When you measure current, you are measuring the number of: c. Electrons that pass a point in one second.
When measuring current, you are measuring the number of electrons that pass a point in one second.
Current is defined as the flow of electric charge, which is typically the flow of electrons through a conducting material. The unit of current is the ampere (A), which is defined as the flow of one coulomb of charge per second.
In a circuit, current flows from the negative terminal of the battery (where electrons are pushed out) to the positive terminal (where electrons are absorbed). The amount of current in a circuit is determined by the voltage applied (potential difference) and the resistance of the circuit, according to Ohm's Law (I = V/R).
Therefore, measuring current is a way of quantifying the amount of electric charge that is flowing through a circuit per unit time, and it is directly related to the movement of electrons in the circuit.
To know more about Ohms law:
https://brainly.com/question/14296509
#SPJ11
What happens in a decomposition reaction? A. Two ions trade places. B. Two substances combine to form one substance. C. The charges of the atoms change. D. Compounds break down into smaller compounds.
A single compound decomposes into two or more smaller compounds or components during a decomposition reaction. Option D
A number of mechanisms, such as heat, light, or the addition of another molecule, can cause this. A significant quantity of potential energy is often held in the chemical bonds of the reactant component, and this energy is released during the reaction.
For instance, hydrogen peroxide's typical breakdown reaction involves the molecule dissolving into water and oxygen gas:
[tex]2H_2O_2 \rightarrow 2 H_2O + O_2[/tex]
The heat breakdown of calcium carbonate to produce calcium oxide and carbon dioxide gas is another illustration:
[tex]CaO + CO_2 = CaCO_3[/tex]
Decomposition reactions are crucial components of several chemical processes in both nature and industry. They are characterised by the dissolution of bigger molecules into smaller ones. Option D
For more such questions on Decomposition reactions
https://brainly.com/question/14608831
Which part of the sepal of a flower is most damaged by air pollution
The abaxial (lower) surface of the sepal is typically more damaged than the adaxial (upper) surface, as it is more exposed to pollutants in the air.
Air pollution can damage the sepal of a flower in various ways. Pollutants in the air can reduce the size and number of stomata, which are small pores that allow for gas exchange in the leaf tissue.
The concentration of minerals in the tissue can also be altered by pollution, which can affect plant growth and development. Additionally, air pollution can cause the cuticle, a waxy layer that covers the leaf surface, to become thicker. This can further restrict gas exchange and reduce photosynthesis.
Studies have shown that the abaxial surface of the sepal is typically more damaged by pollution than the adaxial surface. This is likely due to the fact that the abaxial surface is more exposed to pollutants in the air.
The stomata on the abaxial surface may close or become blocked due to the accumulation of pollutants, which can lead to reduced gas exchange and decreased photosynthesis. The thickening of the cuticle on the abaxial surface can further restrict gas exchange and exacerbate the effects of pollution.
To know more about Air pollution, refer here:
https://brainly.com/question/7671110#
#SPJ11
James has 250 g of water. he adds 10 g of salt, and stirs until it dissolves. what mass of solution does
he make?
its 6th grade cambridge its not difficult if your in 7th-8th grade
i do t understanddd
James makes a 260 g solution when he adds 10 g of salt to 250 g of water and stirs until it dissolves.
When James adds 10 g of salt to 250 g of water and stirs until it dissolves, he creates a solution.
A solution is a homogeneous mixture where one substance (the solute) is dissolved in another substance (the solvent). In this case, water is the solvent and salt is the solute. The mass of the resulting solution will be the sum of the mass of the solute and the mass of the solvent.
So, the mass of the resulting solution will be:
Mass of solution = Mass of water + Mass of salt
Mass of solution = 250 g + 10 g
Mass of solution = 260 g
Therefore, James makes a 260 g solution when he adds 10 g of salt to 250 g of water and stirs until it dissolves.
To know more about homogeneous mixture refer to-
https://brainly.com/question/30587533
#SPJ11
How many liters of CO2 are produced when 32. 6 liters
of propane gas, C3H3 reacts with excess oxygen at STP?
C3Hg + 502 + 4H20 + 3C02
Please help!!!
