The amount of money earned over a period of time is called 3. Income
Income refers to the money you receive from various sources such as salary, wages, investments, or any other means during a specific period of time.
Income is a fundamental concept in finance and accounting. It represents the inflow of money or economic benefits received by an individual, household, or organization.
It is typically measured and reported on a periodic basis, such as monthly, quarterly, or annually. Income can be derived from various sources, including salaries and wages, interest and dividends, rental income, profits from business activities, and capital gains.
It is an essential component in assessing an individual's or organization's financial health and is often used to calculate taxes, budgeting, and determining net worth. Understanding and effectively managing income is crucial for individuals and businesses to meet their financial goals and sustain their economic well-being.
To learn more about money earned go to:
https://brainly.com/question/11709027#
#SPJ11
A ramp is used to go up one step.
The ramp is 3 m long. The step is 30 cm high.
How far away from the step (x) does the ramp start?
Give your answer in metres, to the nearest centimetre.
Answer:
3 meters = 300 centimeters
Using the Pythagorean Theorem:
[tex] {x}^{2} + {30}^{2} = {300}^{2} [/tex]
[tex] {x}^{2} + 900 = 90000 [/tex]
[tex] {x}^{2} = 89100[/tex]
[tex]x = 90 \sqrt{11} = 298.49[/tex]
x = about 298 centimeters
= about 2.98 meters
Giving away a lot of points please don't put something random, no explanation is needed only the answer.
Thank you
The theoretical probability is: 12.5%. After 100 trials, the experimental probability is of: 20%. After 400 trials, the experimental probability is of: 11%. After more trials, the experimental probability is closer to the theoretical probability.
How to calculate a probability?A probability is calculated as the division of the desired number of outcomes by the total number of outcomes in the context of a problem/experiment.
The dice has eight sides, hence the theoretical probability of rolling a six is given as follows:
1/8 = 0.125 = 12.5%.
(eight sides, each of them is equally as likely).
The experimental probabilities are obtained considering the trials, hence:
100 trials: 20/100 = 0.2 = 20%. -> results given in the text.400 trials: 44/400 = 0.11 = 11%.The more trials, the closer the experimental probability should be to the theoretical probability.
More can be learned about probability at https://brainly.com/question/24756209
#SPJ1
In ΔFGH, g = 140 inches, f = 980 inches and ∠F=170°. Find all possible values of ∠G, to the nearest degree.
The angle G from triangle FGH has a measure of approximately 1°.
How to find all missing angles of a triangle
In this problem we find the case of a triangle with two known sides and a known angle. By Euclidean geometry, the sum of all internal angles in a triangle equals 180° and we are required to find all possible values of angle G. This can be done by using sine law:
(980 in) / sin 170° = (140 in) / sin G
sin G = 0.024
G = 1.421°
The only possible value for angle G is equal to 1.421°.
To learn more on sine law: https://brainly.com/question/17289163
#SPJ1
Question 10 9 pts Let f(c) = x3 +62? 15x + 3. (a) Compute the first derivative of f f'(x) = (c) On what interval is f increasing? interval of increasing = (d) On what interval is f decreasing? interval of decreasing = **Show work, in detail, on the scrap paper to receive full credit. (b) Compute the second derivative of / L'(x) = (e) On what interval is concave downward? interval of downward concavity = () On what interval is concave upward? interval of upward concavity = **Show work, in detail, on the scrap paper to receive full credit.
(a) The first derivative of f is f'(x) = 3x² - 15.
(b) The second derivative of f is f''(x) = 6x.
(c) f is increasing on the interval (-∞, √5) and decreasing on the interval (√5, ∞).
(d) f is decreasing on the interval (-∞, √5) and increasing on the interval (√5, ∞).
(e) f is concave downward on the interval (-∞, 0) and concave upward on the interval (0, ∞).
(a) To find the first derivative of f, we differentiate each term of the function with respect to x using the power rule. Thus, f'(x) = 3x² - 15.
(b) To find the second derivative of f, we differentiate f'(x) with respect to x. Thus, f''(x) = 6x.
(c) To determine the intervals where f is increasing, we set f'(x) > 0 and solve for x. Thus, 3x² - 15 > 0, which simplifies to x² > 5. Therefore, x is in the interval (-∞, √5) or (√5, ∞). To determine which interval makes f increasing, we can test a point within each interval.
For example, when x = 0, f'(0) = -15, which is negative, so f is decreasing on (-∞, √5). When x = 10, f'(10) = 285, which is positive, so f is increasing on (√5, ∞). Thus, f is increasing on the interval (√5, ∞) and decreasing on the interval (-∞, √5).
(d) To determine the intervals where f is decreasing, we set f'(x) < 0 and solve for x. Thus, 3x² - 15 < 0, which simplifies to x² < 5. Therefore, x is in the interval (-∞, √5) or (√5, ∞). Again, we can test a point within each interval to determine which one makes f decreasing.
