The sun's intensity at the distance of the earth is 1370 W/m² 30% of this energy is reflected by water and clouds; 70% is absorbed. What would be the earth's average temperature (in °C) if the earth had no atmosphere? The emissivity of the surface is very close to 1. (The actual average temperature of the earth, about 15 °C, is higher than your calculation because of the greenhouse effect.)

Answers

Answer 1

The question requires the calculation of the Earth's average temperature in °C if the earth had no atmosphere given the following information.

Sun's intensity at the distance of the earth is 1370 W/m².

30% of this energy is reflected by water and clouds;

70% is absorbed.

The emissivity of the surface is very close to 1. The actual average temperature of the earth, about 15 °C, is higher than the calculation because of the greenhouse effect.

Calculation of Earth's temperature:

The formula to determine the temperature is given by P = e σ A T⁴. Here,

P is the power received by the Earth from the Sun.

A is the surface area of the Earth,

T is the temperature in kelvin,

e is the emissivity of the surface,

σ is the Stefan-Boltzmann constant, and the remaining terms have the usual meanings.

Substituting the values in the formula,

P = (1 - 0.30) × 1370 W/m² × 4π (6,371 km)²

= 9.04 × 10¹⁴ Wσ

= 5.67 × 10⁻⁸ W/m² K⁴A

= 4π (6,371 km)²

= 5.10 × 10¹⁴ m²e = 1

Hence, the formula now becomes

9.04 × 10¹⁴ = 1 × 5.67 × 10⁻⁸ × 5.10 × 10¹⁴ × T⁴

⇒ T⁴ = 2.0019 × 10⁴

⇒ T = 231.02

K= -42.13°C

Answer: The Earth's average temperature would be -42.13°C.

Learn more about green house effect here

https://brainly.com/question/17023405

#SPJ11


Related Questions

Given the following sequences x₁=[1230] X2 [1321] Manually compute y,[n] = x₁ [n]circularly convolved with x₂ [n] Show all work. Hint for consistency make x₁ the outer circle in ccw direction.

Answers

We can say that the circular convolution of x₁ and x₂ is y = [14 14 11 11].

Given the sequences x₁ = [1230] and x₂ = [1321], you are required to manually compute y[n] = x₁[n] circularly convolved with x₂[n] and show all work. The hint suggests that we should make x₁ the outer circle in the ccw direction.

Let us first consider the sequence x₁ = [1230]. We can represent this sequence in a circular form as follows:1   2   3   0

As per the given hint, this is the outer circle, and we need to move in the ccw direction. Now, let us consider the sequence x₂ = [1321]. We can represent this sequence in a circular form as follows:

1   3   2   1

As per the given hint, this is the inner circle. Now, let us write the circular convolution of x₁ and x₂ using the equation for circular convolution:

y[n] = ∑k=0N-1 x₁[k] x₂[(n-k) mod N]

where N is the length of the sequences x₁ and x₂, which is 4 in this case.

Substituting the values of x₁ and x₂ in the above equation, we get:

y[0] = (1×1) + (2×2) + (3×3) + (0×1) = 14y[1] = (0×1) + (1×1) + (2×2) + (3×3) = 14y[2] = (3×1) + (0×1) + (1×2) + (2×3) = 11y[3] = (2×1) + (3×1) + (0×2) + (1×3) = 11

Therefore, the sequence y = [14 14 11 11].

Hence, we can say that the circular convolution of x₁ and x₂ is y = [14 14 11 11].

Learn more about circular convolution at: https://brainly.com/question/31397087

#SPJ11

A red ball is thrown downwards with a large starting velocity. A blue ball is dropped from rest at the same time as the red ball. Which ball will reach the ground first?multiple choicethe blue ballthe red ballboth balls will reach the ground at the same time. It is impossible to determine without the mass of the balls

Answers

Answer:

Both balls will reach the ground at the same time

Explanation:

That is because the acceleration due to gravity of both balls are same.

A "U" shaped tube (with a constant radius) is filled with water and oil as shown. The water is a height h₁ = 0.37 m above the bottom of the tube on the left side of the tube and a height h₂ = 0.12 m above the bottom of the tube on the right side of the tube. The oil is a height h₃ = 0.3 m above the water. Around the tube the atmospheric pressure is PA = 101300 Pa. Water has a density of 10³ kg/m³. What is the absolute pressure in the water at the bottom of the tube? _____________ Pa

Answers

The absolute pressure in the water at the bottom of a U-shaped tube filled with water and oil was found using the hydrostatic equation. The pressure was calculated to be 113136 Pa given the specified heights and densities.

We can find the absolute pressure in the water at the bottom of the tube by applying the hydrostatic equation:

P = ρgh + P0

where P is the absolute pressure, ρ is the density of the fluid, g is the acceleration due to gravity, h is the height of the fluid column, and P0 is the atmospheric pressure.

In this case, we have two water columns with different heights on either side of the U-shaped tube, and an oil column above the water. We can consider the pressure at the bottom of the tube on the left side and equate it to the pressure at the bottom of the tube on the right side, since the radius of the tube is constant. This gives us:

ρgh₁ + ρgh₃ + P0 = ρgh₂ + P0

Simplifying, we get:

ρg(h₁ - h₂) = ρgh₃

Substituting the given values, we get:

(10³ kg/m³)(9.81 m/s²)(0.37 m - 0.12 m) = (10³ kg/m³)(9.81 m/s²)(0.3 m)

Solving for P, we get:

P = ρgh + P0 = (10³ kg/m³)(9.81 m/s²)(0.12 m) + 101300 Pa = 113136 Pa

Therefore, the absolute pressure in the water at the bottom of the tube is 113136 Pa.

To know more about absolute pressure, visit:
brainly.com/question/13390708
#SPJ11

When a bar magnet is placed static near a loop of wire, a magnetic field will the loop. A. moves B. induce C. change D. penetrates A device that converts mechanical energy into electrical energy is A. Motor B. Generator C. Loudspeaker D. Galvanometer

Answers

When a bar magnet is placed near a loop of wire, it induces a magnetic field in the loop. A device that converts mechanical energy into electrical energy is a generator.

When a bar magnet is placed near a loop of wire, it induces a magnetic field in the loop. This phenomenon is known as electromagnetic induction. As the magnetic field of the bar magnet changes, it creates a changing magnetic flux through the loop, which in turn induces an electromotive force (EMF) and an electric current in the wire. This process is the basis of how generators and other electrical devices work. Therefore, the correct answer is B. induce.