3.75 moles CO₂ × 22.4 L/mole = 84 liters of CO₂ are produced when 32.6 liters of propane gas reacts with excess oxygen at STP.
Based on the balanced equation provided, 1 mole of propane gas (C₃H₈) reacts with 5 moles of oxygen gas (O₂) to produce 3 moles of carbon dioxide gas (CO₂) at STP (Standard Temperature and Pressure, which is 0°C and 1 atm pressure).
To determine the number of moles of propane gas (C₃H₈) in 32.6 liters, we need to use the Ideal Gas Law:
PV = nRT
where P is the pressure (1 atm), V is the volume (32.6 L), n is the number of moles, R is the ideal gas constant (0.0821 L•atm/mol•K), and T is the temperature in Kelvin (273 K at STP).
Rearranging the equation to solve for n, we get:
n = PV/RT = (1 atm)(32.6 L)/(0.0821 L•atm/mol•K)(273 K) = 1.25 moles of C₃H₈
Since 1 mole of C₃H₈ produces 3 moles of CO₂, we can use a mole ratio to determine the number of moles of CO₂ produced:
1.25 moles C₃H₈ × 3 moles CO₂/1 mole C₃H₈ = 3.75 moles CO₂
Finally, we can convert moles to volume at STP using the molar volume of a gas:
1 mole of gas = 22.4 L at STP
So, 3.75 moles CO₂ × 22.4 L/mole = 84 liters of CO₂ are produced when 32.6 liters of propane gas reacts with excess oxygen at STP.
To know more about Ideal Gas Law :
https://brainly.com/question/13207402
#SPJ11
Question 3 & what is the hydronium concentration for a solution with a poh = 12.04 o -1.08 m o.98 m 0.011 m p o 1.96 m question 4 a solution is made by combining 2.5 moles of hf (ka 3,5 x 19 and 3.5 mol click save and submit to save and submit chick save asters to small ans
For question 3, we can use the relationship pH + pOH = 14 to solve for the pH, which is 1.96.
Then, we can use the equation Kw = [[H₃O⁺][OH⁻] = 1.0 x 10⁻¹⁴ to solve for the hydronium concentration, which is 5.01 x 10⁻¹³ M.
For question 4, we can use the equation for the acid dissociation constant (Ka) to solve for the concentration of the conjugate base, F-. Ka = [H₃O⁺][F⁻]/[HF].
We know the concentration of HF is 2.5 moles, so we can convert this to molarity using the volume of the solution. Then, we can plug in the values we have and solve for [F-], which is 2.77 M. This solution will be acidic, as the Ka value is less than 1.
To know more about acid dissociation constant click on below link:
https://brainly.com/question/4363472#
#SPJ11
Of the types of waves listed, which come naturally from the decay of radioactive
isotopes and are used in medicine for diagnostic imaging?
The type of waves that come naturally from the decay of radioactive isotopes and are used in medicine for diagnostic imaging are gamma rays.
Gamma rays are a type of electromagnetic radiation with the highest energy and shortest wavelength in the electromagnetic spectrum. They are produced naturally by the decay of radioactive isotopes, such as uranium and radon, and are also emitted during nuclear reactions and explosions.
In medicine, gamma rays are used in a diagnostic imaging technique called gamma-ray spectroscopy, which detects and measures gamma rays emitted by radioactive isotopes in the body. This technique can be used to diagnose various conditions, such as cancer and heart disease, by identifying areas of the body with abnormal radioactive activity.
Gamma rays are also used in radiation therapy to treat cancer. In this treatment, high-energy gamma rays are directed at cancerous cells to damage and kill them. However, the high energy of gamma rays can also damage healthy cells, so careful targeting and dose management is necessary to minimize side effects.
To know more about the Radioactive, here
https://brainly.com/question/23124423
#SPJ4
∆E = −33 kJ/mol Ea = 20 kJ/mol What is E a′ ?
Answer in units of kJ/mol.
The activation energy (Ea) is the minimum energy required for a reaction to occur, and it is defined as the energy difference between the reactants and the activated complex or transition state. In an exothermic reaction, the products have lower energy than the reactants, so the change in energy (∆E) is negative.
