We can use the distance formula to find the distance between two points in a coordinate plane:
d = √[(x2 - x1)² + (y2 - y1)²]
where (x1, y1) and (x2, y2) are the coordinates of the two points, and d is the distance between them.
Using the given coordinates of the two points, we have:
x1 = -2, y1 = 7
x2 = -5, y2 = 9
Substituting these values into the distance formula, we get:
d = √[(-5 - (-2))² + (9 - 7)²]
d = √[(-3)² + 2²]
d = √(9 + 4)
d = √13
Therefore, the distance between the points (-2, 7) and (-5, 9) is approximately √13 units. We can also approximate this value as 3.61 units (rounded to two decimal places).
A 15 ft ladder leans against the side of a house. the bottom of the ladder is 7 ft away from the side of the house. find x
The distance between the tip of the ladder to the ground or the value of 'x' is 13.27 ft.
We know that the ladder is leaning on the wall and thus it makes a right-angle triangle, where:
the hypotenuse(h) is the length of the ladder,
the base(b) is the distance between the foot of the ladder and the bottom of the wall,
and the height(x) is the distance between the tip of the ladder to the bottom of the wall which we need to find.
As the question is on right angled triangle we can use the Pythagoras theorem to find the value of 'x':
[tex]Height^2 + Base^2 = Hypotenuse^2\\x^2 + b^2 = h^2[/tex]
Now we know that h= 15ft, and b=7ft.
Substituting the values in the above equation we get :
[tex]x^2 + 7^2 = 15^2\\x^2 = 225 - 49\\x = \sqrt{176}\\x= 13.27 ft.[/tex]
Therefore the distance between the tip of the ladder to the ground or the value of 'x' is 13.27 ft.
Learn more about the Pythagoras theorem at:
https://brainly.com/question/27997683
#SPJ4
Question
Write the product using exponents.
(−13)⋅(−13)⋅(−13)
Answer:
(-13)^3
Step-by-step explanation:
Exponents can be used for repeated multiplication.
In this case, the number "negative 13" is repeated several times, all connected with multiplication.
There are a total of three "negative 13"s being multiplied together ("negative 13" appears three times on the page).
To rewrite using exponents, we would write one of the following:
(-13)^3
[tex](-13)^3[/tex]
The difference of two rational numbers is 17/28,if the small rational number is -9/14 find the other
Step-by-step explanation:
Let the other rational number be represented by "x". We know that the difference of the two rational numbers is 17/28, which can be written as:
x - (-9/14) = 17/28
Simplifying the left-hand side:
x + 9/14 = 17/28
Multiplying both sides by the least common multiple of 14 and 28, which is 28, we get:
28(x + 9/14) = 28(17/28)
Simplifying:
4(2x + 9) = 17
Expanding:
8x + 36 = 17
Subtracting 36 from both sides:
8x = -19
Dividing by 8:
x = -19/8
Therefore, the other rational number is -19/8.
Brian deposited $9,083 into a savings account for which interest is compounded quarterly at a rate of 2.90%. How much interest will he earn after 6 years? Round answer to the hundredths place. If answer does not have a hundredths place then include zeros so it does. Do not include units in the answer. Be sure to attach your work for credit.
Using the compound interest formula, the interest Brian will earn after 6 years is: $2,347.22.
How to Calculate Compound Interest?We can use the formula for compound interest to calculate the interest earned by Brian:
A = P (1 + r/n)^(nt)
where:
A = the amount after t years
P = the principal amount (initial investment)
r = the annual interest rate (as a decimal)
n = the number of times the interest is compounded per year
t = the time in years
In this case, P = $9,083, r = 2.90% or 0.029, n = 4 (since interest is compounded quarterly), and t = 6.
So,
A = 9083(1 + 0.029/4)^(4*6)
= $11,430.22
The interest earned will be the difference between the amount after 6 years and the initial investment:
Interest = A - P = $11,430.22 - $9,083 = $2,347.22
Therefore, Brian will earn $2,347.22 in interest after 6 years.