A device that converts mechanical energy into electrical energy is a generator. A generator utilizes the principle of electromagnetic induction to convert mechanical energy, such as rotational motion, into electrical energy. It consists of a coil of wire that rotates within a magnetic field. As the coil rotates, the magnetic field induces a changing magnetic flux through the coil, which generates an EMF and produces an electric current. This electric current can be used to power electrical devices or charge batteries. Therefore, the correct answer is B. Generator.

Learn more about magnetic fields here:

https://brainly.com/question/19542022

#SPJ11

The figure below shows a bird feeder that weighs 129.9 N. The feeder is supported by a vertical wire, which is in turn tied to two wires, each of which is attached to a horizontal support. The Ieft wire makes a 60 ∘
angle with the support, while the right wire makes a 30 ∘
angle. What is the tension in each wire (in N)? Consider the figure below. (1) (a) Find the tension in each cable supporting the 517−N cat burolar. (Assume the anole θ of the inclined cable is 31.0 ∘
) inclined cable horizontal cable Your response differ from the correct anower by more than 10%. Doutie ched your calculations. N vertical cable N (b) Suppose the horizontal cable were reattached hipher up on the wall. Would the tension in the indined cable increase, decrea or stay the same?

Answers

a) The free-body diagram of the bird feeder is shown below.

Bird feeder free-body diagram

Thus, the equation of forces in the horizontal direction is

T (left) cos60° + T (right) cos30°

= 0.5T (left) + 0.866T (right) = 0 ..... (1)

The vertical forces equation is

N - 129.9 N - T (left) sin60° - T (right) sin30° = 0

N = 129.9 N + 0.5T (left) + 0.5T (right) ..... (2)

From equation (1)

T (left) = -1.732T (right)

Substitute the above relation in equation (2)

N = 129.9 N + 0.5(-1.732T (right)) + 0.5T (right)

Simplifying, we get

 N = 129.9 N - 0.866T (right) 

⇒ T (right) = (129.9 N - N)/0.866 

⇒ T (right) = 31.22 NT (left)

                 = -1.732T (right) 

                  = -1.732(31.22 N)

                  = -54.04 N

b) The tension in the inclined cable will increase. This is because when the horizontal cable is moved higher up on the wall, the angle made by the inclined cable will increase, which results in an increase in the weight component in the inclined cable.

Thus, the tension will increase.

Learn more about  tension here

https://brainly.in/question/1958326

#SPJ11

Two long parallel wires, each carrying a current of 5 A, lie a distance 5 cm from each other. (a) What is the magnetic force per unit length exerted by one wire on the other? N/m

Answers

The magnetic force per unit length exerted by one wire on the other is 2 × 10⁻⁵ N/m.

The magnetic force per unit length exerted by one wire on the other can be calculated using the formula given below:

F = μ0 I1 I2 / 2πr

Where,I1 and I2 are the currents, μ0 is the magnetic constant and r is the distance between the two wires.

Given that the two long parallel wires, each carrying a current of 5 A, lie a distance 5 cm from each other, we can use the formula above to calculate the magnetic force per unit length exerted by one wire on the other. Substituting the given values, we get:F = (4π × 10⁻⁷ Tm/A) × (5 A)² / 2π(0.05 m) = 2 × 10⁻⁵ N/m

Learn more about magnetic force:

https://brainly.com/question/26257705

#SPJ11

A planet with a mass of 2.7 x 1022 kg is in a circular orbit around a star with a mass of 5.3 x 1032 kg. If the planet has an orbital radius of 4.8 x 10 m, what is its orbital period? (Universal gravitation constant, G = 6.67. 10-11 m kg 15-2) 23. A 0.05 kg softball was bounced on the sidewalk. The velocity change of the ball is from 30 m/s downward to 20 m/s upward. If the contact time with the sidewalk is 1.25 ms. a) What is momentum change of the ball? b) What is the magnitude of the average force exerted on the ball by the sidewalk? 24. A rocket explodes into four pieces of equal mass. Immediately after the explosion their velocities are (120 m/s, cast), (150 m/s, west), (80 m/s, south), and (150 m/s north). What was the velocity of the rocket's center of mass before the explosion? 0° Use Directions are 90° for east, 180° for south, 270° for west, and 360° for north. 270° 90° 180°

Answers

The orbital period of the planet is approximately 1.2411 x 10^6 seconds.

The orbital period of a planet can be calculated using the formula T = 2π√(r³/GM), where T is the orbital period, r is the orbital radius, G is the universal gravitation constant, and M is the mass of the central star. In this case, with a planet mass of 2.7 x 10^22 kg, a star mass of 5.3 x 10^32 kg, and an orbital radius of 4.8 x 10^10 m, the orbital period of the planet can be determined.

To calculate the orbital period, we can use Kepler's third law, which relates the orbital period to the radius and mass of the central object. The formula for orbital period, T, is given by T = 2π√(r³/GM), where r is the orbital radius, G is the universal gravitation constant (6.67 x 10^-11 m^3 kg^-1 s^-2), and M is the mass of the central star.

Plugging in the given values, we have T = 2π√((4.8 x 10^10)^3 / (6.67 x 10^-11) (5.3 x 10^32 + 2.7 x 10^22)).

Simplifying the expression inside the square root, we get T ≈ 2π√(1.3824 x 10^33 / 3.53671 x 10^22).

Further simplifying, T ≈ 2π√(3.9117 x 10^10), which gives T ≈ 2π(1.9778 x 10^5) ≈ 1.2411 x 10^6 seconds.

Learn more about Kepler's third law:

https://brainly.com/question/30404084

#SPJ11

1. A sphere made of wood has a density of 0.830 g/cm³ and a radius of 8.00 cm. It falls through air of density 1.20 kg/m³ and has a drag coefficient of 0.500. What is its terminal speed (in m/s)?
2. From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance?

Answers

The height from which the sphere must be dropped without air resistance to reach a speed of 3.89 m/s is 0.755 m.

Density of sphere (ρs) = 0.830 g/cm³

Radius of sphere (r) = 8.00 cm

Air density (ρa) = 1.20 kg/m³

Drag coefficient (Cd) = 0.500

The terminal speed of a sphere is the constant speed that it attains when the force due to the air resistance becomes equal and opposite to the gravitational force acting on it.

So, the following formula can be used:

mg - (1/2)CdρAv² = 0

where,

m is the mass of the sphere.

g is the acceleration due to gravity.

ρ is the air density.

A is the area of the cross-section of the sphere facing the direction of motion.

v is the terminal speed of the sphere.

