Which bonds are stronger: the bonds formed or the bonds broken?

Answers

Answer 1

The strength of bonds formed and broken depends on the specific chemical reaction involved. In some reactions, the bonds formed are stronger than the bonds broken, while in other reactions, the opposite is true.

When a chemical reaction is exothermic, meaning that it releases energy, the bonds formed are typically stronger than the bonds broken. This is because energy is released when the bonds are formed, indicating that they are more stable and stronger than the bonds that were broken.

On the other hand, in an endothermic reaction, meaning that it absorbs energy, the bonds broken are usually stronger than the bonds formed. This is because energy is required to break the existing bonds, indicating that they are stronger and more stable than the new bonds that are formed.

To know more about chemical reaction, refer here:

https://brainly.com/question/29762834#

#SPJ11


Related Questions

Alanine is also a_____amino acid and would have similar _____of leucine.

Thus, enzyme activity should be maintained because the ____ should not undergo major change.

Protein structure

protein function

interaction to those

polar acidic

polar basic

function to that

nonpolar

Answers

Alanine is also a non-polar amino acid and would have similar Protein structure of leucine. Thus, enzyme activity should be maintained because the polar basic should not undergo major change.

Alanine is an amino acid this is used to make proteins. It is used to interrupt down tryptophan and nutrition B-6. It is a supply of power for muscular tissues and the principal frightened gadget. It strengthens the immune gadget and allows the frame use sugars. Alanine is a nonacidic α-amino acid. Its aspect chain (a methyl group) is neither acidic (it isn't greater acidic than water) nor basic (it does now no longer have a nitrogen atom lone pair that isn't delocalized via way of means of resonance).

To learn more about amino acid check the link below-

https://brainly.com/question/14351754

#SPJ4

Question 1 (2 points)


2. 5 L of a gas is heated from 200 K to 300 K. What is the final volume of the gas?

Answers

The final volume of the gas is 3.75 L. This result can be explained by the fact that as the temperature of the gas increased, the kinetic energy of its particles also increased, causing them to move faster and occupy a larger volume.

According to the ideal gas law, PV = nRT, the volume of a gas is directly proportional to its temperature.

Therefore, if the temperature of a gas is increased while its pressure and amount remain constant, its volume will also increase.

In this case, the initial volume of the gas is 2.5 L and its temperature is increased from 200 K to 300 K. To find the final volume of the gas, we can use the following equation:

V2 = (T2/T1) x V1

where V1 is the initial volume of the gas, T1 is the initial temperature of the gas, T2 is the final temperature of the gas, and V2 is the final volume of the gas. Plugging in the values, we get:

V2 = (300 K/200 K) x 2.5 L

V2 = 3.75 L

to know more about ideal gas law refer here:

https://brainly.com/question/28257995#

#SPJ11

A 4 L sample of gas at 30 degrees celcius and 1 atm is changed to 0 degrees celcius and 800torr. What is its new volume?

Answers

A 4 L sample of gas at 30 degrees celcius and 1 atm is changed to 0 degrees celcius and 800torr. 4.51 L is its new volume.

To solve this problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas.

[tex]P1V1/T1 = P2V2/T2[/tex]

where P1, V1, and T1 are the initial conditions, and P2, V2, and T2 are the final conditions.

Substituting the given values, we get:

[tex]\left(\frac{{1 , \text{atm} \cdot 4 , \text{L}}}{{303 , \text{K}}}\right) = \left(\frac{{0.8 , \text{atm} \cdot V2}}{{273 , \text{K}}}\right)[/tex]

Solving for V2, we get:

[tex]V2 = \frac{{1 , \text{atm} \cdot 4 , \text{L} \cdot 273 , \text{K}}}{{303 , \text{K} \cdot 0.8 , \text{atm}}} = 4.51 , \text{L}[/tex]

Therefore, the new volume of the gas is 4.51 L when the temperature is changed from 30 degrees Celsius to 0 degrees Celsius and the pressure is changed from 1 atm to 800 torr.

To know more about the sample of gas refer here :

https://brainly.com/question/13137455#

#SPJ11

A 75.0 ml volume of 0.200 m nh3 (kb = 1.8 * 10^-5) is titration with 0.500 m hno3. calculate the ph after the addition of 19.0 ml of hno3

Answers

The pH after the addition of 19.0 ml of 0.500 M HNO₃ to a 75.0 ml volume of 0.200 M NH₃ (Kb = 1.8 * 10⁻⁵) is 9.11.

