, you can use the formula:

Power (W) = Voltage (V) × Current (A)

Power = 12 V × 5 A = 60 W

Now, you want the battery to supply power for 20 hours. To find the energy required, use the formula:

Energy (Wh) = Power (W) × Time (h)

Energy = 60 W × 20 h = 1200 Wh

To determine the required ampere-hour rating, divide the energy by the voltage:

Battery Ah = Energy (Wh) / Voltage (V)

Battery Ah = 1200 Wh / 12 V = 100 Ah

You can learn more about the battery at: brainly.com/question/19225854

#SPJ11

List and explain 10 software and 10 hardware components of a computer​

Answers

10 Software Components:

Operating System

Device Drivers

Antivirus Software

Web Browsers

Media Players

Word Processors

Spreadsheet Programs

Presentation Software

Email Clients

Virtualization Software

10 Hardware Components:

CPU (Central Processing Unit)

RAM (Random Access Memory)

Hard Disk Drive (HDD)

Solid State Drive (SSD)

Motherboard

Power Supply Unit (PSU)

Graphics Processing Unit (GPU)

Sound Card

Network Interface Card (NIC)

Monitor

Software components refer to the programs that run on a computer system. An operating system is the core software component that manages hardware resources and provides a user interface. Device drivers enable the operating system to communicate with hardware devices.

Antivirus software is used to protect the system from malware threats. Web browsers allow users to browse the internet, while media players allow users to play audio and video files.

Word processors, spreadsheet programs, and presentation software are used for creating documents, spreadsheets, and presentations, respectively. Email clients are used to manage emails, and virtualization software enables multiple operating systems to run on a single computer.

Hardware components refer to the physical components that make up a computer system. The CPU is the brain of the computer, responsible for executing instructions. RAM is used for storing data that is currently in use by the system. The HDD and SSD are used for long-term storage of data.

The motherboard is the main circuit board that connects all components. The PSU provides power to the system. The GPU is responsible for processing graphics. The sound card provides audio output, while the NIC provides network connectivity.

The monitor is used for displaying output from the system.

For more questions like Antivirus click the link below:

https://brainly.com/question/14313403

#SPJ11

Other Questions
A particle moves with position function s=t" - 413 - 20+2 + 20t, t > 0 At what time does the particle have a velocity of 20 m/s? At what time is the acceleration 0? What is the significance of this variance? Is this a pinnate, palmate or parallel vein "i dont like that idea. it sounds like too much work. why dont we just each work on our own parts and then meet in, like, 2 weeks and put them all together before the due date?" this statement reflects which group role? a. social b. unproductive c. task d. individual please select the best answer from the choices provided a b c d faulty sentences *horror movies dont do me anything.*we should not only focus on availability of food but also on how we can access it.*we have been advised to stay away from people with a cough, fever and sneezing.*i wish i were to be more patient.*the family of the late doctor say they will not do wake keeping.*the government needs to give a weeks notice before a lockdown.*we can all be able to lead when given the opportunity to do so.*hope you will attend the morning section of the programme. 7 unit 8 quiz SOOne aspect of modern society is that it is future focused. At the same time, postmodern society is characterized by uncertainty about the future. Which statement BEST explains how these contradicting beliefs can be resolved? A. Concern about the future is still considered to be focusing on the future. B. The future has been determined, according to postmodern theory. C. Industrialization was the goal of the future, but now it is achieved. D. The future no longer represents progress but the human limitations. Let f(x) = x^2 - 5x. Round all answers to 2 decimal places.Find the slope of the secant line joining (1, f(1) and (9, f(9)). Now you are ready to explain what happened when Lee mixed sodium and hydrogen chloride. Be sure to use keyconcepts in your explanation and provide examples from the Sim or the token activity. Answer the following question: How did sodium and hydrogen chloride change into two different substances?pls help Which expression is equivalent to 1/2(2n+6 1/2+2n+6 2 1/2 + 6 1/2n + 6n+ 3 14 m3 of gas at a pressure of 3. 0 atmospheres is compressed into a volume of 9. 0 m3. Under what amount of pressure is the sample of gas after the compression? Based on information in the article, which of thesestatements is TRUE?A. The sun's gravity makes the planets orbitaround it.B. Earth's gravity pulls floating astronauts toEarth's floor.C. Only large objects have a pull of gravity onEarth.D. Gravity keeps the planets moving in a straightline. Russo is trying to find the area of the lake in his neighborhood. He sees a duck (point C) and uses a tape measure to find that the duck is 16 feet from the point of tangency (point B). He also measures out that the duck is 8 feet away from the edge of the lake (in the direction of A). Using this information, what is the radius of the lake? Heat and pressure drive water out of the rock.[ Choose ]Magma rises towards the surface.FirstThe tectonic plate subducts.[ Choose ]The water lowers the melting temperature of the mantle.[ Choose ]Volcanoes form on the plate that does not subduct. I need help with filling in the boxesJust put how each limiting factor can impact the native population Dont send the link that just hacks you :/ someone please answer!!! A solution consisting of 11. 4 g NH4Cl in 150 ml of water is titrated with 0. 20 M KOH. a. How many milliliters of KOH are required to reach the equivalence point?b. Calculate {Cl-], [K+], and [NH3] at the equivalence point. Assume volumes are additive Please help asap a lot of points and brainiest!!!!! ASAP .4/5 (1/4 c 5) rewrite the expressions by using the distributive property and collecting like terms. HELPThe average human body temperature is 98.6 F, but it can vary by as much as 1.8 F. Write an inequality to represent the normal temperature range of the human body, where t represents body temperature. |t 1.8| 98.6 |t 1.8| 98.6 |t 98.6| 1.8 |t 98.6| 1.8 Find m/_U. Write your answer as an integer or as a decimal rounded to the nearest tenth. 1. What areas are generally assigned by the General Manager to thehousekeeping department for daily upkeep in lodging properties?2. Why is it important to make sure that room attendants clean guest roomswithin their allotted timeframe?3. Which is more important - maintaining a clean hotel or achievingbudgeted payroll and supply/chemical costs?4. What are key elements of maintaining satisfied housekeepingemployees? During 2022, each of the assets was removed from service. The machinery was retired on January 1. The forklift was sold on June 30 for $13,000. The truck was discarded on December 31. Journalize all entries required on the above dates, including entries to update depreciation, where applicable, on disposed assets. The company uses straight-line depreciation. All depreciation was up to date as of December 31, 2021