Learn more about compound interest on:
https://brainly.com/question/24274034
#SPJ1
Bharat sent a chain letter to his friends, asking them to forward the letter to more friends. The relationship between the elapsed time ttt, in days, since Bharat sent the letter, and the number of people, P(t)P(t)P, left parenthesis, t, right parenthesis, who receive the email is modeled by the following function: P(t)=2401⋅(87)t1. 75
The exponential term (87^t)^(1.75) increases, leading to an exponential growth in the number of people who receive the email.
The relationship between the elapsed time t, in days, since Bharat sent the letter and the number of people P(t) who receive the email is modeled by the following function:
P(t) = 2401 * (87^t)^(1.75)
In this function, t represents the number of days that have passed since Bharat sent the letter, and P(t) represents the number of people who receive the email at that time.
The function is an exponential growth model where the base is 87, and the exponent is t raised to the power of 1.75. The constant 2401 is a scaling factor that determines the initial number of people who receive the email at t=0.
As time passes, the exponential term (87^t)^(1.75) increases, leading to an exponential growth in the number of people who receive the email.
To know more about exponential , refer here :
https://brainly.com/question/12490064#
#SPJ11
22. Look at the given triangles.
4x + 2
7x+7
X+3
2x-5
x+7
5x-4
a. Write an expression in simplest form for the perimeter of each triangle.
b. Write another expression in simplest form that shows the difference between the perimeter
of the larger triangle and the perimeter of the smaller triangle.
c. Find the perimeter for each triangle when x = 3
Two triangles have perimeters that can be expressed as 12x + 12 and 8x - 2, with a difference of 4x + 14, and have perimeters of 47 and 28 when x = 3.
a. The perimeter of each triangle can be found by adding up the lengths of all three sides:
Triangle 1: (4x+2) + (7x+7) + (x+3) = 12x + 12
Triangle 2: (2x-5) + (x+7) + (5x-4) = 8x - 2
b. To find the difference in perimeter between the larger triangle and the smaller triangle, we can subtract the smaller perimeter from the larger perimeter:
(12x + 12) - (8x - 2) = 4x + 14
c. To find the perimeter for each triangle when x = 3, we can substitute x = 3 into the expressions found in part (a):
Triangle 1: (4(3)+2) + (7(3)+7) + (3+3) = 47
Triangle 2: (2(3)-5) + (3+7) + (5(3)-4) = 28
Therefore, the perimeter of Triangle 1 is 47 units and the perimeter of Triangle 2 is 28 units when x = 3.
Learn more about perimeter click;
brainly.com/question/6465134
#SPJ1
PLSSS HELP.
Apples are on sale at a grocery store for per pound. Casey bought apples and used a coupon for off her purchase. Her total was. How many pounds of apples did Casey buy?
Part A: Write an equation that represents the problem. Define any variables.
Part B: Solve the equation from Part A. Show all work.
Part C: Explain what the solution to the equation represents
A: An equation that represents the problem is 1.75x - 0.45 = 4.45. B: Solving the equation from Part A gives x = 2.8. C: The solution to the equation represents the number of pounds of apple bought by Casey.
Part A: Write an equation that represents the problem. Define any variables.
Let x represent the number of pounds of apples Casey bought. The cost of apples is $1.75 per pound, so the total cost before using the coupon would be 1.75x. After using the $0.45 coupon, her total was $4.45. The equation representing this situation is:
1.75x - 0.45 = 4.45
Part B: Solve the equation from Part A.
Now, let's solve the equation:
1.75x - 0.45 = 4.45
Add 0.45 to both sides:
1.75x = 4.90
Now, divide both sides by 1.75:
x = 4.90 / 1.75
x = 2.8
Part C: Explain what the solution to the equation represents
The solution, x = 2.8, represents that Casey bought 2.8 pounds of apples at the grocery store.