The activation energy of the forward reaction is given as 20 kJ/mol. This means that 20 kJ/mol of energy must be provided to the reactants to reach the activated complex and initiate the forward reaction.
To find the activation energy of the reverse reaction (Ea′), we can use the equation:
Ea′ = Ea + ∆E
where Ea is the activation energy of the forward reaction and ∆E is the change in energy of the reaction. Since we are given ∆E as -33 kJ/mol, which represents the change in energy for the forward reaction, we can substitute the values and solve for Ea′.
Plugging in the given values, we get:
Ea′ = 20 kJ/mol + (-33 kJ/mol)
Ea′ = -13 kJ/mol
Therefore, the activation energy of the reverse reaction (Ea′) is -13 kJ/mol. This negative value means that the reverse reaction has a lower activation energy than the forward reaction, which is consistent with the fact that the reaction is exothermic. A lower activation energy for the reverse reaction means that it is easier for the products to convert back to the reactants, which is why exothermic reactions tend to be more favorable in the forward direction.
For more questions on: energy
https://brainly.com/question/13881533
#SPJ11
At high altitudes, pressure decreases to 0. 5 atm. Non-smokers can breathe 7. 2L of air per minute. How many liters of air can they breathe at sea level? (1 atm)
Non-smokers can breathe 3.6 liters of air per minute at sea level (1 atm).
At high altitudes, pressure decreases to 0.5 atm. Non-smokers can breathe 7.2L of air per minute. How many liters of air can they breathe at sea level? (1 atm)
To answer this question, we will use the Boyle's Law, which states that the product of pressure (P) and volume (V) is constant for a given amount of gas at a constant temperature. In this case, we have two different pressure conditions: high altitudes (0.5 atm) and sea level (1 atm).
We are given the volume of air breathed at high altitudes (7.2L) and asked to find the volume at sea level.
Step 1: Write down the given information:
P1 = 0.5 atm (pressure at high altitudes)
V1 = 7.2L (volume of air breathed at high altitudes)
P2 = 1 atm (pressure at sea level)
V2 = ? (volume of air breathed at sea level; this is what we need to find)
Step 2: Apply Boyle's Law:
P1 × V1 = P2 × V2
Step 3: Plug in the given values and solve for V2:
(0.5 atm) × (7.2L) = (1 atm) × V2
Step 4: Solve for V2:
V2 = (0.5 × 7.2) / 1
V2 = 3.6L
So, non-smokers can breathe 3.6 liters of air per minute at sea level (1 atm).
To know more about Non-smokers, visit:
https://brainly.com/question/13575402#
#SPJ11
Elemental silicon is oxidized by o2 to give a compound which dissolves in molten na2co3. When this solution is treated with aqueous hydrochloric acid, a precipitate forms. What is the precipitate
The precipitate that forms when the solution of the compound produced from the oxidation of elemental silicon in the presence of O₂ and dissolving in molten Na₂CO₃ is treated with aqueous hydrochloric acid is likely to be silicon dioxide. The oxidation of elemental silicon results in the formation of silicon dioxide, which is soluble in molten Na₂CO₃, but when the solution is treated with aqueous hydrochloric acid, silicon dioxide will precipitate out. This reaction can be explained by the fact that hydrochloric acid reacts with the Na₂CO₃ to form H₂O, CO₂, and NaCl, which allows the silicon dioxide to no longer remain in the solution, leading to its precipitation.
Here is the step-by-step solution:
1. Elemental silicon (Si) reacts with O₂ to form silicon dioxide (SiO₂): Si + O₂ → SiO₂.
2. SiO₂ dissolves in molten Na₂CO₃, forming sodium silicate (Na₂SiO₃) and carbon dioxide (CO₂): SiO₂ + Na₂CO₃ → Na₂SiO₃ + CO2.
3. When the sodium silicate solution is treated with aqueous hydrochloric acid (HCl), silicon dioxide (SiO₂) precipitates out, and sodium chloride (NaCl) and water (H₂O) are formed: Na₂SiO₃ + 2HCl → SiO₂ (precipitate) + 2NaCl + H₂O.