1. Calculate moles of NH₃ and HNO₃: moles NH₃ = 75.0 ml * 0.200 mol/L = 15.0 mmol, moles HNO₃ = 19.0 ml * 0.500 mol/L = 9.5 mmol


2. Find moles of NH₃ remaining: 15.0 mmol - 9.5 mmol = 5.5 mmol


3. Calculate new concentrations: [NH₃] = 5.5 mmol / (75.0 ml + 19.0 ml) = 0.055 mol/L, [NH₄⁺] = 9.5 mmol / (75.0 ml + 19.0 ml) = 0.095 mol/L


4. Apply the Henderson-Hasselbalch equation: pH = pKa + log([NH₃]/[NH₄⁺])


5. Find pKa from Kb: pKa = 14 - log(Kb) = 14 - log(1.8 * 10⁻⁵) = 9.74


6. Calculate pH: pH = 9.74 + log(0.055/0.095) = 9.11

To know more about Henderson-Hasselbalch equation click on below link:

https://brainly.com/question/13423434#

#SPJ11




A 100. -gram sample of liquid water is heated from 20. 0°C to 50. 0°C. Enough KCIO3(s) is dissolved in the sample of water at 50. 0°C to form a saturated solution.


Based on Table G, determine the mass of KClO3(s) that must dissolve to make a saturated solution in 100. G of H20 at 50. 0°C

Answers

A 100 gram sample of liquid water is heated from 20. 0°C to 50. 0°C, the mass of [tex]KClO_3[/tex](s) that must dissolve to make a saturated solution in 100 g of H2O at 50.0°C is 60 grams.

Table G must be consulted to establish the mass of [tex]KClO_3[/tex](s) that must dissolve to form a saturated solution in 100 g of H2O at 50.0°C.

According to the table, the solubility of  [tex]KClO_3[/tex] at 48°C is 60 grammes of  [tex]KClO_3[/tex] per 100 grammes of [tex]H_2O[/tex]. We must examine the solubility at 48°C since the water is heated from 20.0°C to 50.0°C.

Therefore, the mass of  [tex]KClO_3[/tex](s) that must dissolve to make a saturated solution in 100 g of  [tex]H_2O[/tex] at 50.0°C is 60 grams.

For more details regarding solubility, visit:

https://brainly.com/question/31493083

#SPJ12

Your question seems incomplete, the probable complete question is:

A 100. -gram sample of liquid water is heated from 20. 0°C to 50. 0°C. Enough KCIO3(s) is dissolved in the sample of water at 50. 0°C to form a saturated solution.

Based on Table G, determine the mass of KClO3(s) that must dissolve to make a saturated solution in 100. G of H20 at 50. 0°C

Chemical equilibrium is a dynamic process. What does this mean?

1. Nothing is changing.

2. There are multiple reactants and products involved in the chemical reaction.

3. It appears as though nothing is happening, but there is constant change occurring.

4.The reaction has reached completion and stopped reacting.

Answers

Answer: 3. It appears as though nothing is happening, but there is constant change occurring.

Explanation:

equilibrium is the state when the changes cancel each other, and the net change is 0.

think of it like a stalemate in tug of war; both people are pulling, but you wont see anything change, because their forces are equal and in opposite direction :)

What is the density of ammonia (in g/L) at 646 torr and 10°C? *


Molar Mass of Ammonia = 17. 04


R = ((0. 0821 atm*L)/(mol*k)

Answers

To find the density of ammonia (NH3) at 646 torr and 10°C, we need to use the Ideal gas law equation:

PV = nRT

Where R is the gas constant, n is the number of moles, P is pressure, V is volume, and T is temperature in Kelvin.

We must first change the pressure from torr to atm:

646 torr = 0.852 atm

The temperature is then changed from Celsius to Kelvin:

10°C + 273.15 = 283.15 K

Now, we can rearrange the ideal gas law equation to solve for density (d):

d = (PM) / (RT)

M is the ammonia's molar mass.

With the supplied values and constants, we obtain:

d = (0.852 atm)(17.04 g/mol) / ((0.0821 atm*L)/(mol*K))(283.15 K)

d = 0.736 g/L

Therefore, the density of ammonia at 646 torr and 10°C is 0.736 g/L.

What do you mean by density of ammonia?

The density of ammonia refers to the mass of ammonia gas per unit volume. The standard temperature and pressure (STP), which is defined as a temperature of 0 degrees Celsius (273.15 Kelvin) and a pressure of 1 atmosphere (101.325 kilopascals or 760 millimeters of mercury), is used to measure the density of ammonia, a colorless gas that is lighter than air.