Note: The question is incomplete. The complete question probably is: Apples are on sale at a grocery store for $1.75 per pound. Casey bought apples and used a coupon for $0.45 off her purchase. Her total was $4.45. How many pounds of apples did Casey buy? Part A: Write an equation that represents the problem. Define any variables. Part B: Solve the equation from Part A. Show all work. Part C: Explain what the solution to the equation represents.
Learn more about Equation:
https://brainly.com/question/27887972
#SPJ11
The y-values that a function approaches when the x-values are extremely large or extremely small. this is called the function's ____ behavior.
The y-values that a function approaches when the x-values are extremely large or extremely small is called the function's asymptotic behavior.
When we talk about the asymptotic behavior of a function, we are referring to what happens to the values of the function as the input (x-values) either tends to positive infinity or negative infinity.
In other words, we are interested in how the function behaves when the input values become extremely large or extremely small.
To understand asymptotic behavior, let's consider two types of asymptotes: horizontal and vertical asymptotes.
Horizontal Asymptotes:
A horizontal asymptote is a horizontal line that a function approaches as the x-values become extremely large or extremely small. We usually denote horizontal asymptotes as y = c, where c is a constant.
For example, let's consider the function f(x) = (2x^2 + 3) / (x^2 - 1). As x approaches positive or negative infinity, we can observe the following behavior:
As x becomes extremely large or extremely small, the function becomes closer and closer to the line y = 2. Therefore, we say that y = 2 is a horizontal asymptote for this function.
Vertical Asymptotes:
A vertical asymptote is a vertical line that the function approaches as the x-values approach a particular value. It typically occurs when there is a division by zero or when the function tends to infinity at a specific point.
For example, consider the function g(x) = 1 / (x - 2). As x approaches 2 from either side (but never equal to 2), we can observe the following behavior:
As x approaches 2 from the left (x < 2), the function g(x) becomes increasingly negative, tending towards negative infinity.
As x approaches 2 from the right (x > 2), the function g(x) becomes increasingly positive, tending towards positive infinity.
To learn more about function, refer below:
https://brainly.com/question/12431044
#SPJ11
Match the term to its description.
Match Term Definition
Elliptical galaxy A) Has a large flattened core
Galaxy B) Forms a perfect sphere or an ellipse and is flattened to some degree
Lens galaxy C) Has a central core from which curved arms spiral outward
Spiral galaxy D) Is a collection of several billion stars and interstellar matter isolated in space
The type of galaxy matched to its description.
Elliptical galaxy: B) Forms a perfect sphere or an ellipse and is flattened to some degree
Galaxy: D) Is a collection of several billion stars and interstellar matter isolated in space
Lens galaxy: A) Has a large flattened core
Spiral galaxy: C) Has a central core from which curved arms spiral outward
Elliptical galaxy: An elliptical galaxy is a type of galaxy that typically forms a perfect sphere or an ellipse shape. It is characterized by its smooth and featureless appearance, lacking the distinct spiral arms seen in spiral galaxies. Elliptical galaxies often have a flattened shape due to their rotation and gravitational interactions with other galaxies.
Galaxy: A galaxy refers to a vast collection of stars, interstellar gas, dust, and dark matter, all held together by gravity. Galaxies come in various shapes and sizes, and they can contain billions or even trillions of stars. They are the building blocks of the universe and are distributed throughout the cosmos.
Lens galaxy: A lens galaxy is a type of galaxy that has a large flattened core. It gets its name from the gravitational lensing effect it produces. Gravitational lensing occurs when the gravitational field of the lens galaxy bends and distorts the light from objects behind it, creating a lens-like effect.
Spiral galaxy: A spiral galaxy is a type of galaxy that has a central core or bulge from which curved arms spiral outward. These arms are made up of stars, gas, and dust, and they give spiral galaxies their distinct appearance. Spiral galaxies often have a flattened disk shape with a central bulge and extended arms that can stretch out across the disk.