Learn more about precipitate at https://brainly.com/question/14330965
#SPJ11
What is the strongest type of intermolecular forces present between the hydrocarbon chains of neighboring stearic acid molecules?.
The strongest type of intermolecular force present between the hydrocarbon chains of neighboring stearic acid molecules is the van der Waals dispersion force, also known as London dispersion force.
This force arises due to temporary dipoles that are created by the random motion of electrons in the molecule. These temporary dipoles induce similar dipoles in the neighboring molecules, leading to an attractive force between them.
In stearic acid, the hydrocarbon chain is nonpolar, which means that there are no permanent dipoles in the molecule. However, the electrons in the molecule are not always distributed symmetrically, leading to temporary dipoles that can induce similar dipoles in other stearic acid molecules.
The strength of the van der Waals force depends on the size of the molecule and the number of electrons in it. Stearic acid has a relatively long hydrocarbon chain, which means that it has a large surface area and a large number of electrons, making the van der Waals force between its molecules relatively strong.
To know more about London dispersion force refer to-
https://brainly.com/question/20514601
#SPJ11
What would be expected effects on people if alpine and tidewater glaciers melted?
The expected effects on the people if the alpine and the tidewater glaciers melted is the melting the glaciers add to the rising sea levels.
The melting glaciers add to the rising sea levels, which in the turn will increases the coastal erosion and the elevates storm to surge the warming air and the ocean temperatures that will create the more frequent and the intense coastal storms such as the hurricanes and the typhoons.
The glaciers has been the melting for the decades because of the climate warming and therefore the monitoring of it is very important. The melting of the alpine and the tidewater glacier rises the sea level.
To learn more about glacier here
https://brainly.com/question/20858515
#SPJ1
Describe an experiment that can be conducted to show that living materials contain water
One simple experiment that can be conducted to demonstrate that living materials contain water is heating of simple matter.
What is the experiment to demonstrate presence of water?The following experimental procedure deminstrates the presence of water on living matter.
Collect a sample of plant leaf Weigh the sample and record its initial weight.Place the sample in a dry, airtight container and heat it in an ovenRemove the container from the oven and allow it to cool to room temperature in a desiccator.Weigh the sample again and record its final weight.If the sample contains water, the final weight will be less than the initial weight, indicating that some of the water has been lost due to the heating process.
Learn more about experiments here: https://brainly.com/question/26117248
#SPJ1
Determine the ph of a 0. 227 m c5h5n solution at 25°c. The kb of c5h5n is 1. 7 × 10^-9.
The pH of the 0.227 M C₅H₅N solution at 25°C is 9.3.
The equilibrium expression for the reaction of C₅H₅N with water:
C₅H₅N + H₂O ⇌ C₅H₅NH⁺ + OH.
The Kb for C₅H₅N is given as 1.7 × 10⁻⁹, so we can use this value to calculate the concentration of OH⁻ in the solution. First, we need to calculate the concentration of C₅H₅N that has dissociated:
Kb = [C₅H₅NH⁺][OH⁻]/[C₅H₅N]
1.7 × 10⁻⁹ = [C₅H₅NH⁺][OH⁻]/0.227
Solving for [OH⁻], we get:
[OH⁻] = √(Kb[C₅H₅N]/[C₅H₅NH⁺])
= √[(1.7 × 10⁻⁹)(0.227)/x]
= 2.0 × 10⁻⁵ M
The concentration of H⁺ ions in the solution. Since the solution is not neutral (it is basic), we know that [OH⁻] > [H⁺], so we can use the equation:
Kw = [H⁺][OH⁻]
1.0 × 10⁻¹⁴ = [H⁺](2.0 × 10⁻⁵)
Solving for [H⁺], we get:
[H⁺] = 5.0 × 10⁻¹⁰ M
Finally, we can use the equation:
pH = -㏒[H⁺]
to calculate the pH of the solution:
pH = -㏒(5.0 × 10⁻¹⁰)
= 9.3
At 25°C, the pH of the 0.227 M C₅H₅N solution is 9.3.
To know more about the Solution, here
https://brainly.com/question/31744670
#SPJ4
Typical household bleach has a ph of 13. what is the h3o concentration in household bleach?