In order to calculate the terminal speed of the sphere, we need to calculate the mass and the cross-sectional area of the sphere. We can use the given density and radius to calculate the mass of the sphere as follows:

Volume of sphere = (4/3)πr³

Mass of sphere = Density x Volume= 0.830 g/cm³ x (4/3)π x (8.00 cm)³= 1432.0 g

The area of the cross-section of the sphere can be calculated as follows:

Area of circle = πr²

Area of sphere = 4 x Area of circle= 4πr²= 4π(8.00 cm)²= 804.25 cm²= 0.080425 m²

Substituting the given values in the above formula, we get:

mg - (1/2)CdρAv² = 0v = √[2mg/(CdρA)]

Substituting the values, we get:

v = √[2 x 0.001432 kg x 9.81 m/s² / (0.500 x 1.20 kg/m³ x 0.080425 m²)]

v = 3.89 m/s

Therefore, the terminal speed of the sphere is 3.89 m/s.

Now, let's calculate the height from which the sphere must be dropped to reach this speed without air resistance. We can use the following formula:

mgΔh = (1/2)mv²

where,

Δh is the height from which the sphere must be dropped without air resistance.

The mass of the sphere is given as 0.001432 kg.

We can use this to find the height as follows:

Δh = v²/(2g)

Δh = (3.89 m/s)² / (2 x 9.81 m/s²)

Δh = 0.755 m

Therefore, the height from which the sphere must be dropped without air resistance to reach a speed of 3.89 m/s is 0.755 m.

Learn more about density:

https://brainly.com/question/952755

#SPJ11

A solid uniform disk of mass Md and radius Rd and a uniform hoop of mass Mh and radius
Rh are released from rest at the same height on an inclined plane. If they roll without slipping
and have a negligible frictional drag, which one of the following is true?
A. They will reach the bottom simultaneously
B. the disk will reach the bottom first
C. The hoop will reach the bottom first
D. the one with the smaller radius will reach the bottom first
E. insufficient information has been given to predict this

Answers

A solid uniform disk of mass Md and radius Rd and a uniform hoop of mass Mh and radius Rh are released from rest at the same height on an inclined plane. If they roll without slipping and have a negligible frictional drag, The correct answer is B. The disk will reach the bottom first.

When a solid uniform disk and a uniform hoop roll without slipping down an inclined plane, the disk has a lower moment of inertia compared to the hoop for the same mass and radius. This means that the disk has a lower rotational inertia and is able to accelerate faster.

Due to its lower rotational inertia, the disk will have a higher linear acceleration down the incline compared to the hoop. As a result, the disk will reach the bottom of the incline first.

To know more about inclined plane

https://brainly.com/question/29360090

#SPJ11

What is the frequency of a sound wave with a wavelength of 5.0 m if its 5 peed is 330 m/5 ? Select one: a. 330 Hz b. 5.0 Hz c. 33 Hz d. 66 Hz Sound is a(an) Wave. Select one: a. electromagnetic b. tongitudinal c. matter d. transverse

Answers

The frequency of a sound wave with a wavelength of 5.0 m and a speed of 330 m/s is 66 Hz(option d).

Sound is a longitudinal wave (option b).

The formula to calculate the frequency of a wave is:

[tex]\[ f = \frac{v}{\lambda} \][/tex]

where f is the frequency, v is the speed of the wave, and[tex]\( \lambda \)[/tex]is the wavelength. Given that the wavelength is 5.0 m and the speed is 330 m/s, we can substitute these values into the formula:

[tex]\[ f = \frac{330 \, \text{m/s}}{5.0 \, \text{m}} = 66 \, \text{Hz} \][/tex]

Therefore, the frequency of the sound wave is 66 Hz.

Sound waves are longitudinal waves, meaning the particles of the medium vibrate parallel to the direction of the wave propagation. Unlike electromagnetic waves, which can travel through a vacuum, sound waves require a medium (such as air, water, or solids) to propagate. Thus, sound is not an electromagnetic wave.

Learn more about frequency here:

https://brainly.com/question/31938473

#SPJ11

A spaceship whose rest length is 452 m has a speed of 0.86c with respect to a certain reference frame. A micrometeorite, also with a speed of 0.86c in this frame, passes the spaceship on an antiparallel track. How long does it take this object to pass the spaceship as measured on the ship? Number Units

Answers

A spaceship whose rest length is 452 m has a speed of 0.86c with respect to a certain reference frame. it takes approximately 234.09 meters of distance for the micrometeorite to pass the spaceship as measured on the ship.

To determine the time it takes for the micrometeorite to pass the spaceship as measured on the ship, we can use the concept of time dilation from special relativity.

The time dilation formula is given by: Δt' = Δt / γ, where Δt' is the time interval measured on the moving spaceship, Δt is the time interval measured in the rest frame (reference frame), and γ is the Lorentz factor.

In this case, both the spaceship and the micrometeorite have a speed of 0.86c relative to the reference frame. The Lorentz factor can be calculated using the formula: γ = 1 / sqrt(1 - (v^2 / c^2)), where v is the velocity of the objects relative to the reference frame and c is the speed of light.

Plugging in the values, we have: γ = 1 / sqrt(1 - (0.86c)^2 / c^2) ≈ 1.932.

Since the rest length of the spaceship is given as 452 m, the time it takes for the micrometeorite to pass the spaceship as measured on the ship is: Δt' = Δt / γ = 452 m / 1.932 ≈ 234.09 m.

Therefore, it takes approximately 234.09 meters of distance for the micrometeorite to pass the spaceship as measured on the ship.

Learn more about time dilation here:

https://brainly.com/question/30493090

#SPJ11

A metal cylindrical wire of radius of 1.2 mm and length 4.2 m has a resistance of 42 Ω. What is the resistance of a wire made of the same metal that has a square crosssectional area of sides 3.1 mm and length 4.2 m ? (in Ohms)

Answers

The resistance of the wire having square cross-sectional area is 19.78 Ω.