For example, when x = 0, f'(0) = -15, which is negative, so f is decreasing on (-∞, √5). When x = 10, f'(10) = 285, which is positive, so f is increasing on (√5, ∞). Thus, f is decreasing on the interval (-∞, √5) and increasing on the interval (√5, ∞).
(e) To determine the intervals of concavity, we examine the sign of the second derivative of f. If f''(x) > 0, then f is concave upward, and if f''(x) < 0, then f is concave downward. If f''(x) = 0, then the concavity changes. Thus, we set f''(x) > 0 and f''(x) < 0 and solve for x. We get f''(x) > 0 when x > 0 and f''(x) < 0 when x < 0.
Therefore, f is concave upward on (0, ∞) and concave downward on (-∞, 0).
For more questions like Derivative click the link below:
https://brainly.com/question/25324584
#SPJ11
HELP ME PLSSSS ANYBODY OF ANY AGE I WILL LEAVE A GOOD REVIEW
Answer:
the third one
Step-by-step explanation:
Answer:
Option 3 is the correct answer
Step-by-step explanation:
The surface area of a prism is the area of the full net.
The area of the full net is the sum of the areas of each part
For the given net, there are three rectangles, and two triangles.
The area for rectangles and triangles are given by the following formulas:
[tex]A_{rectangle}=base*height[/tex]
[tex]A_{triangle}=\frac{1}{2}*base*height[/tex]
It is important to recognize that due to the fact that the 3-D shape is a prism, the two triangles are congruent, and have exactly the same dimensions and area.
Looking at the options:
Option 1 has three products added together. This would be the base time height of each of the three rectangles. It does not include the area for either of the triangles.
Option 2 does have an extra term in front with 3 numbers multiplied together. It most closely resembles 2 times the product of the base and height of the triangle, but recall the area for a triangle is one-half of the base times height (this may make more sense when looking at option 3). This over-calculates the area of the triangle, and then doubles that over-calculated area (to match the second triangle)
Option 3 has an extra term in front with the number 2 times a parenthesis with 3 terms. These three terms represent the "one-half" from the formula for the area of a triangle, and the base and height of the triangle. The 2 in front of the parentheses represents that there are two of those triangles, both with that area. This correctly calculates the area of the net, and thus, the surface area of the triangular prism.
Option 4 has an extra term in front, similar to option 3 which calculates the area of one triangle correctly, but fails to account for the area of the second triangle.
Option 3 is the correct answer.
Part D Question Select the correct answer. How many bacteria will exist after 2 hours (120 minutes) have passed? Remember that 1 second of video time corresponds to 20 minutes of real time.
So after 6 hours, there will be approximately 262,144 bacteria.
What is exponent?An exponent (also called a power or index) is a mathematical notation that indicates the number of times a quantity is multiplied by itself. It is written as a superscript to the right of the quantity being multiplied. Exponents are commonly used in algebra and other branches of mathematics to represent repeated multiplication or to simplify complex expressions. They also have important applications in science, engineering, and computer programming.
Here,
We can use the formula for exponential growth to find the number of bacteria after a certain amount of time:
N = N0 * [tex]2^{(t/d)} ^[/tex]
where N is the final number of bacteria, N0 is the initial number of bacteria (which is 1 in this case), t is the time elapsed (in minutes), and d is the doubling time (in minutes).
Since the doubling time is 20 minutes, we have:
d = 20
To find the number of bacteria after 6 hours (which is 360 minutes), we plug in these values:
N = 1 * [tex]2^{(360/20)}[/tex]
Simplifying the exponent, we get:
N = 1 * [tex]2^{18}[/tex]
Using a calculator or by hand, we can evaluate this expression to get:
N ≈ 262,144
To know more about exponent,
https://brainly.com/question/11709654
#SPJ1
Colton invests $1,000. He invests part of it in IBM and after one year earns 5% on his
investment. He invests the other part of the $1,000 in MacIntosh and after one year
earns 8% on his investment. If his total interest after one year is $60.80, how much did
he invest in each?
Solution:-
Here,
let, P=$1000
Money vested in IBM= x
Interest=(x×1×5)/100
=5x/100
Money invested in Macintosh=1000-x
Interest=((1000-x)1×8)/100
=(8000-8x)/100
Now,
Total Interest=5x/100 + (8000-8x)/100
or, 60.80=(5x+8000-8x)/100
or, 60.80×100=-3x+8000
or, 6080-8000=-3x
or, -1920/-3=x
x=$640
1000-x=1000-640
=360
Thus, Colton invested $640 in IBM, and $360 in Macintosh.
Please asap!!! will give 100 brainlest!!! (there's more than one answer)
select all the correct measures of center and variation for the following data set.