At STP, the density of ammonia gas is approximately 0.771 grams per liter (g/L) or 0.771 kilograms per cubic meter (kg/m3). However, the density of ammonia can vary depending on the temperature, pressure, and other factors such as the presence of impurities or moisture.

The density of ammonia is an important property in many applications, particularly in the chemical industry. It is used to calculate the amount of ammonia needed for a particular reaction or process, and can also be used to determine the mass or volume of ammonia gas in a storage tank or container.

To know more about density of ammonia:

https://brainly.com/question/31426126

#SPJ11

an aqueous magnesium chloride solution is made by dissolving 7.39 7.39 moles of mgcl2 mgcl 2 in sufficient water so that the final volume of the solution is 3.10 l 3.10 l . calculate the molarity of the mgcl2 mgcl 2 solution.

Answers

The molarity of the magnesium chloride solution is 2.38 M. This means that there are 2.38 moles of magnesium chloride per liter of solution.

The molarity is defined as the number of moles of the solute per liter of the solution. In this problem, we are given the moles of magnesium chloride (7.39 moles) and the final volume of the solution (3.10 L). We can use the formula Molarity = moles of solute / volume of solution to calculate the molarity of the magnesium chloride solution.

First, we divide the moles of magnesium chloride by the volume of the solution in liters:

[tex]Molarity = 7.39 moles / 3.10 L[/tex]

[tex]Molarity = 2.38 M[/tex]

To know more about magnesium chloride, here

brainly.com/question/15296925

#SPJ4

How many liters of a 0. 26 M solution of K2(MnO4) would contain 75 g of K2(MnO4)?​

Answers

1.35 liters of a 0.26 M solution of K2(MnO4) would contain 75 g of K2(MnO4).

To determine the volume of a 0.26 M solution of K2(MnO4) needed to contain 75 g of K2(MnO4), we need to use the formula:

Molarity (M) = moles of solute / volume of solution (L)

First, convert the mass of K2(MnO4) to moles using its molar mass:

Molar mass of K2(MnO4) = 2 * (39.1 g/mol for K) + (54.9 g/mol for Mn) + 4 * (16 g/mol for O) = 214.2 g/mol

Moles of K2(MnO4) = 75 g / 214.2 g/mol ≈ 0.35 moles

Now use the molarity formula to find the volume:

0.26 M = 0.35 moles / volume (L)

Volume (L) = 0.35 moles / 0.26 M ≈ 1.35 L

So, approximately 1.35 liters of a 0.26 M solution of K2(MnO4) would contain 75 g of K2(MnO4).

To learn more about mass, refer below:

https://brainly.com/question/19694949

#SPJ11

2AgNO3(ag) + Cu(s)---> 2Ag (s) + Cu(NO3)2 (aq)


How many moles of Ag will be produced from 3.50 g of Cu?

Answers

A total of 0.1102 moles of Ag will be produced from 3.50 g of Cu.

To determine the number of moles of Ag produced from 3.50 g of Cu, we need to use stoichiometry.

From the balanced chemical equation, we see that 1 mole of Cu reacts with 2 moles of Ag to produce 1 mole of Cu(NO₃)₂ and 2 moles of Ag.

First, we need to convert 3.50 g of Cu to moles by dividing by its molar mass, which is 63.55 g/mol.

3.50 g Cu / 63.55 g/mol = 0.0551 mol Cu

Next, we use the stoichiometry ratio to determine the number of moles of Ag produced:

0.0551 mol Cu x (2 mol Ag / 1 mol Cu) = 0.1102 mol Ag


In summary, we use stoichiometry to determine the number of moles of Ag produced from 3.50 g of Cu by first converting the mass of Cu to moles, and then using the stoichiometry ratio from the balanced chemical equation.

To know more about stoichiometry click on below link:

https://brainly.com/question/30215297#

#SPJ11

The effect of the stratosphere being colder at the bottom than at the top is:



sudden weather changes


better radio reception


no vertical air movement


the separation of gases into layers

Answers

The effect of the stratosphere being colder at the bottom than at the top is: no vertical air movement.

The effect of the stratosphere being colder at the bottom than at the top is the separation of gases into layers. This temperature gradient creates a stable atmosphere, which prevents vertical air movement and sudden weather changes.

Additionally, the separation of gases can enhance radio reception, as radio waves are able to travel further and more easily through stable layers of air.

The effect of the stratosphere being colder at the bottom than at the top is: no vertical air movement. This temperature gradient results in a stable atmosphere with limited mixing, preventing significant vertical air movement within the stratosphere.