Learn more about the galaxy:
https://brainly.com/question/17117676
#SPJ11
7 2 14 3 8 11 5 each time a card is picked it is replaced estimate the expected number of even numbers picked in 35 picks
We can estimate that the expected number of even numbers picked in 35 picks is 15.
To estimate the expected number of even numbers picked in 35 picks, we need to first understand the probability of picking an even number in one pick. Out of the seven given numbers, there are three even numbers (2, 14, 8) and four odd numbers (7, 3, 11, 5). Therefore, the probability of picking an even number in one pick is 3/7.
To find the expected number of even numbers picked in 35 picks, we can multiply the probability of picking an even number in one pick (3/7) by the number of picks (35).
Expected number of even numbers picked = (3/7) x 35 = 15
Therefore, we can estimate that the expected number of even numbers picked in 35 picks is 15. This means that if we were to repeat the process of picking a card and replacing it 35 times, we would expect to pick 15 even numbers on average.
It is important to note that this is an estimate and the actual number of even numbers picked may vary. However, this estimation gives us a good idea of what to expect on average.
To know more about expected, visit:
https://brainly.com/question/30456668#
#SPJ11
What is the perimeter of the triangle below
Answer:
16.7 units
Step-by-step explanation:
its a 45°-45°-90° right triangle, so n1=4.9
r=4.9[tex]\sqrt{2}[/tex] =6.9
perimeter = 4.9+4.9+6.9=16.7 units
BRANLIEST!!
Three coins are tossed. Let the event H = all Heads and the event K = at least one Heads.
1. 7/8 P(K) =
2. 1/7 The probability that the outcome is all heads if at least one coin shows a head
3. 1/8 P(H∩K) =
The probability that the outcome is all heads if at least one coin shows a head is 8/49.
How to find the probability?To solve these problems, we'll use the basic principles of probability.
The probability of an event K (at least one head) can be calculated by subtracting the probability of the complement of K (no heads) from 1.
Since the coins can either show all heads or not, the complement of K is the event of no heads, which is denoted as T (tails for all coins). Therefore, we have:
P(K) = 1 - P(T)
Each coin toss is independent, and the probability of getting tails on a single toss is 1/2. Since there are three coins tossed independently, we multiply the probabilities together:
P(T) = ([tex]\frac{1}{2}[/tex]) * ([tex]\frac{1}{2}[/tex]) * ([tex]\frac{1}{2}[/tex]) = [tex]\frac{1}{8}[/tex]
Substituting this into the equation for P(K):
P(K) = 1 - P(T) = 1 - [tex]\frac{1}{8}[/tex] = [tex]\frac{7}{8}[/tex]
So, the probability of event K (at least one head) is [tex]\frac{7}{8}[/tex].
The probability that the outcome is all heads if at least one coin shows a head can be calculated using conditional probability. We want to find P(H | K), which represents the probability of event H (all heads) given event K (at least one head).
The formula for conditional probability is:
P(H | K) = [tex]\frac{P(H \∩ K) }{ P(K)}[/tex]
To find P(H∩K), we need to determine the probability of the intersection of events H and K (i.e., the probability of getting all heads and at least one head).
Since H is a subset of K (if all coins show heads, then at least one head is shown), we have:
P(H∩K) = P(H)
Therefore, P(H∩K) is the same as P(H). According to the problem, P(H) = [tex]\frac{1}{7}[/tex].
Now, substituting P(H∩K) = P(H) and P(K) = [tex]\frac{7}{8}[/tex] into the conditional probability formula:
P(H | K) = [tex]\frac{P(H\∩K) }{ P(K)}[/tex] = ([tex]\frac{1}{7}[/tex]) / ([tex]\frac{7}{8}[/tex]) = ([tex]\frac{1}{7}[/tex]) * ([tex]\frac{8}{7}[/tex]) = [tex]\frac{8}{49}[/tex]
So, the probability that the outcome is all heads if at least one coin shows a head is [tex]\frac{8}{49}[/tex].