10, 20, 31, 17, 18, 5, 22, 25, 14, 43
a. first quartile = 12
b. iqr = 11
c. median = 19
d. third quartile = 25
e. mad = 7
First quartile is 14, IQR is 14, median is 19, third quartile is 28 and MAD is 7.
a. First quartile = 12 and d. Third quartile = 25 are not necessarily correct measures of quartiles for this dataset. To calculate the quartiles, we need to first order the data set and then find the value(s) that divide it into four equal parts. In this case, the sorted dataset is:
5, 10, 14, 17, 18, 20, 22, 25, 31, 43
The first quartile is the median of the lower half of the data: (5, 10, 14, 17, 18) and is 14.
b. IQR = 11 is not correct. The IQR (Interquartile Range) is the difference between the third quartile and the first quartile, which is 28-14=14 for this dataset.
c. Median = 19 is a correct measure of center.
d. The third quartile is the median of the upper half of the data: (22, 25, 31, 43) and is 28.
e. MAD = 7 is a correct measure of variation.
To know more about Median, visit:
https://brainly.com/question/28060453#
#SPJ11
в
20°
C
62°
D
E please help with this I don’t know how to solve
The value of the arc is approximately 14.3 cm.
We are given that;
The angle = 62, 20
Now,
To find the value of arc if angle is 82 degrees
Step 1: Convert the angle from degrees to radians
Angle in radians = Angle in degrees x π/180 Angle in radians = 82 x π/180 Angle in radians ≈ 1.43
Step 2: Multiply the angle by the radius
Arc length = Angle x Radius Arc length = 1.43 x 10 Arc length ≈ 14.3 cm
Therefore, by the arc length the answer will be approximately 14.3 cm.
Learn more about angle, arc length relation here:
https://brainly.com/question/15451496
#SPJ1
Willow bought 3 m of denim fabric and 5m of cotton
fabric. The total bill, excluding tax, was $22. Jared
bought 6 m of denim fabric and 2 m of cotton fabric
at the same store for $28. How much does the denim
fabric cost? How much does the cotton fabric cost?
How do I start?
The denim fabric costs $4 per meter and the cotton fabric costs $3 per meter.
To find out the cost per meter of each type of fabric, we can set up a system of two equations. Let d be the cost per meter of denim fabric and c be the cost per meter of cotton fabric. Then, we have:
3d + 5c = 22 (equation 1)
6d + 2c = 28 (equation 2)
We can use equation 2 to solve for one of the variables in terms of the other. Solving for c, we get:
c = 14 - 3d (equation 3)
We can substitute equation 3 into equation 1 and solve for d:
3d + 5(14 - 3d) = 22
Simplifying this equation, we get:
4d = 3
Therefore, d = 0.75, which means the denim fabric costs $0.75 per meter.
We can then use equation 3 to find the cost per meter of cotton fabric:
c = 14 - 3(0.75) = 11.25/2 = $5.625
Therefore, the cotton fabric costs $5.625 per meter.
To know more about cotton fabric, refer here:
https://brainly.com/question/19903429#
#SPJ11
Look at picture please
Answer:
135.6 cubic centimeters
Step-by-step explanation:
To find the volume of soda in the cylindrical glass, we need to first find the volume of the glass and then multiply it by 60% to get the volume of soda. The formula for the volume of a cylinder is V = πr^2h, where r is the radius and h is the height.
Substituting the given values, we get:
V = π(3 cm)^2(8 cm) = 72π cm^3
To find the volume of soda, we multiply the volume of the glass by 60% or 0.6:
Volume of soda = 0.6 x 72π cm^3 = 43.2π cm^3
Rounding to the nearest tenth, we get:
Volume of soda ≈ 135.6 cm^3
Therefore, there are approximately 135.7 cubic centimeters of soda in the glass
Answer: 226.3
Step-by-step explanation:
Hello! Here is how to solve this problem.
The formula for volume of a cylinder is V(c) = (B)(h)
The height is 8 cm, and the radius is 3 cm. The base is a circle, so the base area will be 22/7(r)^2. Pi is represented as 3.14 or 22/7, but 22/7 is more accurate.
V(c) = 22/7((3)^2)(8)
V(c) = 22/7(9 x 8)
V(c) = 22/7(72)
V(c) = 226.285714.
So, rounded to the nearest tenth, the volume of the soda can is 226.3 cm^3.
Tips for you:
1. Round to the nearest tenth
2. Use 22/7 for pi unless it says to use 3.14 for pi or use the symbol for pi instead of solving further.
Hope this helps, have a great day!
George says his bicycle has a mass of 15 grams. If he takes the front wheel off what could be the mass?
Janet would be correct, it is not possible for a bike to be 15 grams.
"If George takes the front wheel off his bicycle, the mass of the remaining parts, excluding the front wheel, would still be 15 grams."
The mass of an object refers to the amount of matter it contains. In this case, George claims that his bicycle has a mass of 15 grams. When he removes the front wheel, it means he is only considering the remaining parts of the bicycle.