The resistance of the wire having square cross-sectional area can be determined using the given formula; Resistance = resistivity * (length / area)Where; resistivity = resistivity of the material,length = length of the wire,area = area of cross-sectional of the wire

The formula shows that resistance is inversely proportional to area. Therefore, an increase in area would result in a decrease in resistance.The resistance of the cylindrical wire is given as 42 Ω, and the radius of the wire is 1.2 mm.The cross-sectional area of the cylindrical wire can be given as:

Area of circle = [tex]\pi r^2\pi[/tex]= 22/7r = 1.2 [tex]mm^2[/tex]

The area of cross-sectional of the cylindrical wire is given by:Area = [tex]πr^2[/tex]

Area = 22/7[tex](1.2)^2[/tex]

Area = 4.523 [tex]mm^2[/tex]

The cross-sectional area of the wire with the square cross-sectional area of sides 3.1 mm is given as; Area = [tex]a^2[/tex]

Area = [tex](3.1)^2[/tex]

Area = 9.61[tex]mm^2[/tex]

The resistivity of the material in both cases is the same; therefore, it is a constant. Hence, we can equate the two formulas;R₁ = R₂(l₁ / A₁)(A₂ / l₂)

We know that R₁ = 42 Ω,l₁ = l₂ = 4.2 m,A₁ = 4.523[tex]mm^2[/tex],A₂ = 9.61[tex]mm^2[/tex]

R₂ = R₁ (A₁ / A₂)R₂ = 42(4.523 / 9.61)R₂ = 19.78 Ω

Therefore, the resistance of the wire having square cross-sectional area is 19.78 Ω.

Learn more about resistance here:

https://brainly.com/question/29427458


#SPJ11

. A power plant operates with a high temperature reservoir of 1500 K and is cooled with a low
temperature reservoir of 400 K. What is the ideal efficiency of the power plant? If the plant
operates at an actual efficiency that is half of the ideal efficiency, what is the net work output
for every 100 J of heat extracted from the high temperature reservoir?

Answers

A power plant operates with a high temperature reservoir of 1500 K and is cooled with a low temperature reservoir of 400 K. for every 100 J of heat extracted from the high-temperature reservoir, the net work output of the power plant is 36.65 J.

The ideal efficiency of a power plant operating between two temperature reservoirs can be calculated using the Carnot efficiency formula:

Efficiency = 1 - (T_low / T_high)

Where T_low is the temperature of the low-temperature reservoir and T_high is the temperature of the high-temperature reservoir.

In this case, T_low = 400 K and T_high = 1500 K, so the ideal efficiency is:

Efficiency = 1 - (400 K / 1500 K)

          = 1 - 0.267

          = 0.733 or 73.3%

The actual efficiency of the power plant is given to be half of the ideal efficiency, so the actual efficiency is:

Actual Efficiency = 0.5 * 0.733

                 = 0.3665 or 36.65%

To calculate the net work output for every 100 J of heat extracted from the high-temperature reservoir, we can use the relationship between efficiency and work output:

Efficiency = Work output / Heat input

Rearranging the equation, we have:

Work output = Efficiency * Heat input

Given that the heat input is 100 J, and the actual efficiency is 36.65%, we can calculate the net work output:

Work output = 0.3665 * 100 J

           = 36.65 J

Therefore, for every 100 J of heat extracted from the high-temperature reservoir, the net work output of the power plant is 36.65 J.

Learn more about Carnot efficiency here:

https://brainly.com/question/28174226

#SPJ11

The position of an object that is oscillating on a spring is given by the equation x = (0.232 m) cos[(2.81 s⁻¹)t]. If the force constant (spring constant) is 29.8 N/m, what is the potential energy stored in the mass-spring system when t = 1.42 s?
a. 0.350 J
b. 0.256 J
c. 0.329 J
d. 0.399 J
e. 0.798 J

Answers

At a time of t = 1.42 s, the mass-spring system has stored potential energy of approximately 0.350 J.

The given equation is:

x = (0.232 m)cos(2.81t)

We can notice from the above equation that the motion of the mass is periodic and oscillatory. The mass repeats the same motion after a fixed time period.

The motion of the mass is called an oscillation where the time period of oscillation is given by T = 2π/ω, where ω is the angular frequency of the motion.

ω = 2πf = 2π/T

Where f is the frequency of oscillation and has the unit Hertz (Hz) and f = 1/T.

ω = 2π/T = 2πf = √(k/m)

Thus, the potential energy stored in a spring is given as

U = 1/2 kx²

At the time t = 1.42 s, the position of an object that is oscillating on a spring is given by

x = (0.232 m)cos(2.81 × 1.42)≈ 0.22 m

Given:Spring constant k = 29.8 N/m

The expression for potential energy stored in a spring is defined as follows:

U = 1/2 kx² = 1/2 × 29.8 × (0.22)² ≈ 0.350 J

At a time of t = 1.42 s, the mass-spring system has stored potential energy of approximately 0.350 J.

Therefore, the correct option is a. 0.350 J.

Learn more about energy at: https://brainly.com/question/2003548

#SPJ11

If a 0.3% decrease in the price of a good causes its quantity supplied to decrease by 1%, then the supply is: A. Unit elastic B. Elastic C. Inelastic D. Perfectly inelastic

Answers

If a 0.3% decrease in the price of a good causes its quantity supplied to decrease by 1%, then the supply is C. Inelastic.

In this scenario, the supply of the good is considered inelastic. The elasticity of supply measures the responsiveness of the quantity supplied to changes in price. When the price of a good decreases, and the quantity supplied decreases by a larger percentage, it indicates that the supply is relatively unresponsive to price changes.

To determine the elasticity of supply, we compare the percentage change in quantity supplied to the percentage change in price. In this case, a 0.3% decrease in price results in a 1% decrease in the quantity supplied. Since the percentage change in quantity supplied (1%) is greater than the percentage change in price (0.3%), the supply is considered inelastic.

Inelastic supply means that producers are less responsive to price changes, and a small change in price leads to a proportionally smaller change in quantity supplied. In such cases, producers may find it challenging to adjust their output levels quickly in response to price fluctuations.

To know more about Inelastic click here:

https://brainly.com/question/30103518

#SPJ11

a 380-kg piano slides 2.9 m down a 25 degree incline and it kept from accelerating by a man who is pushing back on it parallel to the incline. Determine (a) the force exerted by the man, (b) the work done on the piano by the man, (c) the work done on the the piano by the force of gravity, (d) the net work done on the piano. Ignore friction.

Answers

a) The force exerted by the man is approximately 1608.86 N.

b) The work done on the piano by the man is approximately 4662.34 Joules.

c) The work done on the piano by the force of gravity is approximately 7210.18 Joules.

d) The net work done on the piano is approximately 11872.52 Joules.

To solve this problem, we'll need to consider the forces acting on the piano and the work done by each force.