To summarize:
P(K) = [tex]\frac{7}{8}[/tex]
P(H | K) = [tex]\frac{8}{49}[/tex]
P(H∩K) = [tex]\frac{1}{7}[/tex]
Learn more about probability.
brainly.com/question/30034780
#SPJ11
Help with problem in photo
The length of the missing segment is given as follows:
? = 4.4.
What is the Pythagorean Theorem?The Pythagorean Theorem states that in a right-angled triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the lengths of the other two sides.
The theorem is expressed as follows:
c² = a² + b².
In which:
c is the length of the hypotenuse.a and b are the lengths of the other two sides (the legs) of the right-angled triangle.The hypotenuse length for the right triangle is given as follows:
h² = 6.6² + 8.8²
[tex]h = \sqrt{6.6^2 + 8.8^2}[/tex]
h = 11.
The hypotenuse segment is divided into a radius of 6.6 plus the missing segment of ?, thus:
6.6 + ? = 11
? = 11 - 6.6
? = 4.4.
More can be learned about the Pythagorean Theorem at brainly.com/question/30203256
#SPJ1
Can someone answer this, please?
[tex]\sf y =\dfrac{2}{5}x-4[/tex]
Step-by-step explanation:
Slope intercept form:To find the equation of the required line, first we need to find the slope of the given line in the graph.
Choose two points from the graph.
(0 ,4) x₁ = 0 & y₁ = 4
(2,-1) x₂ = 2 & y₂ = -1
[tex]\sf \boxed{\sf \bf Slope=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]
[tex]\sf = \dfrac{-1-4}{2-0}\\\\=\dfrac{-5}{2}[/tex]
[tex]\sf m_1=\dfrac{-5}{2}[/tex]
[tex]\sf \text{Slope of the perpendicular line m = $\dfrac{-1}{m_1}$}[/tex]
[tex]\sf = -1 \div \dfrac{-5}{2}\\\\=-1 * \dfrac{-2}{5}\\\\=\dfrac{2}{5}[/tex]
[tex]\boxed{\sf slope \ intercept \ form \ : \ y = mx + b}[/tex]
Here, m is slope and b is y-intercept.
Substitute the m value in the above equation,
[tex]\sf y =\dfrac{2}{5}x + b[/tex]
The line is passing through (5 , -2),
[tex]\sf -2 = \dfrac{2}{5}*5+b[/tex]
-2 = 2 + b
-2 - 2 = b
b = -4
Slope-intercept form:
[tex]\sf y = \dfrac{2}{5}x-4[/tex]
50 POINTS ASAP Use the image to determine the type of transformation shown.
image of polygon ABCD and a second polygon A prime B prime C prime D prime above it
180° clockwise rotation
Horizontal translation
Reflection across the x-axis
Vertical translation
Since polygon A prime B prime C prime D prime above is above the image of polygon ABCD, the type of transformation shown is: D. vertical translation.
What is a transformation?In Mathematics and Geometry, a transformation can be defined as the movement of a point from its initial position to a new location. This ultimately implies that, when a function or object is transformed, all of its points would also be transformed.
In Mathematics and Geometry, a horizontal translation to the right is modeled by this mathematical equation g(x) = f(x - N) while a vertical translation to the positive y-direction (upward) is modeled by this mathematical equation g(x) = f(x) + N.
Where:
N represents an integer.g(x) and f(x) represent functions.Read more on function and translation here: brainly.com/question/31559256
#SPJ1
Answer:
Vertical translation
Step-by-step explanation:
I am in the middle of taking the quiz and belive this is the correct answer!
Need help on unit 2 review
What is the maximum volume of a square pyramid that can fit into a cube with a side length of 30cm ?
A square pyramid with the maximum volume that can fit inside a cube has a same base as a cube ( 30 cm x 30 cm ) . The height of the pyramid is also same as a side length of a cube ( h = 30 cm ).