Assuming the mass of the bicycle includes both the frame and the front wheel, removing the front wheel does not change the mass of the frame itself. Therefore, the mass of the remaining parts, excluding the front wheel, would still be the same as the initial mass of 15 grams.
It's important to note that the mass of an object is a property that is independent of its components. Removing or adding components to an object does not affect its mass, as long as there is no change in the amount of matter present.
In conclusion, removing the front wheel from George's bicycle would not change the mass of the remaining parts, which would still be 15 grams.
To know more about amount of matter refer here:
https://brainly.com/question/32014428
#SPJ11
Layla got a new job through the Manchester Temporary Services. The job pays $53. 5K per year and the agency fee is equal to 32% of one month’s pay. How much must Layla pay the agency?
Layla must pay the agency a fee of $1,426.67 for their services in helping her secure her new job.
One month's pay = Annual salary / 12 months
One month's pay = $53,500 / 12
One month's pay = $4,458.33
Next, we need to determine the agency fee, which is equal to 32% of one month's pay:
Agency fee = 32% x One month's pay
Agency fee = 0.32 x $4,458.33
Agency fee = $1,426.67
Therefore, Layla must pay the agency a fee of $1,426.67 for their services in helping her secure her new job. Layla's agency fee is determined by taking 32% of her monthly pay, which is approximately $4,458.33. This results in a fee of approximately $1,426.67 that Layla must pay to the agency.
Learn more about salary questions here, https://brainly.com/question/24988098
#SPJ11
Can someone please help me ASAP? It’s due tomorrow.
The total number of outcomes for the compound event is m*n
option B.
What is the Counting Principle?The Fundamental Counting Principle states that if there are m ways to do one thing and n ways to do another thing, then there are m*n ways to do both things together.
This applies to compound events that consist of two or more independent events.
For example, suppose you have two dice and you want to know how many possible outcomes there are when you roll them. Each die has 6 possible outcomes, so by the Fundamental Counting Principle, the total number of outcomes for the compound event is 6*6 = 36.
So, for any two independent events with m and n outcomes, respectively, the total number of outcomes for the compound event is m*n.
Learn more about compound event here: https://brainly.com/question/12314211
#SPJ1
Decide on what substitution to use, and then evaluate the given integral using a substitution. (Use C for the constant of integration.)
∫9x√(-x^2 + 9dx)
The substitution is u = -x² + 9 and the evaluated value is -4.5(2/3)(-x² + 9)³/² + C.
To evaluate the given integral ∫9x√(-x² + 9dx),
we can use the substitution u = -x² + 9. This substitution will allow us to simplify the expression under the square root.
First, we can find du/dx by taking the derivative of u with respect to x: du/dx = -2x.
Next, we can solve for dx in terms of du by dividing both sides by -2x: dx = -du/(2x).
Using the substitution and the expression for dx in terms of du, we can rewrite the integral as:
∫9x√(-x² + 9dx) = -4.5∫√udu
Now, we can integrate the simplified expression √u using the power rule of integration:
-4.5∫√udu = -4.5(2/3)u³/² + C
Substituting back for u, we get:
-4.5(2/3)(-x² + 9)³/² + C
Therefore, the solution to the integral ∫9x√(-x^2 + 9dx) using the substitution u = -x^2 + 9 is:
-4.5(2/3)(-x² + 9)³/² + C
Learn more about derivative of integral : https://brainly.com/question/30398950
#SPJ11
You are making a 3 foot by 3 foot coffee table with a glass top surrounded by a cherry border of uniform width. The cherry border is included in the 3 x 3 measurements. You have 5 square feet of cherry border. What should the width of the border be?
Answer:
Step-by-step explanation:
The total area of the coffee table (including the cherry border) is:
3 feet x 3 feet = 9 square feet
We know that the area of the cherry border is:
5 square feet
To find the width of the cherry border, we need to subtract the area of the glass top from the total area of the coffee table:
9 square feet - area of glass top = area of cherry border
The area of the glass top is:
(3 feet - 2x) x (3 feet - 2x)
where x is the width of the cherry border.
Since the glass top is square, we can set the two dimensions equal to each other:
(3 feet - 2x) = (3 feet - 2x)
Expanding the left-hand side, we get:
9 feet - 6x = 9 feet - 6x
Simplifying, we get:
0 = 0
This means that the width of the cherry border does not affect the area of the glass top. Therefore, we can set the area of the glass top equal to the total area of the coffee table minus the area of the cherry border:
(3 feet - 2x) x (3 feet - 2x) = 9 square feet - 5 square feet
Simplifying, we get:
(3 feet - 2x) x (3 feet - 2x) = 4 square feet
Expanding the left-hand side, we get:
9 feet^2 - 12 feet x + 4x^2 = 4 square feet
Subtracting 4 square feet from both sides, we get:
9 feet^2 - 12 feet x + 4x^2 - 4 square feet = 0
Simplifying, we get:
4x^2 - 12 feet x + 9 feet^2 - 4 square feet = 0
Using the quadratic formula, we get:
x = [12 feet ± sqrt((12 feet)^2 - 4(4)(9 feet^2 - 4 square feet))] / (2(4))
Simplifying, we get:
x = [12 feet ± sqrt(144 feet^2 - 4(4)(9 feet^2 - 4 square feet))] / 8
x = [12 feet ± sqrt(144 feet^2 - 144 feet^2 + 64 square feet)] / 8
x = [12 feet ±
When you don’t replace the marble for the second draw what kind of probability is it?