A pH of 13 indicates a highly basic solution. To calculate the H3O+ concentration in household bleach, we can use the following formula:
pH = -log[H3O+]
Rearranging the formula, we get:
[H3O+] = 10^(-pH)
Substituting pH = 13 into the formula, we get:
[H3O+] = 10^(-13)
[H3O+] = 1 x 10^(-13) mol/L
Therefore, the H3O+ concentration in household bleach is approximately 1 x 10^(-13) mol/L.
To know more about indicates refer here
https://brainly.com/question/26097343#
#SPJ11
C₂H5OH +202 → 2CO2 + 3H₂O + 1367 kJ
What is the ratio between ethanol
and energy of the reaction?
? mole C₂H5OH
kJ
Fill in the green blank.
The ratio between ethanol and energy in this reaction is 1 mole of C₂H5OH which is 1367 kJ.
What is the ratio of a chemical equation?A mole ratio is described as the ratio between the amounts in moles of any two compounds involved in a balanced chemical reaction.
The balanced chemical equation should be able to provide a comparison of the ratios of the molecules necessary to complete the reaction.
In the molar ratio method, a property of a solution is plotted against the molar ratio of the two reactants, the concentration of one being kept constant.
Learn more about mole ratio at:
https://brainly.com/question/30632038
#SPJ1
Answer:
Explanation:
its 1:-1367 you got it right but you need to put the - sign :)
Constellations are not visible on Earth during the day because? a) the Earth is turned away from them b) the Sun's light makes them impossible to see c) the Earth is on the opposite side of the Sun d) the constellations have revolved to the other side of the Sun
Answer: b
Explanation: because the light-scattering properties of our atmosphere spread sunlight across the sky. seeing the dim light of a distant star in the blanket of photons from our Sun becomes as difficult as spotting a single snowflake in a blizzard.
When magnesium chlorate (Mg(ClO3)2 is decomposed, oxygen gas and magnesium chloride are produced. What volume of oxygen gas at STP is produced when 3. 81 g of Mg(ClO3)2 decomposes?
The volume of oxygen gas produced at STP when 3.81 g of Mg(ClO₃)₂ decomposes is 0.511 L.
When magnesium chlorate (Mg(ClO₃)₂) is decomposed, oxygen gas and magnesium chloride are produced. To find the volume of oxygen gas at STP when 3.81 g of Mg(ClO₃)₂ decomposes, follow these steps:
1. Write the balanced chemical equation for the decomposition of magnesium chlorate:
Mg(ClO₃)₂ (s) → 2ClO₂ (g) + MgCl₂ (s)
2. Calculate the molar mass of Mg(ClO₃)₂:
Mg: 24.31 g/mol
Cl: 35.45 g/mol (2 Cl atoms)
O: 16.00 g/mol (6 O atoms)
Total: 24.31 + (2 x 35.45) + (6 x 16.00) = 167.21 g/mol
3. Determine the moles of Mg(ClO₃)₂:
Moles = (mass of Mg(ClO₃)₂) / (molar mass of Mg(ClO₃)₂)
Moles = 3.81 g / 167.21 g/mol ≈ 0.0228 mol
4. Use the balanced equation to find the moles of oxygen gas produced:
From the equation, 1 mol of Mg(ClO₃)₂ produces 1 mol of O₂. Therefore, 0.0228 mol of Mg(ClO₃)₂ will produce 0.0228 mol of O₂.
5. Use the molar volume of a gas at STP (22.4 L/mol) to find the volume of O₂ produced:
Volume of O₂ = (moles of O₂) x (molar volume at STP)
Volume of O₂ = 0.0228 mol x 22.4 L/mol ≈ 0.511 L
To know more about volume of oxygen gas at STP :
https://brainly.com/question/21360097
#SPJ11
About 2. 0 billion years ago, complex organisms began to inhabit Earth. These complex organisms developed primarily because of -
F- the eruption of volcanoes
G- changes in atmospheric gases
H- the impact of comets
J- sunlight being absorbed by land
( THIS IS EARTH SCIENCE!!!)
About 2.0 billion years ago, the atmosphere of the Earth was rich in carbon dioxide and lacked oxygen. The correct answer is G.