The volume of the pyramid:
V = 1/3 · 30² · 30 = 1/3 · 900 · 30 = 9,000 cm³
Answer:The maximum volume of the pyramid is 9,000 cm³.
which number is equal to 7 hundred thousands 4 thousands 3 tens and 6 ones?
The number that is equal to the place values, 7 hundred thousands 4 thousands 3 tens and 6 ones, is 704,036
Place value: Determining the number that is equal to the place valuesFrom the question, we are to determine the number that is equal to the given place values
From the given information, the given place value is
7 hundred thousands 4 thousands 3 tens and 6 ones
Now, we will write each of the values in figures
7 hundred thousands = 700,000
4 thousands = 4,000
3 tens = 30
6 ones = 6
To determine the number that is equal to the place values, we will sum all the digits
700,000 + 4,000 + 30 + 6
704,036
Hence,
The number that is equal to the place value is 704,036
Learn more on Place value here: https://brainly.com/question/17180368
#SPJ1
A new laptop is on sale for $550 dollars. To pay for it you place it on your credit card which charges 12% percent interest each month. Complete the table to determine the total cost of the laptop each month if you make no payments
To determine the total cost of the laptop each month if you make no payments, we need to calculate the balance on the credit card after each month, including the simple interest charged.
Starting balance = $550
Month Balance Interest Total Cost
0 $550 $0 $550
1 $616 $66 $616 + $66 = $682
2 $689.92 $73.92 $689.92 + $73.92 = $763.84
3 $770.15 $80.23 $770.15 + $80.23 = $850.38
4 $857.09 $86.94 $857.09 + $86.94 = $944.03
5 $951.19 $94.10 $951.19 + $94.10 = $1045.29
To calculate the balance for each month, we multiply the previous balance by 1.12, which represents the 12% interest charged. For example, for month 1, the balance is $550 * 1.12 = $616.
To calculate the interest charged each month, we subtract the previous balance from the new balance. For example, for month 1, the interest charged is $616 - $550 = $66.
To calculate the total cost each month, we add the new balance to the interest charged.
For example, for month 1, the total cost is $616 + $66 = $682.
Note that if you make no payments on the credit card, the balance will continue to grow each month due to the interest charged.
It is always advisable to make at least the minimum payment each month to avoid high interest charges and potential late fees.
To learn more about simple intrest go to:
https://brainly.com/question/25845758?referrer=searchResults
#SPJ11
at the end of practice, there are 240 ounces of sports drink left in the cooler. every player had some sports drink from the cooler. based on the equation y = 648 - 24x, how many players were at practice?
10
15
17
21
Answer: 17 or C
Step-by-step explanation:
24 times 17 is 408 and 648 - 408 is 240 ounces
Alguien q pueda explicar esto
To add fractions with unlike denominators, we need to find the least common multiple of the denominators. In this case, the least common multiple of 3 and 4 is 12. So, we must find equivalents of each fraction with a denominator of 12.
How to add the fractions?To add fractions with unlike denominators, we need to find the least common multiple of the denominators. In this case, the least common multiple of 3 and 4 is 12. So, we must find equivalents of each fraction with a denominator of 12.
Multiplying the numerator and denominator of 2/3 by 4, we get 8/12. On the other hand, multiplying the numerator and denominator of 1/4 by 3, we get 3/12.
Therefore, we can rewrite the sum as:
8/12 + 3/12
And adding the numerators, we get:
11/12
So, 2/3 + 1/4 = 11/12.
The final answer is a proper fraction, which means that the numerator is less than the denominator, and can be further simplified if necessary.
Learn more about fractions at: https://brainly.com/question/10354322
#SPJ1
What is the volume of a rectangle when the length is 3 1/3 the width is 4 2/3 and the height is 25
To find the volume of a rectangle APR prism, you need to multiply its length, width, and height. In this case, the length is 3 1/3 (or 10/3) units, the width is 4 2/3 (or 14/3) units, and the height is 25 units.