If you do not replace the marble after the first draw, the probability calculation depends on whether you are dealing with a dependent or an independent event.
The possibility or chance of an event occurring is measured by probability. It is a number between 0 and 1 (inclusive), where 0 denotes an impossibility and 1 denotes a certainty. By dividing the number of favorable outcomes by the total number of potential outcomes, the probability of an occurrence is determined. The field of mathematics known as probability studies the possibility that a certain event will take place. It is a way to quantify the possibility or likelihood that something will really happen.
For an independent event, assuming that the first draw had no bearing on the outcome of the second draw, in the case of an isolated occurrence, the chance of drawing a specific marble on the second draw would be the same as the likelihood of drawing that same marble on the first draw. For a dependent event, the outcome of the first draw would determine the possibility of drawing a specific marble on the second draw.
To learn more about probability, refer to:
https://brainly.com/question/13604758
#SPJ4
Two days later, Kelly surveyed the same 13 classmates and found that none of them had been given math homework since she last surveyed them.
By how much does the mean of Kelly’s second data set change in comparison with the mean of the data set in her original survey? Explain how to determine the change in the means without calculating the mean of either data set
The mean of Kelly's second data set doesn't change compared to the mean of her original survey because none of the classmates were given math homework.
To determine the change in the means without calculating the mean of either data set, you can compare the number of data points, the range, and any outliers. If the number of data points and the range are the same and there are no outliers, then the means will be the same.
In this case, since none of the classmates had math homework in both surveys, there are no changes in the data set, and the means remain the same. Therefore, there is no change in the mean of Kelly's second data set compared to her original survey.
To know more about data points click on below link:
https://brainly.com/question/17148634#
#SPJ11
Someone please help
(Composition of Transformations)
The image point of (6, 4) after the transformation R₉₀ T₁,₅ is (-3, 11).
Understanding the Composition of TransformationThe transformation R₉₀ T₁,₅ represents a rotation of 90° counterclockwise around the origin followed by a translation of 1 unit to the right and 5 units up.
To find the image point of (6, 4) under this transformation, we can apply the two transformations in order.
First, let's find the image of (6, 4) after rotating 90° counterclockwise around the origin.
Easy way to do this is by switching the x and y coordinates and negate the new x-coordinate. So, the image of (6, 4) after the rotation is (-4, 6).
Next, we apply the translation of 1 unit to the right and 5 units up. This moves the point (-4, 6) one unit to the right to get (-3, 6), and five units up to get the final image point:
Image point = (-3, 11)
Learn more about composition of transformation here:
https://brainly.com/question/27829109
#SPJ1
Find the indicated coefficients of the power series solution about x = O of the differential equation (x2 – x + 1)y' – y + 8y = 0, y(0) = 0, y(0) = 4 y = 4x+ 2 x²+ -4 23+ -44/9 24+ 1/6 5 + (326)
The indicated coefficients are:
[tex]c_2 = -(-2) = 2[/tex]
[tex]c_4 = 5/2[/tex]
[tex]c_5 = -22[/tex]
How to find the power series solution of the differential equation?To find the power series solution of the differential equation about x = 0, we assume that the solution has the form:
y(x) = ∑(n=0 to infinity) [tex]c_n x^n[/tex]
where [tex]c_n[/tex] are the coefficients of the power series.
Differentiating y(x), we get:
y'(x) = ∑(n=1 to infinity) [tex]n c_n x^{(n-1)}[/tex]
Next, we substitute y(x) and y'(x) into the differential equation:
([tex]x^2[/tex] - x + 1)y' - y + 8y = 0
([tex]x^2[/tex] - x + 1) ∑(n=1 to infinity)[tex]n c_n x^{(n-1)}[/tex] - ∑(n=0 to infinity)[tex]c_n x^n[/tex] + 8∑(n=0 to infinity)[tex]c_n x^n[/tex] = 0
Simplifying this expression and grouping the terms with the same power of x, we get:
∑(n=1 to infinity) [tex]n c_n x^n (x^2 - x + 1)[/tex]+ ∑(n=0 to infinity) [tex](8c_n - c_{(n+1)}) x^n[/tex] = 0
Since this equation holds for all values of x, we must have:
[tex]n c_n (n+1) - (n+2) c_(n+2) + 8c_n - c_(n+1) = 0[/tex]
for all n ≥ 0, where we have set [tex]c_{(-1){ = 0[/tex]and [tex]c_{(-2)}[/tex]= 0.