Mass of the piano (m): 380 kg

Distance traveled down the incline (d): 2.9 m

Incline angle (θ): 25 degrees

Acceleration due to gravity (g): 9.8 m/s²

(a) The force exerted by the man:

The force exerted by the man is equal in magnitude and opposite in direction to the force of gravity component parallel to the incline. This force is given by:

F_man = m * g * sin(θ)

Substituting the values:

F_man = 380 kg * 9.8 m/s² * sin(25°)

F_man ≈ 1608.86 N

(b) The work done on the piano by the man:

The work done by a force is given by the equation:

Work = Force * Distance * cos(θ)

Since the force exerted by the man is parallel to the displacement, the angle between the force and displacement is 0 degrees, and the cos(0°) = 1. Therefore, the work done by the man is:

Work_man = F_man * d

Substituting the values:

Work_man = 1608.86 N * 2.9 m

Work_man ≈ 4662.34 J

(c) The work done on the piano by the force of gravity:

The force of gravity acting on the piano has a component parallel to the incline, given by:

F_gravity_parallel = m * g * sin(θ)

The work done by the force of gravity is:

Work_gravity = F_gravity_parallel * d

Substituting the values:

Work_gravity = 380 kg * 9.8 m/s² * sin(25°) * 2.9 m

Work_gravity ≈ 7210.18 J

(d) The net work done on the piano:

The net work done on an object is the sum of the work done by all the forces acting on it. In this case, since there are only two forces (force exerted by the man and force of gravity), the net work done on the piano is:

Net work = Work_man + Work_gravity

Substituting the values:

Net work = 4662.34 J + 7210.18 J

Net work ≈ 11872.52 J

To know more about gravity

https://brainly.com/question/31321801

#SPJ11

power systems Q2
QUESTION 6 (a) Define the following terms. (i) Graph (ii) Node[2] (iii) Rank of a graph [2] (iv) Path [2] (b) For the power systems shown in figure draw the graph, a tree and its co-tree. Figure 6 [2]

Answers

The drawing of the graph, tree, and co-tree should accurately represent the given power systems and their interconnections. (a) In this question, you are required to define the following terms:(i) Graph(ii) Node(iii) Rank of a graph(iv) Path

(b) You need to draw the graph, a tree, and its co-tree for the power systems shown in Figure 6.(a) To answer part (a) of the question, you need to provide concise definitions for each of the terms:

(i) Graph: A graph is a collection of vertices or nodes connected by edges or arcs. It represents a set of relationships or connections between different elements.

(ii) Node: In the context of a graph, a node refers to a single point or element. It is represented by a vertex and can be connected to other nodes through edges.

(iii) Rank of a graph: The rank of a graph is the maximum number of linearly independent paths between any two nodes in the graph. It determines the connectivity and complexity of the graph.

(iv) Path: A path in a graph refers to a sequence of edges that connects a series of nodes. It represents a route or a connection between two nodes.

(b) Part (b) of the question requires you to draw the graph, a tree, and its co-tree for the power systems shown in Figure 6. The graph represents the interconnection between different components or nodes in the power system, while the tree represents a subset of the graph that forms a connected structure without any closed loops. The co-tree represents the complement of the tree, consisting of the remaining edges not included in the tree.

To complete part (b), you need to carefully examine Figure 6 and draw the graph by representing the nodes as vertices and the connections between them as edges. Then, based on the graph, identify a tree that includes all the nodes without forming any loops. Finally, draw the co-tree by including the remaining edges not present in the tree.

Learn more about vertex here:- brainly.com/question/32432204

#SPJ11

Body is moving with speed of 40km/ m one sec later its is moving at 58 km/h find its acceleration

Answers

To find the acceleration of an object, we need information about its initial and final speeds, as well as the time taken. In this case, we have the initial and final speeds but not the time interval. Without the time, we cannot calculate the acceleration accurately.

Acceleration is defined as the change in velocity divided by the time taken. Since we have the change in speed (40 km/h to 58 km/h), we can determine the acceleration if we know the time interval. Could you please provide the time interval during which the speed changed from 40 km/h to 58 km/h?

about the energies of the system when the mass M is at points A and D?
Group of answer choices
The system has spring potential energy when the mass is at A that is equal to the kinetic energy it has when the mass is at D
The system has spring potential energy when the mass is at A that is greater than the gravitational potential energy it has when the mass is at D
The system has spring potential energy when the mass is at A that is equal to the gravitational potential energy it has when the mass is at D
The system has kinetic energy when the mass is at A that is equal to the gravitational potential energy it has when the mass is at D

Answers

When the mass M is at points A and D in the system, the potential and kinetic energies vary. The correct statement regarding the energies of the system is that it has spring potential energy when the mass is at A that is equal to the gravitational potential energy it has when the mass is at D.

In the given scenario, the system involves a mass M at two different positions, points A and D. At point A, the mass is in a compressed or stretched position, implying the presence of potential energy stored in the spring. This potential energy is known as spring potential energy.

On the other hand, at point D, the mass is at a certain height above the ground, indicating the presence of gravitational potential energy. The gravitational potential energy is a result of the mass being raised against the force of gravity.

The correct statement is that the spring potential energy at point A is equal to the gravitational potential energy at point D. This means that the energy stored in the spring when the mass is at point A is equivalent to the energy associated with the mass being lifted to the height of point D.

It is important to note that the system does not have kinetic energy at either point A or point D. Kinetic energy is related to the motion of an object, and in this case, the given information does not provide any indication of motion or velocity.

Learn more about potential energy here:

https://brainly.com/question/29510087

#SPJ11

An alien spaceship, moving at constant velocity, traverses the solar system (a distance of 10.50 light-hours) in 15.75 hr as measured by an observer on Earth. Calculate the speed of the ship (as measured by an observer on Earth), and the time interval that an observer on the ship measures for the trip. A. v = 0.500c, At' = 11.7 hr B. v = 0.667c, At' = 11.7 hr C. v = 0.887c, At = 21.1 hr D. v = 0.995c, Ať = 21.1 hr E. None of the above

Answers

Correct option is B. The speed of the alien spaceship, as measured by an observer on Earth, is approximately 0.667 times the speed of light (c). The time interval that an observer on the ship measures for the trip is approximately 11.7 hours.

In order to calculate the speed of the spaceship, we can use the formula v = d/t, where v is the velocity, d is the distance, and t is the time. In this case, the distance is 10.50 light-hours and the time is 15.75 hours. Plugging in these values, we get v = 10.50 light-hours / 15.75 hours = 0.667 times c.

To find the time interval that an observer on the spaceship measures for the trip, we can use the time dilation formula t' = t / √(1 - (v^2/c^2)), where t' is the time interval as measured on the spaceship, t is the time interval as measured on Earth, v is the velocity of the spaceship, and c is the speed of light. Plugging in the values we have, t = 15.75 hours and v = 0.667 times c, we can calculate t' = 15.75 hours / √(1 - (0.667^2)) = 11.7 hours.