To know more about stratosphere:

https://brainly.com/question/28097222

#SPJ11

If 450 ml of water are added to 550 ml of a 0.75 m k2so4 solution, what will the molarity of the diluted solution be?

Answers

To determine the molarity of the diluted solution, we need to use the equation:

M1V1 = M2V2

where M1 is the initial molarity of the solution, V1 is the initial volume of the solution, M2 is the final molarity of the solution, and V2 is the final volume of the solution.

In this case, the initial solution is a 0.75 M K2SO4 solution with a volume of 550 mL, and water is added to make a final volume of 450 mL. We can write:

M1 = 0.75 M

V1 = 550 mL

V2 = 450 mL

We can solve for M2:

M1V1 = M2V2

0.75 M × 550 mL = M2 × 450 mL

M2 = (0.75 M × 550 mL) / 450 mL

M2 = 0.92 M

Therefore, the molarity of the diluted solution is 0.92 M.

To know more about molarity refer here

https://brainly.com/question/31545539#

#SPJ11

How many grams of KNO3 are needed to make 1. 50 liters of a 0. 50 M KNO3 solution?

Answers

75.83 grams of KNO3 are required to prepare a 0.50 M solution in 1.50 L of water.

To prepare a 0.50 M solution of KNO3 in 1.50 L of water, we can determine the amount of KNO3 required by using the formula:

Molarity (M) = moles of solute / liters of solution

Rearranging the formula, we can calculate the number of moles of KNO3:

moles of KNO3 = Molarity x liters of solution

Given the values, we find:

moles of KNO3 = 0.50 M x 1.50 L = 0.75 moles

To find the mass of KNO3 needed, we need to use its molar mass:

molar mass of KNO3 = 101.10 g/mol

Therefore, the mass of KNO3 required is:

mass of KNO3 = moles of KNO3 x molar mass of KNO3

Substituting the values, we obtain:

mass of KNO3 = 0.75 moles x 101.10 g/mol = 75.83 g

Hence, to prepare a 0.50 M solution in 1.50 L of water, you would need 75.83 grams of KNO3.

Know more about Molarity here:

https://brainly.com/question/22997914

#SPJ11

Calculate the specific heat in J/(g·ºC) of an unknown substance if a 2. 50-g sample releases 12. 0 cal as its temperature changes from 25. 0ºC to 20. 0ºC. ________J/(g·°C)

Answers

The specific heat in J/(g·ºC) of an unknown substance if a 2. 50-g sample releases 12. 0 cal as its temperature changes from 25. 0ºC to 20. 0ºC. 2.02  J/(g·ºC).

The specific heat of the unknown substance can be calculated using the formula:
q = m x c x ΔT


where q is the heat released, m is the mass of the substance, c is the specific heat, and ΔT is the change in temperature.

First, we need to convert the given heat release from calories to joules:
12.0 cal x 4.184 J/cal = 50.208 J

Next, we can plug in the given values and solve for c:
50.208 J = 2.50 g x c x (25.0°C - 20.0°C)
c = 2.02 J/(g·°C)


To know more about specific heat click on below link:

https://brainly.com/question/11297584#

#SPJ11

QUESTION 6



Write the electron configuration of the following ions. Use the equation editing tool for neatness. It is symbolized with fx.



B a to the power of 2 plus end exponent C a to the power of 2 plus end exponent C u to the power of 2 plus end exponent L i to the power of plus K to the power of plus N a to the power of plus S r to the power of 2 plus end exponent

Answers

Electronic configuration of  Ba²⁺ is 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶; Ca²⁺ is 1s²2s²2p⁶3s²3p⁶; Li⁺ is 1s²; K⁺ is 1s²2s²2p⁶3s²3p⁶; Na⁺ is 1s²2s²2p⁶; Sr²⁺is  1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶.

Electronic configuration of the elements present in the periodic table is defined as the designation of atoms on the basis of the electrons present in their shells and subshells. The electrons entering in the same valence shell are grouped together which shows similarity in case of physical and chemical properties. Atoms tend to lose electron and attain stable positive charge so as to attain their nearest noble gas configuration.

Electronic configuration of

Ba²⁺ = 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶

Ca²⁺= 1s²2s²2p⁶3s²3p⁶

Li⁺=1s²

K⁺ = 1s²2s²2p⁶3s²3p⁶

Na⁺ = 1s²2s²2p⁶

Sr²⁺=  1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶

To know more about electronic configuration here

https://brainly.com/question/2218857

#SPJ4

If you started with 20. 0 g of a radioisotope and waited for 3 half-lives to pass, then how much would remain? 1. 25g
5. 00g
10. 0g
2. 50g​

Answers

Answer: The answer is 2.50g.