Using the initial conditions y(0) = 0 and y'(0) = 4, we have:
[tex]c_0 = 0[/tex]
[tex]c_1 = y'(0) = 4[/tex]
Substituting these values into the recurrence relation, we can recursively find the coefficients of the power series solution:
[tex]n = 0: 0 c_0 - 2 c_2 + 8 c_0 - c_1 = 0 = > c_2 = (4-8c_0+c_1)/(-2) = -2[/tex]
[tex]n = 1: 1 c_1 - 3 c_3 + 8 c_1 - c_2 = 0 = > c_3 = (9c_1-c_2)/3 = 6[/tex]
[tex]n = 2: 2 c_2 - 4 c_4 + 8 c_2 - c_3 = 0 = > c_4 = (10c_2-c_3)/(-4) = 5/2[/tex]
[tex]n = 3: 3 c_3 - 5 c_5 + 8 c_3 - c_4 = 0 = > c_5 = (11c_3-c_4)/5 = -22/15[/tex]
[tex]n = 4: 4 c_4 - 6 c_6 + 8 c_4 - c_5 = 0 = > c_6 = (9c_4-c_5)/(-6) = -64/45[/tex]
Hence, the power series solution of the differential equation about x=0 is:
[tex]y(x) = 4x + 2x^2 - 4x^3 + 23x^4 - 44/9 x^5 + 24/5 x^6 - 326/315 x^7 + ...[/tex]
Therefore, the indicated coefficients are:
[tex]c_2 = -(-2) = 2[/tex]
[tex]c_4 = 5/2[/tex]
[tex]c_5 = -22[/tex]
Learn more about power series
brainly.com/question/29896893
#SPJ11
express as a single simplified fraction. 3m^2-3n^2/m^2+mp divided by 6m-6n/p+m
The single simplified fraction is (m + n)(p + m) / 2m.
To simplify the expression
[tex](3m^2 - 3n^2) / (m^2 + mp)÷ (6m - 6n) / (p + m)[/tex]
we need to invert the second fraction and multiply by the first.
[tex](3m^2 - 3n^2) / (m^2 + mp) \times (p + m) / (6m - 6n)[/tex]
We can then factor out a 3 from the numerator and the denominator, and cancel out the (m - n) terms. 3(m + n)(m - n) / 3m(m - n) x (p + m) / 6(m - n)
Simplifying further, we can cancel out the 3's and the (m - n) terms. (m + n) / m x (p + m) / 2
The simplified expression is (m + n)(p + m) / 2m.
To simplify the given expression, we invert the second fraction and multiply it by the first. Then we factor out common terms and cancel out like terms. We simplify the expression to obtain the single fraction (m + n)(p + m) / 2m.
Learn more about fraction here:
https://brainly.com/question/10354322
#SPJ1
Norma and david crawled to the barn and then hopped back to the house. they crawled at 300 centimeters per minute and hopped at 400 centimeters per minute. if round took 7 minutes, hiw long did they crawl
Norma and David crawled for 37/7 minutes, or approximately 5.29 minutes.
Find time Norma and David spent crawling to barn if the round trip took 7 minutes. They crawled at 300 cm/min hopped back at 400 cm/min.Let x be the time (in minutes) that Norma and David spent crawling to the barn, and y be the time (in minutes) they spent hopping back to the house. We know that:
x + y = 7 (the total time they spent on the round trip was 7 minutes)
300x + 400y = distance to the barn and back (since their speeds are given in centimeters per minute, the product of their speeds and the time spent crawling or hopping gives the distance in centimeters)
We want to find x, the time they spent crawling to the barn. We can solve for x by rearranging the first equation as x = 7 - y, and substituting into the second equation:
300(7 - y) + 400y = distance to the barn and back
2100 - 300y + 400y = distance to the barn and back
100y = distance to the barn and back - 2100
y = (distance to the barn and back - 2100)/100
Now we need to find the distance to the barn and back. They crawled to the barn at 300 cm/min, so the distance they crawled is 300x cm. They hopped back to the house at 400 cm/min, so the distance they hopped is 400y cm. The total distance to the barn and back is:
distance to the barn and back = 300x + 400y
= 300x + 400[(distance to the barn and back - 2100)/100] (substituting the expression we found for y)
= 300x + 4(distance to the barn and back - 2100)
Simplifying and solving for distance to the barn and back, we get:
distance to the barn and back = 5400/7 cm
Finally, we can substitute this value into the expression we found for y, and solve for x:
y = (distance to the barn and back - 2100)/100
= (5400/7 - 2100)/100
= 24/7
x = 7 - y
= 7 - 24/7
= 37/7
Therefore, Norma and David crawled for 37/7 minutes, or approximately 5.29 minutes.
Learn more about centimeters
brainly.com/question/9133571
#SPJ11
Find the sum of the first 36 terms of the following series, to the nearest integer.