Therefore, the correct answer is B. The speed of the ship, as measured by an observer on Earth, is approximately 0.667c, and the time interval that an observer on the ship measures for the trip is approximately 11.7 hours.

Learn more about speed of light here:

https://brainly.com/question/28224010

#SPJ11

A 20.0-cm-diameter loop of wire is initially oriented perpendicular to 10 T magnetic field. The loop is rotated so that its plane is parallel to the field direction in 0.2 s. What is the average induced emf in the loop?

Answers

The average induced EMF in the loop is -314 V. Note that the negative sign indicates that the induced current flows in the opposite direction to the rotation of the loop. The answer is also correct if you express it in volts.

The average induced EMF in the loop can be calculated using Faraday's law of electromagnetic induction, which states that the EMF induced in a loop is equal to the negative rate of change of magnetic flux through the loop. The magnetic flux is given by the dot product of the magnetic field and the area of the loop. In this case, the loop is a circle with a diameter of 20.0 cm, so its area is πr², where r is the radius of the circle, which is 10.0 cm.

The magnetic flux through the loop is initially zero, since the loop is perpendicular to the magnetic field. When the loop is rotated so that its plane is parallel to the field direction, the magnetic flux through the loop is at its maximum value, which is given by Bπr², where B is the magnitude of the magnetic field.

The time interval over which the loop is rotated is 0.2 s. Therefore, the average induced EMF in the loop is given by:

EMF = -ΔΦ/Δt = -(Bπr² - 0)/Δt = -Bπr²/Δt

Substituting the given values, we get:

EMF = -10 T x π x (10.0 cm)² / 0.2 s = -314 V

Therefore, the average induced EMF in the loop is -314 V. Note that the negative sign indicates that the induced current flows in the opposite direction to the rotation of the loop. The answer is also correct if you express it in volts.

Learn more about Magnetic flux here,

https://brainly.com/question/29221352

#SPJ11

The current supplied by a battery as a function of time is I(t) = (0.64A) * e ^ (- (6hr)) What is the total number of electrons transported from the positive electrode to the negative electrode from the time the battery is first used until it is essentially dead? (e = 1.6 * 10 ^ - 19 * C)
please answer quickly

Answers

To calculate the total number of electrons transported from the positive electrode to the negative electrode, we need to integrate the current function over the time interval during which the battery is in use.

The current function is given as I(t) = (0.64A) * e^(-6t), and we need to find the integral of this function.

To calculate the total number of electrons transported, we can integrate the current function I(t) over the time interval during which the battery is used. The integral represents the accumulated charge, which is equivalent to the total number of electrons transported.

The integral of the current function I(t) = (0.64A) * e^(-6t) with respect to time t will give us the total charge transported. To perform the integration, we need to determine the limits of integration, which correspond to the starting and ending times of battery usage.

Once we have the integral, we can divide it by the elementary charge e = 1.6 * 10^-19 C to convert the accumulated charge to the total number of electrons transported.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

Calculations Since the stirrer and calorimeter are also of aluminum , C = Co = Ca with Cv = 1.00 cal/( gram Cº) equation (1) becomes M2 Ca(Ta-T) = (Mw + McCa+MsCa )(T-T.) (2) + а a Solve this equation for Ca, the specific heat of aluminum for each trial and compare your result with the standard value of 0.22 cal( gram C°) by determining the % discrepancy.

Answers

Once we have the experimental value for Ca, we can calculate the % discrepancy using the formula:

% discrepancy = (|Ca - Standard value| / Standard value) * 100

The equation (1) given is M2 Ca(Ta-T) = (Mw + McCa+MsCa)(T-T.) where Ca represents the specific heat of aluminum. By solving this equation for Ca, we can determine the specific heat of aluminum for each trial and compare it with the standard value of 0.22 cal/(gram°C). The % discrepancy will indicate how much the experimental value differs from the standard value.

In order to calculate Ca, we need to rearrange the equation (2) and isolate Ca on one side:

Ca = ((M2(Ta-T)) - (w(T-T.) + McCa(T-T.) + MsCa(T-T.))) / (T-T.)

Once we have the experimental value for Ca, we can calculate the % discrepancy using the formula:

% discrepancy = (|Ca - Standard value| / Standard value) * 100

By substituting the experimental value of Ca and the standard value of 0.22 cal/(gram°C) into this formula, we can determine the % discrepancy, which indicates the difference between the experimental and standard values of specific heat for aluminum.

To know more about experimental value here https://brainly.com/question/28347059

#SPJ4

A uniform hoop and a uniform solid cylinder have the same mass and radius. They both roll, without slipping, on a horizontal surface. If their total kinetic energies are equal, then the cylinder and the hoop have the same translational speed. the cylinder has a greater translational speed than the hoop. The translational speeds of the hoop and the cylinder cannot be compared without more information. the hoop has a greater translational speed than the cylinder.

Answers

If a uniform hoop and a uniform solid cylinder with the same mass and radius roll without slipping on a horizontal surface and have equal total kinetic energies, the hoop and the cylinder will have the same translational speed

When a hoop or a solid cylinder rolls without slipping, its total kinetic energy consists of both rotational and translational components. The rotational kinetic energy depends on the moment of inertia, which differs between the hoop and the cylinder due to their different shapes.

However, if the total kinetic energies of the hoop and the cylinder are equal, it implies that the rotational kinetic energies are also equal. Since the masses and radii of the hoop and the cylinder are the same, the only way for their rotational kinetic energies to be equal is if their angular velocities are equal.

Now, since both the hoop and the cylinder roll without slipping, their angular velocities are directly related to their translational speeds. In this scenario, if the angular velocities are the same, the translational speeds will also be the same.

Learn more about speed here:

https://brainly.com/question/28224010

#SPJ11

An undamped 2.85 kg horizontal spring oscillator has a spring constant of 30.7 N/m. While oscillating, it is found to have a speed of 3.95 m/s as it passes through its equilibrium position
. What is its amplitude of oscillation?
What is the oscillator's total mechanical energy tot as it passes through a position that is 0.556 of the amplitude away from the equilibrium position?

Answers

a) Amplitude of oscillation = 1.2226 m

b) Total mechanical energy of the oscillator as it passes through the position 0.556 of the amplitude away from the equilibrium position is 9.863 J.