So, the volume of the rectangle can be calculated as:
Volume = length x width x height
Volume = (10/3) x (14/3) x 25
Volume = 1166.67 cubic units (rounded to two decimal places)
Therefore, the volume of the rectangle with a length of 3 1/3, a width of 4 2/3, and a height of 25 is approximately 1166.67 cubic units.
To know more about volume of a rectangle refer here
https://brainly.com/question/13798973#
#SPJ11
There are 43 children at a school. they want to make teams with 8 children on each team for kickball. one of the children goes home. how many complete teams can they make? explain.
Answer:
They can make 5 complete teams of 8 children even after one child goes home.
Step-by-step explanation:
If there are 43 children and they want to make teams of 8, we can find out how many complete teams they can make by dividing the total number of children by the number of children per team:
43 ÷ 8 = 5 remainder 3This means that they can make 5 complete teams of 8 children, with 3 children left over.
However, since one child goes home, there are only 42 children left. We can repeat the division:
42 ÷ 8 = 5 remainder 2This means that they can make 5 complete teams of 8 children, with 2 children left over. Therefore, they can make 5 complete teams of 8 children even after one child goes home.
Please help asap! thank you!
solve the system of equations:
6x / 5 + y / 15 = 2.3
x / 10 - 2y / 3 = 1.2
(the slashes represent fractions.)
The solution of the given system of equations is x = 3.2 and y = 1.5.
To solve this system of equations, we can use the method of elimination, where we eliminate one of the variables by adding or subtracting the equations.
First, let's eliminate y by multiplying the first equation by 2 and the second equation by 15:
12x/5 + 2y/15 = 4.6 (multiply the first equation by 2)
3x/2 - 10y = 18 (multiply the second equation by 15)
Now we can eliminate y by multiplying the first equation by 5 and adding it to the second equation:
12x + y/5 = 23 (multiply the first equation by 5 and simplify)
12x - y = 54 (subtract the second equation from the previous equation)
Adding the two equations, we get:
24x = 77
Therefore, x = 77/24.
Substituting x = 77/24 into the first equation, we get:
6(77/24)/5 + y/15 = 2.3
Simplifying this equation, we get:
y = 1.5
To know more about system of equations, refer here:
https://brainly.com/question/21620502#
#SPJ11
What is the volume of a sphere with a radius of 2.5? answer in terms of pi
options:
-20 5/6π
-25π
-8 1/3π
-15 5/8π
[tex]8 \frac{1}{3} \pi[/tex]
Step-by-step explanation:
volume of a sphere = 4/3 pi r²
r = 2.5
4/3× pi× 2.5² = 25/3pi
25/3 as a mixed number is 8 and 1/3
therefore rhe answer is 8 and 1/3 pi
The water hose fills A bucket at 1/3 per minute how many minutes does it take to fill a 2 gallon bucket
It will take 6 minutes for the water hose to fill the 2-gallon bucket at a rate of 1/3 gallon per minute.
To determine the time required to fill a 2-gallon bucket using a water hose that fills at a rate of 1/3 gallon per minute, you can use a simple calculation.
First, identify the fill rate of the hose, which is 1/3 gallon per minute. Now, consider the bucket's capacity, which is 2 gallons. To find out how many minutes it takes to fill the bucket, divide the total capacity of the bucket by the fill rate:
Time (minutes) = Bucket capacity (gallons) / Fill rate (gallons per minute)
In this case:
Time (minutes) = 2 gallons / (1/3 gallons per minute)
To solve this, you can multiply the numerator and denominator by the reciprocal of the fill rate:
Time (minutes) = 2 gallons * (3 minutes per gallon)
Time (minutes) = 6 minutes
So, it will take 6 minutes for the water hose to fill the 2-gallon bucket at a rate of 1/3 gallon per minute.
To know more about fill rate, refer to the link below:
https://brainly.com/question/14821930#
#SPJ11
Determine the equation of the circle graphed below.
The equation of the circle graphed is given as follows:
(x + 1)² + (y + 3)² = 36.