7,12,17....
To the nearest integer, the sum of the first 36 terms of the given series is 3,402.
Given series is 7, 12, 17,,,. we have to find the sum of the first 36 terms of the series.
We can observe that the series is an arithmetic sequence.
Here, [tex]a_{1}=7[/tex]
d = 12 - 7 = 5
and n = 36
We know that the formula for the nth term of A.P. is
[tex]a_{n}=a_{1}+(n-1)d[/tex]
[tex]a_{36}=7+(36-1)5[/tex]
= 7 + 35*5
= 7 + 175
[tex]a_{36}=182[/tex]
We know the sum of n terms in A.P. is
[tex]S_{n}=\frac{n}{2}(a_{n}+a_{1})[/tex]
[tex]S_{36}=\frac{36}{2}(7+182)[/tex]
= 18(189)
= 3,402
Hence, the sum of the first 36 terms of the given series is 3,402.
Learn more about sum of A.P. here
https://brainly.com/question/13098
#SPJ4
Find the sum of the geometric series for those x for which the series converges.
∑ -1^n((x-4)/6)^n
The sum of the geometric series for the converging x values in the range -2 < x < 10 is 3. Hi! I'd be happy to help you find the sum of the given geometric series.
The geometric series converges if the common ratio, r, satisfies |r| < 1. In this case, the common ratio r is ((x-4)/6). Thus, we need to find the x values for which:
-1 < (x-4)/6 < 1
Multiplying all sides by 6, we get:
-6 < x-4 < 6
Adding 4 to all sides, we find the range of x:
-2 < x < 10
Now that we have the range for which the series converges, we can find the sum of the series. The sum of an infinite geometric series is given by the formula:
S = a / (1 - r)
Here, 'a' is the first term, which is (-1)^0 * ((x-4)/6)^0 = 1, and 'r' is ((x-4)/6). Plugging in the values, we get:
S = 1 / (1 - (x-4)/6)
Simplifying the denominator, we get:
S = 1 / (2/6) = 1 / (1/3) = 3
So, the sum of the geometric series for the converging x values in the range -2 < x < 10 is 3.
Learn more about series here:
brainly.com/question/30098029
#SPJ11
Find the area of this triangle.
round to the nearest tenth.
7 in
133
13 in
[ ? ) in2
Area of triangle = 45.5 in square ≈ 45.5 (rounded to the nearest tenth).
How to find area of triangle?The area of a triangle given its base and height.
The formula for the area of a triangle is:
Area = (1/2) x base x height
In this formula, "base" refers to the length of the side of the triangle that is perpendicular to the height, and "height" refers to the length of the line segment that is perpendicular to the base and passes through the opposite vertex.
In the problem you provided, the base of the triangle is given as 13 inches, and the height is given as 7 inches. So we can plug these values into the formula:
Area = (1/2) x 13 in x 7 in
= 45.5 in square
The units for area are square units, so we write the answer as "inches squared" or "in square".
Finally, we are asked to round the answer to the nearest tenth. Since there is only one decimal place in the answer, the "tenth" place is the same as the "one" place. Therefore, we look at the digit in the "one" place (which is 5) and round up to the nearest whole number. This gives us:
Area of triangle ≈ 45.5 (rounded to the nearest tenth).
brainly.com/question/30327356
Learn more about Area
brainly.com/question/27683633
#SPJ11
An art teacher times his students, in minutes, to see how long it takes them to paint a 12-inch canvas. He makes a box plot for the data. Paint Times
10 15 20 25 30 35 40 45 50 55
How long could a student take to paint their canvas if they are slower than 75% of the other students? 15 minutes O 25 minutes O 40 minutes 0 46 minutes
To find the answer, we need to identify the quartiles of the data set and use them to construct the box plot.
First, we need to order the data set in increasing order:
10, 15, 20, 25, 30, 35, 40, 45, 50, 55
Next, we need to find the median (Q2) of the data set. Since we have an even number of data points, we take the average of the two middle values:
Q2 = (25 + 30) / 2 = 27.5
This value represents the median of the data set.
To find Q1 and Q3, we divide the data set into two halves:
10, 15, 20, 25, 30 | 35, 40, 45, 50, 55
Q1 is the median of the lower half:
Q1 = (15 + 20) / 2 = 17.5
Q3 is the median of the upper half:
Q3 = (45 + 50) / 2 = 47.5
We can now use this information to construct the box plot:
| -------
| /
| -------
| /
|-------
| 10 20 30 40 50
Q1 Q2 Q3
The box represents the middle 50% of the data (from Q1 to Q3), while the whiskers represent the minimum and maximum values that are not outliers.
Since we want to find the paint time for a student who is slower than 75% of the other students, we need to look at the upper quartile (Q3) of the data set. 75% of the data is contained between Q1 and Q3, so a student who is slower than 75% of the other students would have a paint time greater than Q3.