The amplitude of oscillation is given by;

A = x = Vm/ω, where;

Vm = maximum velocity of oscillation

ω = angular frequency of oscillation

Given that the spring oscillator has a speed of 3.95 m/s while oscillating. The angular frequency is given by;

ω = sqrt(k/m)

where;

m = mass of spring oscillator

k = spring constant

ω = sqrt(30.7/2.85) = 3.2276 rad/s

Now we can calculate the amplitude;

A = x = Vm/ω= 3.95/3.2276= 1.2226 m

Now, the total mechanical energy at a position that is 0.556 of the amplitude away from the equilibrium position is given by;

E = KE + PE

Since the spring oscillator has no damping;

E = KE + PE

= 1/2 mv² + 1/2 kx²

Substituting the given values;

E = 1/2 * 2.85 * 3.95² + 1/2 * 30.7 * (0.556 * 1.2226)²

E = 9.863 J

To learn more about amplitude, refer:-

https://brainly.com/question/9525052

#SPJ11

Find the force between two punctual charges with 2C and 1C, separated by a distance of 1 m of air. Write your answer in Newtons. NOTE: Constant k = 9 × 10⁹ Nm²C⁻²
A. 1.8×10⁹ N B. 18×10⁹ N C. 18×10⁻⁶ N D. 1.8×10⁻⁶ N

Answers

The force between two punctual charges of 2C and 1C, separated by 1m in air, is 18 × 10^9 Newtons. The correct answer is option B.

The force between two punctual charges can be calculated using Coulomb's Law:

F = k * (|q₁| * |q₂|) / r²,

where F is the force, k is the electrostatic constant, |q₁| and |q₂| are the magnitudes of the charges, and r is the distance between them.

Given:

|q₁| = 2 C,

|q₂| = 1 C,

r = 1 m,

k = 9 × 10^9 Nm²C⁻².

Substituting the values into the formula:

F = (9 × 10^9 Nm²C⁻²) * (|2 C| * |1 C|) / (1 m)²

  = (9 × 10^9 Nm²C⁻²) * (2 C * 1 C) / (1 m)²

  = (9 × 10^9 Nm²C⁻²) * 2 C² / 1 m²

  = 18 × 10^9 N.

Therefore, the force between the two charges is 18 × 10^9 Newtons.

The correct answer is option B: 18×10⁹ N.

know more about coulomb's law here: brainly.com/question/506926

#SPJ11

wire carrvina a current of \( 16 \mathrm{~A} \). What is the magnitude of the force on this electron when it is at a distance of \( 0.06 \) m from the wire? ]\( N \)

Answers

A wire carries a current of 16 A.

The magnitude of the force on an electron when it is at a distance of 0.06 m from the wire is 5.76 × 10^-12 N.

Wire carries electric current I= 16 A, and is at a distance of r = 0.06m from an electron. The force on the electron is given by the formula;

F = μ0(I1I2)/2πr

Where;

μ0 is the permeability of free space= 4π×10^-7

I1 is the current carried by the wireI2 is the current carried by the electron

F is the force experienced by the electron

In this case, I1 = 16 A, and I2 = 1.6 × 10^-19 C s^-1 (charge on electron)So;

F = (4π×10^-7×16×1.6 × 10^-19)/2π×0.06

F = 5.76 × 10^-12 N

Therefore, the magnitude of the force on an electron when it is at a distance of 0.06 m from the wire is 5.76 × 10^-12 N.

Learn more about magnitude of the force here

https://brainly.com/question/30015989

#SPJ11

The pendulum of a big clock is Y meters long. In New York City, where the gravitational acceleration is g = 9.8 meters per second squared, how long does it take for that pendulum to swing back and forth one time? Show your work and give your answer in units of seconds. Y= 1.633

Answers

The formula for the time period (T) of the pendulum is:

T = 2π * √(L/g)

Where L is the length of the pendulum and g is the acceleration due to gravity.

Substituting the given values into the above formula:

T = 2π * √(1.633/9.8)T

≈ 1.585 seconds

Therefore, it takes approximately 1.585 seconds for the pendulum to swing back and forth one time in New York City where the gravitational acceleration is g = 9.8 meters per second squared.

This is calculated by using the formula for the time period of the pendulum, which takes into account the length of the pendulum and the acceleration due to gravity. The length of the pendulum in this case is given as Y = 1.633 meters, which is substituted into the formula along with the value of g.

Learn more about timeperiod here

https://brainly.com/question/23938295

#SPJ11

What distance does an oscillator of amplitude a travel in 9. 5 periods?

Answers

Answer:

Explanation:

To determine the distance traveled by an oscillator of amplitude a in a given number of periods, we need to consider the relationship between the amplitude and the total distance covered during one complete period.

In simple harmonic motion, the displacement of an oscillator is given by the equation:

x = A * sin(2π/T * t)

Where:

x is the displacement at time t,

A is the amplitude of the oscillator,

T is the period of the oscillator, and

t is the time.

In one complete period (T), the oscillator starts at the equilibrium position, moves to the maximum displacement (amplitude A), returns to the equilibrium position, and finally moves to the opposite maximum displacement (-A) before returning to the equilibrium position again.

Therefore, the total distance traveled by the oscillator in one complete period is twice the amplitude (2A).

Given that the amplitude (a) is provided, and we want to find the distance traveled in 9.5 periods, we can calculate it as follows:

Distance traveled in 9.5 periods = 9.5 * 2 * amplitude (a)

Distance traveled in 9.5 periods = 19 * a

Therefore, the distance traveled by the oscillator in 9.5 periods is 19 times the amplitude (a).

A Carnot engine whose hot-reservoir temperature is 400 ∘C∘C has a thermal efficiency of 38 %%.
By how many degrees should the temperature of the cold reservoir be decreased to raise the engine's efficiency to 63 %%?
Express your answer to two significant figures and include the appropriate units.

Answers

Answer: The temperature of the cold reservoir should be decreased by 156°C to raise the engine's efficiency to 63%.

A Carnot engine is an ideal heat engine that operates on the Carnot cycle. The efficiency of a Carnot engine depends solely on the temperatures of the hot and cold reservoirs. According to the second law of thermodynamics, the efficiency of a Carnot engine is given by:

efficiency = (Th - Tc)/Th,

where Th is the temperature of the hot reservoir and Tc is the temperature of the cold reservoir.

38% efficiency of a Carnot engine whose hot-reservoir temperature is 400 ∘C is expressed as:

e = (Th - Tc)/Th38/100

= (400 - Tc)/400.

We can solve the above equation for Tc to get:

Tc = (1 - e)Th

= (1 - 0.38) × 400

= 0.62 × 400

= 248°C.

Now, the temperature of the cold reservoir needed to raise the efficiency to 63%.

e = (Th - Tc)/Th63/100

= (Th - Tc)/Th.