I hope this helps and have a great day!

I need help!

Describe the bonding in water molecule using VBT. Show the overlap of hybridized orbitals leading to the formation of H2O molecule. Account for the bond angle 104. 5°. ​

Answers

Answer:

In Valence Bond Theory (VBT), the water molecule is formed by overlapping of two hydrogen 1s orbitals with two hybridized oxygen orbitals. The oxygen atom in the water molecule has two unpaired electrons in two 2p orbitals and two paired electrons in two 2s orbitals. It hybridizes the 2s and 2p orbitals to form four hybridized sp3 orbitals. These four sp3 hybridized orbitals point towards the corners of a tetrahedron.

The two hybridized orbitals of oxygen containing unpaired electrons overlap with the 1s orbitals of two hydrogen atoms. This overlapping results in the formation of two O-H sigma (σ) bonds. The two remaining hybridized orbitals containing the paired electrons do not participate in bond formation.

The bond angle in the water molecule is 104.5°, which is less than the tetrahedral angle (109.5°) because the two lone pairs of electrons on the oxygen atom exert greater repulsion than the two bonding pairs. This causes the bonding pairs to be pushed closer together, resulting in a smaller bond angle.

A 17. 98-g piece of iron absorbs 2056. 5 joules of heat energy, and its temperature changes from 25°C to 200°C. Calculate the specific heat capacity of iron

Answers

The specific heat capacity of iron is 0.449 J/g°C.

The quantity of heat energy needed to raise the temperature of one gram of a substance by one degree Celsius is the substance's specific heat capacity.

The specific heat capacity of iron can be calculated using the formula:

q = mcΔT

where q is the heat energy absorbed by the iron, m is the mass of the iron, c is the specific heat capacity of iron, and ΔT is the change in temperature of the iron.

Substituting the given values:

2056.5 J = (17.98 g) × c × (200°C - 25°C)

2056.5 J = (17.98 g) × c × (175°C)

Solving for c:

c = 0.449 J/g°C

To learn more about heat follow the link:

https://brainly.com/question/11297584

#SPJ4

All else being equal, a reaction with a higher activation energy compared to one with a lower activation energy will:.

Answers

All else being equal, a reaction with a higher activation energy will have a slower reaction rate compared to one with a lower activation energy.

Activation energy refers to the minimum amount of energy required for a chemical reaction to occur. The higher the activation energy, the more energy is required to initiate the reaction, and thus the slower the reaction rate.

This is because a higher activation energy means that fewer reactant molecules will have enough energy to overcome the energy barrier and form products. Therefore, reactions with higher activation energies require more energy input to proceed and will typically have a slower reaction rate than those with lower activation energies.

To know more about the Activation energy, here

https://brainly.com/question/29016918

#SPJ4

A) What volume of concentrated nitric acid (15.8 M) is needed to prepare 5.0 L of a 2.5 M solution?
WILLLL GIVE BRAINLIEST!!!

Answers

Answer:

0.79 L of concentrated nitric acid is needed to prepare 5.0 L of a 2.5 M solution.

Explanation:

We can use the formula:[tex]M_1V_1 = M_2V_2[/tex]where [tex]M_1[/tex] is the concentration of the concentrated nitric acid, [tex]V_1[/tex] is the volume of concentrated nitric acid needed, [tex]M_2[/tex] is the desired concentration of the final solution, and [tex]V_2[/tex] is the final volume of the solution.Plugging in the given values, we get:[tex](15.8 \text{ M})(V_1) = (2.5 \text{ M})(5.0 \text{ L})[/tex]Solving for [tex]V_1[/tex], we get:[tex]V_1 = \frac{(2.5 \text{ M})(5.0 \text{ L})}{15.8 \text{ M}} \approx 0.79 \text{ L}[/tex]Therefore, approximately 0.79 L of concentrated nitric acid is needed to prepare 5.0 L of a 2.5 M solution.