However, over time, photosynthetic organisms like cyanobacteria began to evolve and release oxygen into the atmosphere.
This event, known as the Great Oxygenation Event, fundamentally altered the chemistry of the Earth's atmosphere and allowed for the development of complex organisms. The availability of oxygen facilitated the evolution of aerobic respiration, which allowed for more efficient energy production and the development of complex, multicellular organisms.
Therefore, the primary reason for the development of complex organisms about 2.0 billion years ago was the changes in atmospheric gases, specifically the increase in atmospheric oxygen.
The eruption of volcanoes and the impact of comets may have also played a role in the evolution of life on Earth, but the changes in atmospheric gases were the driving force behind the development of complex organisms.
The correct answer is G.
To know more about atmosphere refer to-
https://brainly.com/question/26767532
#SPJ11
PLEASE HELP!!!!
If the sun heats my car from a temperature of 293K to a temperature of 338K, what will the pressure inside my car be? Assume the pressure was initially 1 atm.
The pressure inside the car will be approximately 1.16 atm after the temperature increase.
In the solution to this question, we can assume that the temperature increase is isobaric (constant pressure), so we can use the ideal gas law to calculate the final pressure of the car:
PV=nRT
where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
We know that the amount of gas in the car will remain constant, so we can write:
[tex]P_1V = nRT_1[/tex]
and
[tex]P_2V = nRT_2[/tex]
where [tex]P_1[/tex] and [tex]T_1[/tex] are the initial pressure and the temperature, whereas [tex]P_2[/tex] and [tex]T_2[/tex] are the final pressure and temperature of the car.
We are given that [tex]P_1[/tex]=1 atm, [tex]T_1[/tex]=293 K, and [tex]T_2[/tex] = 338 K. We need to find the pressure [tex]P_2[/tex]:
We can say that [tex]P_2 = (P_1 T_2/ T_1)[/tex];
= (1 atm)(338 K/293 K)
= 1.16 atm
So, the pressure inside the car will be approximately 1.16 atm after the temperature increase.
Learn more about Ideal Gas law at:
https://brainly.com/question/25290815
#SPJ1
what should you do when working with a heat source? always assume that glassware and metal objects are hot. with a volatile chemical? work in the fume hood with a bottle containing a chemical? all of these
When working with a heat source, one should always assume that glassware and metal objects are hot. Option A is correct.
Working with a heat source requires special precautions to ensure safety in the laboratory. Heat sources such as Bunsen burners, hot plates, and ovens can generate high temperatures that can cause burns or fires if not handled properly. One important safety rule when working with a heat source is to assume that glassware and metal objects are hot.
This means that one should avoid touching or handling these objects without protective equipment, even if they appear to be cool or inactive. This is because they may still be hot from exposure to the heat source and can cause burns or injuries. Other safety measures when working with a heat source include using appropriate personal protective equipment, such as heat-resistant gloves and safety goggles, and ensuring good ventilation in the laboratory to prevent exposure to fumes or volatile chemicals. Option A is correct.
What should you do when working with a heat source?
Always assume that glassware and metal objects are hot. With a volatile chemicalWork in the fume hood with a bottle containing a chemicalAll of theseTo know more about the Glassware, here
https://brainly.com/question/31039573
#SPJ4
How many grams of K2SO4 should be used to prepare 2. 25 L of a 0. 400 M solution
We need 157 grams of K₂SO4 to prepare 2.25 L of a 0.400 M solution.
To calculate the grams of K₂SO4 needed to prepare a 0.400 M solution in 2.25 L, we need to use the formula:
moles = Molarity x Volume
First, we can calculate the moles of K₂SO4 required:
moles = 0.400 mol/L x 2.25 L = 0.90 moles
Next, we can use the molar mass of K₂SO4 to convert the moles to grams:
molar mass of K₂SO4 = 2 x (39.10 g/mol for K) + 1 x (32.06 g/mol for S) + 4 x (16.00 g/mol for O) = 174.24 g/mol
grams = moles x molar mass = 0.90 moles x 174.24 g/mol = 157 g
To know more about molar mass, refer here:
https://brainly.com/question/30767425#
#SPJ11
My teacher gave me this question for homework need help
A copper sulfate solution contained 0. 100 moles of copper sulfate dissolved in 0. 500 dm3 of water. Calculate the mass of copper sulfate in 30. 0 cm3 of this solution. Relative formula mass (Mr): CuSO4 = 159. 5
The mass of copper sulfate in 30.0 cm3 of this solution is 0.957 g.