We can then solve the above equation for Tc to get:

Tc = (1 - e)Th

= (1 - 0.63) × Th

= 0.37 Th.

We know that the initial temperature of the cold reservoir is 248°C, so we can find the new temperature by multiplying 248°C by 0.37 as follows:

Tc(new) = 0.37 × 248°C

= 92°C.

Therefore, the temperature of the cold reservoir should be decreased by (248 - 92) = 156°C to raise the engine's efficiency to 63%.

Learn more about Carnot engine: https://brainly.com/question/25819144

#SPJ11

Other Questions
Which of the following is considered the control group in this experiment a) Given the equation below: W=ABCD+ABCD+ABCD+ABCD i. Show the simplified Boolean equation below by using the K-Map technique. (C3, CLO3) ii. Sketch the simplified circuit-based result in (ai) (C3,CLO3) [8 Marks] b) Given the equation below: [4 Marks] i. Show the simplify the logic expression z=ABC+A+ABC by using the Boolean Algebra technique. ii. Sketch the simplified circuit-based result in (bi) (C3, CLO3) [8 Marks] [5 Marks] Explain the given VB code using your own words Explain the following line of code using your own words: IstMinutes.Items.Add("")_____ which of the following gases cannot be used as a GC carrier gas?a) N_2b) CO_2c) H_2d) N_2Oe) Ar What is the domain of ggg? Choose 1 answer: Choose 1 answer: (Choice A) A The xxx-values -77minus, 7, -44minus, 4, 000, 333, and 444 (Choice B) B -4 \leq x \leq 84x8minus, 4, is less than or equal to, x, is less than or equal to, 8 (Choice C) C The xxx-values -44minus, 4, -33minus, 3, 000, 222, and 888 (Choice D) D -7 \leq x \leq 47x4 Identify two strategies our criminal justice system has employedas a response to violence. Consider a continuous-time LTI system with an input signal x(t)= 2u(t) and output signal y(t) = 5e-s'u(t) Apply Laplace Transform properties to determine the: (i) Impulse response h(t) of the system. (ii) The output y(t) of the system when the input x(t) = 6e'u(t) Hello im currently trying to add two registers in assembly, they give a value that is greater than 256. I wanted to know if someone could provide an example where the result of the addition is put in two registers and then the two registers are used for some other operation, for example: result1 - "01111011" and result2 + "00000101". Any help would be greatly appreciated. Problem 4. a. Hydrogen sulfide (HS) is a toxic byproduct of municipal wastewater treatment plant. HS has a TLV-TWA of 10 ppm. Please convert the TLV-TWA to lbm/s. Molecular weight of HS is 34 lbm/lb-mole. If the local ventilation rate is 2000 ft/min. Assume 80 F is the 0.7302 ft-atm/lb-mole-R. (5) temperature and 1 atm pressure. Ideal gas constant, Rg Conversion of Rankine, R = 460 + F. Assume, k = 0.1 b. Let's assume that local wastewater treatment plant stores HS in a tank at 100 psig and 80 F. If the local ventilation rate is 2000 ft/min. Please calculate the diameter of a hole in the tank that could lead a local HS concentration equals TLV-TWA. Choked flow is applicable and assume y= 1.32 and Co = 1. Ideal gas constant, Rg = 1545 ft-lb/lb-mole-R, x psig = (x+14.7) psia = (x+14.7) lb/in (10) = 0 / 1 pts Question 3 Now you have this in the main program: Storeltem milk; Storeltem honey; How do you refer to the item Description field for honey? Storeltem.honey.item Description honey.item Description O honey(item Description) O Storeitem [honey(item Description)] Question 4 Not yet graded / 2 pts Write code that adds the inventoryQuantity for both objects and assigns the sum to variable sum. (Don't code the definition for sum.) Your Answer: Analysing the working principles of stepper motor, explain the operation mode of a two-phase, 5-rotor poles hybrid stepper motor with the aid of a truth table. Consider that each of the phases are energised. (14 marks) (b) A stepper motor has a resolution of 500 steps/rev in the 1-phase-ON mode of operation. Analysing the operation of the stepper motor in half-step mode, calculate: (i) Resolution (2 marks) (ii) Step angle (2 marks) (iii) Pulse rate required to obtain a rotor speed of 300rpm (4 marks) (iv) Number of steps required to turn the rotor through 72 (3 marks) Likely climate change impacts on human health include (select all that are true):Reductions in vector-borne disease by heat inactivation of viruses within mosquitosMultiple indirect impacts, such as water-borne diseasesBetween now and 2050 most impacts will come from new conditions that emerge rather than exacerbation of existing diseaseMore heat-related deaths and illnessesUnder-nutrition from diminished food production HELPPPPP ASAP!! Which sentence from the passage describes why the tiny scales on top of the wings of a blue morpho are important ? The region between two concentric spherical conducting shells r= 1 m and r = 2 m is filled with charge free dielectric material with & 2. If V at r=1 is kept at -10 V and V at r=2 is 10 V, determine: i. The potential distribution in the region 1 r 2. ii. V and E at P(r=1.5, 0=/2, p=/4). iii. ps and pps at r=1 iv. The stored electrostatic energy inside the dielectric medium. The answers to the blanks WORKING WOMEN IN AMERICAN SOCIETYThe wage gap can entirely be explained when we consider that many women have fewer years of work experience, work fewer hours per year, are less likely to work a full-time schedule, and leave the labor force for longer periods of time than men. True or false?Choose all the correct optionsTheories about why sex-segregation is a persistent problem include which of the followinga. Women are drawn to lower prestige careersb. Nursing, elementary school teachers and librarianship remain predominantly femalec. Men are protecting themselves by their hiring decisionsd. Women are freely opting out of higher paid careers Tan drew the energy transfer diagram for an MP3 player below, but he forgot to include the __________ energy output. What word completes the sentence? Using only the theorems on determinants and the row/column operations, show that: 1 1 1 a b C = (b a)(c a)(c - b) la b c DO NOT use Cofactor Method or the diagonal method. Indicate your name in your MANUAL solution and upload here. The hourly cost of a hydraulic shovel is $165 and of a truck is $75. If an equipment fleet consisting of twoshovel and a fleet of ten trucks achieve a production of 700 LCY per hour, what is the unit cost of loading and hauling? The Supreme Court's interpretation of the Sixth Amendment guarantees trial by a jury of one's peers. Suppose Clarence Gideon had a large pool of potential jurors to start with and through the voir dire process discovered a couple of men who had been homeless and had trouble with the law in their past. If these two men remained qualified through all the voir dire questioning, would they likely end up on the jury panel? Why or why not?