Answer:

0.79 L

I hope this helps! Cheers ^^

The volume of a sample of gas is 2. 8 L when the pressure is 749. 5 mm Hg and the temperature is 31. 2 C. What is the new temperature in degrees Celsius if the volume increases to 4. 3 L and the pressure increases to 776. 2 mm Hg?




a 120 C


b 280 C


c 480 C


d 210 C

Answers

The volume of a sample of gas is 2.8 L when the pressure is 749.5 mm Hg and the temperature is 31. 2°C. (c) 480°C is the new temperature in degrees Celsius if the volume increases to 4. 3 L and the pressure increases to 776.2 mm Hg

Using the combined gas law:

(P1V1) / (T1) = (P2V2) / (T2)

Where:

P1 = 749.5 mm Hg

V1 = 2.8 L

T1 = 31.2 + 273.15 = 304.35 K (temperature converted to Kelvin)

P2 = 776.2 mm Hg

V2 = 4.3 L

T2 = ?

Solving for T2:

T2 = (P2V2T1) / (P1V1)

T2 = (776.2 mmHg * 4.3 L * 304.35 K) / (749.5 mmHg * 2.8 L)

T2 ≈ 758 K

Converting T2 back to Celsius:

T2 = 758 K - 273.15 = 484.85°C ≈ 480°C

Therefore, the new temperature is approximately 480°C.

To know more about the combined gas law refer here :

https://brainly.com/question/30458409#

#SPJ11

What volume of 16. 2 M NH3 is required to prepare 350. 0 mL of 0. 200 M NH3

Answers

4.3 mL of 16.2 M [tex]NH3[/tex]is required to prepare 350.0 mL of 0.200 M [tex]NH3[/tex]

The molarity equation is:

Molarity (M) = moles of solute / liters of solution

We can rearrange this equation to solve for the number of moles of solute:

moles of solute = Molarity (M) x liters of solution

We can use this equation to determine the number of moles of [tex]NH3[/tex]required to prepare the 350.0 mL of 0.200 M [tex]NH3[/tex] solution:

moles of [tex]NH3[/tex] = (0.200 M) x (0.350 L) = 0.070 moles [tex]NH3[/tex]

Now, we need to determine the volume of 16.2 M [tex]NH3[/tex]required to obtain 0.070 moles of [tex]NH3[/tex]. We can use the following equation:

moles of solute = Molarity (M) x liters of solution

Rearranging the equation to solve for the volume of solution, we get:

liters of solution = moles of solute / Molarity (M)

Plugging in the values, we get:

liters of solution = 0.070 moles  / 16.2 M[tex]NH3[/tex] = 0.0043 L

Converting this to milliliters, we get:

volume of 16.2 M [tex]NH3[/tex] = 0.0043 L x 1000 mL/L = 4.3 mL

To know more about Molarity  refer to-

https://brainly.com/question/8732513

#SPJ11

!!!9POINTS!!!!! Based on the activity series, which of the reactions will occur?

Answers

The reactions that will occur for each activity series include:

A. Mg + NaNO₃ → will occur since Mg is more reactive than Na.B. AI+NISO₄→ will not occur since aluminum is less reactive than nickel.C. Zn + NaNO₃ - will occur since zinc is more reactive than sodium.D. Sn+ Zn(NO₃)₂ → will not occur since tin is less reactive than zinc.

What are reactive metals?

Reactive metals are metals that easily undergo chemical reactions with other substances, particularly with acids and water, to form new compounds. These metals are usually found in the lower part of the activity series, which means they have a high tendency to lose electrons and form cations.

Examples of reactive metals include alkali metals (such as lithium, sodium, and potassium) and alkaline earth metals (such as calcium and magnesium).

Find out more on reactive metals here: https://brainly.com/question/25103661

#SPJ1

Image trancribed:

Based on the activity series, which of the reactions will occur?

Least Reactive

Most Reactive Li Na K Mg Al Zn Fe Ni Sn Pb H Cu Ag Pt F₂ Cl₂ Br₂ I₂

Hint: Is the metal element more reactive than the metal ion in the compound?

A. Mg + NaNO3 →

B. AI+NISO4→

C. Zn + NaNO3 -

D. Sn+ Zn(NO3)2 →

Answer:A. Mg + NaNO₃ →

Explanation:

will occur since Mg is more reactive than Na.

A student has a sample of copper (I) sulfate hydrate. If the hydrate has a mass of 20 grams and the anhydrous salt has a mass of 12 grams, what is the percent of water in the sample? %

Answers

Student has a sample of copper (I) sulfate hydrate, then the percent of water in the sample is 40%.

What is meant by a hydrate?

In chemistry, a hydrate is a compound that contains water molecules that are chemically bound to the atoms or ions of the compound.

Mass of the anhydrous salt is given as 12 grams.

So, mass of water = total mass - mass of anhydrous salt

mass of water = 20 g - 12 g

mass of water = 8 g

Now, % water = (mass of water ÷ total mass) × 100

% water = (8 g ÷ 20 g) × 100

% water = 40%

Therefore, the percent of water in the sample is 40%.