Therefore, the answer is 46 minutes, which is greater than Q3 (47.5 minutes).
To know more about median refer here
https://brainly.com/question/28060453#
#SPJ11
B. Constructing a parallel through a point (rhombus method) Steps: 1. Place the compasess on the point K and set it width to a little more than the distance to the PQ. The exact distance is not important. 2. Draw a wide arc from the right of K around so it crosses the PQ at two points. Label the left point J.
3. Without adjusting the opening of the compass, move the compass to J and draw an arc across the PQ Label this point E.
4. Without adjusting the span of the compass , move the compass to E and draw an arc across the large arc to the right of K. Label this point S.
5. Draw a straight line through points K and S.
6. Done. The KS is parallel to the PQ.
please paki sagot po.
The rhombus method is a useful technique for constructing parallel lines, especially in geometry problems where creating accurate drawings is essential.
Constructing a parallel line through a point using the rhombus method involves the following steps:
1. Place the compass on point K and set its width slightly more than the distance to line PQ. The exact distance is not crucial.
2. Draw a wide arc from the right of K, crossing line PQ at two points. Label the left point J.
3. Without adjusting the compass opening, move the compass to point J and draw an arc across line PQ. Label this point E.
4. Keeping the compass width unchanged, move the compass to point E and draw an arc across the large arc to the right of K. Label this point S.
5. Draw a straight line through points K and S.
6. The line KS is now parallel to line PQ, as desired.
The rhombus method is a useful technique for constructing parallel lines, especially in geometry problems where creating accurate drawings is essential. The process relies on the compass's fixed width to ensure the angles and distances remain consistent, resulting in parallel lines.
To know more about rhombus, refer to the link below:
https://brainly.com/question/30577072#
#SPJ11
The distance between san antonio and houston is 190 miles. nicholas and rose each drove 2/5 of the total distance. if charlie drove the rest of the distance, how many miles did charlie drive?
Charlie drove 90 miles between San Antonio and Houston.
Nicholas and Rose each drove 2/5 of the total distance (190 miles). To find the distance they drove together, multiply 190 miles by 2/5 twice (once for each person):
190 x (2/5) = 76 miles (Nicholas)
190 x (2/5) = 76 miles (Rose)
Together, Nicholas and Rose drove 76 + 76 = 152 miles. To find the remaining distance Charlie drove, subtract this combined distance from the total distance:
190 miles (total) - 152 miles (Nicholas and Rose) = 38 miles (Charlie).
Charlie drove 90 miles between San Antonio and Houston, as Nicholas and Rose each drove 2/5 of the total 190-mile distance, resulting in 152 miles combined, leaving 38 miles for Charlie to cover.
To know more about combined distance click on below link:
https://brainly.com/question/12811126#
#SPJ11
Janelle has to solve this system of equations: 3x+5y=7 3x+5y=-4
She says, "I can tell just by looking that this system will have no solutions." What does she mean? How can she tell?
The system has no solution because the equations are parallel
What does she mean and How can she tell?Janelle is correct in saying that the system of equations has no solution. She can tell by looking at the coefficients of the variables in the two equations.
Both equations have the same coefficients for x and y, which means that they are parallel lines in the xy-plane.
Since parallel lines never intersect, there are no values of x and y that would satisfy both equations simultaneously, meaning that the system has no solution.
Read more about system of equations at
https://brainly.com/question/13729904
#SPJ1
Find the global minimum and maximum of the continuous F(x) = ×2 - 8 In(x) on [1, 4].
Global minimum value = ______
Global maximum value =______
F(4) = 16 - 8 In(4) = 8 - 4 In(2)
So the global minimum value is F(2) ≈ -2.6137 and the global maximum value is F(1) = 1 (since F(4) is not greater than 1).
To find the global minimum and maximum of the continuous function F(x) = x^2 - 8 In(x) on the interval [1, 4], we need to find the critical points of the function and evaluate the function at those points and at the endpoints of the interval.
First, we take the derivative of the function:
F'(x) = 2x - 8/x
Setting F'(x) = 0, we get:
2x - 8/x = 0
Multiplying both sides by x, we get:
2x^2 - 8 = 0
Dividing both sides by 2, we get:
x^2 - 4 = 0
Factoring, we get:
(x + 2)(x - 2) = 0
So the critical points are x = -2 and x = 2. However, x = -2 is not in the interval [1, 4], so we only need to consider x = 2.
Now we evaluate the function at the critical point and the endpoints of the interval:
F(1) = 1 - 8 In(1) = 1
F(2) = 4 - 8 In(2) ≈ -2.6137
F(4) = 16 - 8 In(4) = 8 - 4 In(2)
So the global minimum value is F(2) ≈ -2.6137 and the global maximum value is F(1) = 1 (since F(4) is not greater than 1).
Learn more about critical points here:
https://brainly.com/question/31017064
#SPJ11