What is the equation of a circle?The equation of a circle of center [tex](x_0, y_0)[/tex] and radius r is given by:
[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]
The radius of a circle represents the distance between the center of the circle and a point on the circumference of the circle.
The coordinates of the center of the circle are given as follows:
(-1, -3).
The radius of the circle is given as follows:
r = 6 units.
Then the equation of the circle is given as follows:
(x + 1)² + (y + 3)² = 36.
More can be learned about the equation of a circle at https://brainly.com/question/1506955
#SPJ1
the temperature is -7. Since midnight the temperature tripled and then rose 5 degrees. What was the temperature at midnight?
Taking the data into consideration, we can calculate and conclude that the temperature at midnight was -4, through the use of an equation.
How to find the temperatureAccording to the prompt, the temperature is now -7. We also know that, since midnight, the temperature tripled and then rose 5 degrees.If we let x be the temperature at midnight, then we can set up the following equation:
3x + 5 = -7
Subtracting 5 from both sides, we get:
3x = -12
Dividing by 3, we get:
x = -4
Therefore, the temperature at midnight was -4 degrees. With that in mind, we conclude we have correctly answered this question.
Learn more about equations here:
https://brainly.com/question/2972832
#SPJ1
Casey recently purchased a sedan and a pickup truck at about the same time for a new business. The value of the sedan S, in dollars, as a function of the number of years t after the purchase can be represented by the equation S(t)=24,400(0. 82)^t. The equation P(t)=35,900(0. 71)^t/2 represents the value of the pickup truck P, in dollars, t years after the purchase. Analyze the functions S(t) and P(t) to interpret the parameters of each function, including the coefficient and the base. Then use the interpretations to make a comparison on how the value of the sedan and the value of the pickup truck change over time
Answer: Specifically, the pickup truck has lost about 56% of its value compared to the initial value, while the sedan has lost about 58% of its value.
Step-by-step explanation:
The functions S(t) and P(t) represent the value of the sedan and pickup truck, respectively, as a function of time t in years since the purchase. Let's analyze each function:
For S(t)=24,400(0.82)^t, the coefficient 24,400 represents the initial value or starting point of the function. This means that the value of the sedan at the time of purchase was $24,400.
The base 0.82 represents the rate of depreciation or decrease in value of the sedan over time. Specifically, the sedan's value decreases by 18% per year (100% - 82%).
For P(t)=35,900(0.71)^t/2, the coefficient 35,900 represents the initial value or starting point of the function.
This means that the value of the pickup truck at the time of purchase was $35,900. The base 0.71 represents the rate of depreciation or decrease in value of the pickup truck over time.
Specifically, the pickup truck's value decreases by approximately 29% every two years, since the exponent is divided by 2.
Comparing the two functions, we can see that the initial value of the pickup truck was higher than the initial value of the sedan.
However, the rate of depreciation of the pickup truck is greater than that of the sedan. This means that the pickup truck will lose its value at a faster rate than the sedan.
For example, after 5 years, we can evaluate each function to see the values of the sedan and pickup truck at that time:
S(5) = 24,400(0.82)^5 ≈ $10,373.67
P(5) = 35,900(0.71)^(5/2) ≈ $15,864.48
We can see that after 5 years, the pickup truck is still worth more than the sedan, but its value has decreased by a greater percentage. Specifically, the pickup truck has lost about 56% of its value compared to the initial value, while the sedan has lost about 58% of its value.
To know more about initial value refer here
https://brainly.com/question/29081397#
#SPJ11
To solve 2x + 3 = 5, Sylvia first subtracted 5 from both sides. What did she do wrong?
Answer:the two sides still equal.
Step-by-step explanation:To solve 2x + 3 = 5, Sylvia first subtracted 5 from both sides. What did she do wrong? Because Sylvia did the same operation to both sides, the equation is still correct: the two sides still equal.
Answer:
1
Step-by-step explanation:
or, 2x=5-3
or, 2x=2
or, x=2/2
x=1