To know more about hydrate, refer

https://brainly.com/question/16275027

#SPJ1

What set of coefficients will balance the chemical equation below:

___H2SO4 (aq) + ___NH4OH (aq) ---> ___H2O (l) + ___(NH4)2SO4 (aq)

A. 2,2,1,2

B. 1,2,2,1

C. 1,1,2,2

D. 1,3,2,1

Answers

The set of coefficients that will balance the chemical equation are: B.) 1, 2, 2, 1

What is meant by chemical reaction?

Chemical reactions are processes that cause one set of chemical elements to change into another set of chemical elements. During chemical reaction, atoms are rearranged, bonds between atoms are broken and formed and then new compounds or molecules are produced.

Chemical reactions can be represented using the chemical equations, that show reactants and products.

The balanced chemical equation for the given reaction is: H₂SO₄ (aq) + 2NH₄OH (aq) ---> 2H₂O (l) + (NH₄)2SO₄ (aq)

Therefore, the set of coefficients that will balance the chemical equation are: 1, 2, 2, 1.

To know more about chemical reaction, refer

https://brainly.com/question/25769000

#SPJ1

A rigid container of N2 has a pressure at 378 kPa at a temperature of 413 K. What is the new pressure at 273 K?

Answers

The new pressure at 273 K, given that the initial pressure was 378 KPa, is 249.9 KPa

How do i determine the new presssure?

The following parameters were obtained from the question:

Initial pressure (P₁) = 378 KPaInitial temperature (T₁) = 413 KNew temperature (T₂) = 273 KNew pressure (P₂) = ?

The new pressure of the gas at 273 K can be obtained as shown below:

P₁ / T₁ = P₂/ T₂

378 / 413 = P₂ / 273

Cross multiply

413 × P₂ = 378 × 273

413 × P₂ = 103194

Divide both sides by 413

P₂ = 103194 / 413

P₂ = 249.9 KPa

Thus, from the above calculation, we can conclude the new pressure at 273 K is 249.9 KPa

Learn more about pressure:

https://brainly.com/question/15343985

#SPJ1

How many total electrons are transferred during the reaction of the oxidation of chromium



metal according to the following reaction?



4Cr(s) + 302(g)



-->



2Cr2O3(s)



O4 electrons



6 electrons



8 electrons



O2 electrons

Answers

In the reaction of the oxidation of chromium, 4 chromium atoms each lose 3 electrons to become positively charged ions, and 3 oxygen molecules each gain 4 electrons to become negatively charged ions. This means that a total of 12 electrons are transferred in the oxidation of chromium.


The oxidation of chromium can be broken down into two half-reactions:


1) The oxidation of chromium:
4Cr(s) --> 4Cr³⁺(aq) + 12e-

In this half-reaction, each

chromium atom loses 3 electrons to become a positively charged ion (Cr³⁺), and a total of 12 electrons are

transferred

.

2) The reduction of oxygen:
3O₂(g) + 12e- --> 6O²⁻(aq)

In this half-reaction, each oxygen molecule gains 4 electrons to become a negatively charged ion (O²⁻), and a total of 12 electrons are transferred.

Therefore, the total number of electrons transferred during the reaction of the oxidation of chromium is 12. It is important to note that this reaction involves the transfer of O₂ electrons, not O₄ electrons.

Learn more about "oxidation of chromium" https://brainly.com/question/31860895 #SPJ11

Help what’s the answer?

Answers

This problem can be solved using Boyle's Law, which posits that the pressure of any given gas will be inversely proportional to its volume when temperature is kept as a constant.

What will be the final volume of the given methane gas ?

Mathematically Boyle's Law can be expressed as:

P₁V₁ = P₂V₂

where P₁ and V₁ are the initial pressure and volume, respectively, and P₂ and V₂ are the final pressure and volume, respectively.

We are given that:

P₁ = 1.15 atm

V₁ = 640 mL

T = 23.9 °C (which is 297.05 K, using the Kelvin temperature scale)

We need to find V₂ when P₂ = 1.43 atm.

Using Boyle's Law, we can set up the following equation:

P₁V₁ = P₂V₂

(1.15 atm)(640 mL) = (1.43 atm)(V₂)

Solving for V₂:

V₂ = (1.15 atm)(640 mL) / (1.43 atm)

V₂ = 514.69 mL

Therefore, the final volume of the methane gas is 514.69 mL when compressed at constant temperature until its pressure is 1.43 atm.