The concentration of the copper sulfate solution is given by:
c = n ÷ V
c = 0.100 mol/0.500 dm³
c = 0.200 mol/dm³
To calculate the mass of copper sulfate in 30.0 cm³ of this solution, we first need to calculate the number of moles of copper sulfate in this volume:
n = c x V
n = 0.200 mol/dm³ x (30.0 cm³ ÷ 1000 cm³/dm³)
n = 0.006 mol
The mass of copper sulfate can be calculated using its molar mass:
m = n x Mr
m = 0.006 mol x 159.5 g/mol
m = 0.957 g
To learn more about copper follow the link:
brainly.com/question/22560035
#SPJ4
why graphite is a non metal yet it conducts electricity
Because the fourth electron of each carbon atom is unbound, graphite conducts electricity. As a result of the existence of free electrons in the structure, we may deduce that graphite is an excellent conductor of electricity.
Given the equation: 2C2H2 + 5O2 → 4CO2 + 2H2O How many grams of C2H2 are required to react completely with 2. 0 mole of O2?
20.8 grams of C2H2 are required to react completely with 2.0 moles of O2.
The balanced chemical equation is: [tex]2C2H2 + 5O2 → 4CO2 + 2H2O[/tex]
The stoichiometry of the balanced equation shows that 2 moles of C2H2 react with 5 moles of O2 to produce 4 moles of CO2 and 2 moles of H2O.
Therefore, the mole ratio of C2H2 to O2 is 2:5.
If 2.0 moles of O2 are completely reacted, then the required moles of C2H2 can be calculated as follows:
2.0 mol O2 x (2 mol C2H2/5 mol O2) = 0.8 mol C2H2
Now, we can use the molar mass of C2H2 to calculate the mass required:
0.8 mol C2H2 x 26.04 g/mol = 20.8 g C2H2
Therefore, 20.8 grams of C2H2 are required to react completely with 2.0 moles of O2.
To know more about stoichiometry refer to-
https://brainly.com/question/30215297
#SPJ11
What valume of 0.1mol /dm hydrochloric acid will be required to neutralized 20cm of 2.0mol/dm sodium hydroxide?
0.21 dm³ of 0.1 mol/dm³ hydrochloric acid is required to neutralize 20 cm³ of 2.0 mol/dm³ sodium hydroxide.
The volume of 0.1 mol/dm³ hydrochloric acid required to neutralize 20 cm³ of 2.0 mol/dm³ sodium hydroxide can be calculated using the formula:
Volume of acid = (Volume of alkali x Concentration of alkali x Molar mass of acid) / (Molar mass of alkali x Concentration of acid)
Firstly, we need to convert the volume of alkali from cm³ to dm³, which gives us 0.02 dm³. The molar mass of hydrochloric acid (HCl) is 36.5 g/mol, and the molar mass of sodium hydroxide (NaOH) is 40 g/mol.
Substituting these values and the given concentrations into the formula, we get:
Volume of acid = (0.02 x 2.0 x 40) / (36.5 x 0.1) = 0.21 dm³
To know more about hydrochloric acid, refer here:
https://brainly.com/question/15102013#
#SPJ11
Which of the following equations illustrates the law of conservation of
matter?
A. 4AI + 0₂ → 2Al2O3
B. 2Al + 0₂ → Al₂O3
C. 4AI +30₂ → 2Al₂O3
D. 2Al +302 → Al₂O3
Answer:
C
Explanation:
First of all, the law of conservation of matter states that " In an ordinary chemical reaction, the mass of the products is equal to the mass of the reactants."
So, the answer should be C since the mass of Al and O₂ is equal on both the reactant's and product's side.
4Al + 3O₂ → 2Al₂O₃
Reactants Side: 4 aluminum and 6(3*2) oxygen
Products Side: 4(2*2) aluminum and 6(2*3) oxygen
1. )There are Blank 1 grams in one mole of KI. Please round atomic masses to the nearest whole number.
2. )There are Blank 1 grams in one mole of ZnCl2. Please round atomic masses to the nearest whole number.
3. )The molar mass of P2O5 is Blank 1 grams per mole. Please round atomic masses to the nearest whole number.
4. )The molar mass of barium cyanide is Blank 1 grams per mole. Please round atomic masses to the nearest whole number.
5. )The molar mass of nickel (I) chromate is Blank 1 grams per mole. Please round atomic masses to the nearest whole number
Calculate the mass (in grams) of an ionic compound (molar mass 153. 5g/mol) that is dissolved
in 100 g H2O if the 0. 531 M solution formed has a density of 1. 094 g/mL.
The mass of the ionic compound dissolved in 100 g of water is 7.44 grams.
To solve this problem, we need to use the formula:
m = n x M x MW
where m is the mass of the compound in grams, n is the number of moles of the compound, M is the molarity of the solution, and MW is the molar mass of the compound.
First, we need to calculate the number of moles of the compound dissolved in 100 g of water:
density of solution = mass of solution / volume of solution
volume of solution = mass of solution / density of solution = 100 g / 1.094 g/mL = 91.29 mL = 0.09129 L
moles of compound = M x volume of solution = 0.531 mol/L x 0.09129 L = 0.0485 mol
Now, we can calculate the mass of the compound:
m = n x M x MW = 0.0485 mol x 153.5 g/mol = 7.44 g
Therefore, the mass of the ionic compound dissolved in 100 g of water is 7.44 grams.
To know more about ionic compound refer to-
https://brainly.com/question/3222171
#SPJ11
In the reaction h ─ h ⟶ h + h, what describes an average energy change of 436 kj/mol? (h2 + 436 kj/mol → 2 h ):
a. the energy will be required as bonds are being broken.
b. the energy will be required as bonds are being formed.
c. the energy will be released as bonds are being broken.
d. the energy will be released as bonds are being formed
In the reaction H─H ⟶ H + H, with an average energy change of 436 kJ/mol (H2 + 436 kJ/mol → 2 H), the correct description is:
a. The energy will be required as bonds are being broken.
When a chemical reaction involves breaking bonds, energy is typically required to overcome the attractive forces holding the atoms together in the molecule. Breaking a covalent bond requires an input of energy, as the atoms involved need to move apart and overcome their mutual attraction.
In the case of the reaction H─H ⟶ H + H, the hydrogen molecule (H2) is composed of two hydrogen atoms held together by a covalent bond. In order to separate the two hydrogen atoms and form two individual hydrogen atoms, the covalent bond must be broken.
This requires an input of energy to overcome the bond's strength and break the attractive forces between the atoms.
The given average energy change of 436 kJ/mol indicates the amount of energy required to break one mole of hydrogen molecules into individual hydrogen atoms. This energy is needed to disrupt the H─H bond and separate the atoms.
Therefore, the correct description for this reaction is that energy will be required as bonds are being broken.
To learn more about hydrogen, refer below:
https://brainly.com/question/28937951
#SPJ11
Regardless of the electron or hydrogen acceptor used, one of the products of fermentation is always:.
The product of fermentation that is always produced regardless of the electron or hydrogen acceptor used is ethanol (C2H5OH) or lactic acid (C3H6O3) depending on the type of fermentation.
Fermentation is a metabolic process that occurs in the absence of oxygen and involves the breakdown of glucose or other organic compounds by microorganisms.
It is a type of anaerobic respiration, which does not require oxygen as the final electron acceptor. During fermentation, the organic compounds are partially oxidized, and the energy released is used to generate ATP, the energy currency of cells.
Different microorganisms can carry out fermentation using different electron or hydrogen acceptors, such as pyruvate, acetaldehyde, or acetyl-CoA.
However, regardless of the acceptor used, the end products are typically ethanol or lactic acid, along with carbon dioxide and small amounts of other byproducts.
To know more about fermentation refer to-
https://brainly.com/question/31310689
#SPJ11