Learn more about Boyle's Law here:

https://brainly.com/question/30367133

#SPJ1

The Goodyear Blimp has a volume of 5. 74 x 10e6 L. If it was also filled with hydrogen, how many moles of hydrogen would fit into the blimp?

Answers

The mass of helium present in the blimp is 644 kg.

To calculate the mass of helium present in the blimp, we can use the ideal gas law:

PV = nRT

where:

We can rearrange this equation to solve for the number of moles of gas:

n = PV/RT

Substituting the given values, we get:

n = (1.2 atm) x [tex](5.74 * 10^6 L)[/tex]/ [(0.08206 L·atm/K·mol) x (25°C + 273.15)]

n = 1.61 x [tex]10^5[/tex] moles of helium

Now, to calculate the mass of helium present in the blimp, we can use the molar mass of helium:

mass = n x molar mass

mass = (1.61 x [tex]10^5 mol[/tex]) x (4.00 g/mol)

mass = 644 kg

To know more about ideal gas law, here

brainly.com/question/28257995

#SPJ4

--The complete Question is, If the Goodyear Blimp is filled with helium gas at a pressure of 1.2 atm and a temperature of 25°C, what is the mass of helium present in the blimp? (Assume ideal gas behavior and a molar mass of 4.00 g/mol for helium.) --

If earth had no atmosphere, its longwave radiation emission would be lost quickly to space making the planet approximately 33 K cooler. Calculate the rate of radiation emitted E and the wavelength of maximum radiation emission for earth at 255 K.

Answers

The Earth is emitting the most longwave radiation at a wavelength of approximately 11.4 micrometers.

Longwave radiation emission, also known as infrared radiation, is the process by which the Earth releases heat into space. This radiation is absorbed by greenhouse gases in the atmosphere, which then trap the heat and prevent it from escaping back into space.

If the Earth had no atmosphere, this longwave radiation emission would be lost quickly to space, resulting in a much cooler planet.

To calculate the rate of radiation emitted (E) by the Earth at a temperature of 255 K, we can use the Stefan-Boltzmann Law, which states that E = σT⁴, where σ is the Stefan-Boltzmann constant (5.67 x 10⁻⁸ W/m²K⁴) and T is the temperature in Kelvin. Plugging in the values, we get:

E = 5.67 x 10⁻⁸ x (255)⁴
E = 3.8 x 10⁸ W/m²

This means that the Earth is emitting 3.8 x 10⁸ watts of longwave radiation per square meter at a temperature of 255 K.

The wavelength of maximum radiation emission can be determined using Wien's Law, which states that the wavelength of maximum emission (λmax) is equal to the constant of proportionality (b) divided by the temperature in Kelvin. The value of b is approximately equal to 2.898 x 10⁻³ mK.

Plugging in the values, we get:

λmax = b/T
λmax = 2.898 x 10⁻³ / 255
λmax = 1.14 x 10⁻⁵ meters

This means that the Earth is emitting the most longwave radiation at a wavelength of approximately 11.4 micrometers.

To know more about wavelength, visit:

https://brainly.com/question/31143857#

#SPJ11

Other Questions
Using MATLAB, create a table thatshows the relationship between the unitsof power in watts and horsepower in therange of 100 W to 10000 W. Use smallerincrements of 100 W up to 1000 W, andthen use increments of 1000 W all the wayup to 10000 W Select the correct answer. What was King Piyes major accomplishment in Egypt?A. He united Egypt and Kush. B. He taught Egyptians archery. C. He defeated the Assyrian ruler. D. He built the highest pyramid Which sentence from the passage most strongly supports the inferences you made about the Prometheus excerpt? A) Immediately, taking a long stalk in his hands, he set out for the dwelling of the sun in the far east.B) Year after year he lay in agony, and yet he would not complain, beg for mercy or repent of what he had done.C) If men had fire they would soon be as strong and wise as we who dwell on Olympus. Never will I give my consent.'"D) Instead he preferred to spend his time on the earth, helping men to find easier and better ways of living. Based on details from the passage, what can the reader infer about louis xiv?he wanted to ensure that ballet stayed the most popular form of dance.he was interested in educating people around the world about ballet.he was interested in dance because he wanted to please his father.he wanted to ensure that ballet retained particular styles and forms. What happened ten years ago, when the new Receiver failed? How might that have changed the communitys perception of the role of The Receiver? In the book "THE GIVER" by Lois lowry to find the total return on a share of stock, find the dividend yield and subtract any commissions paid when the stock is purchased and sold. true false 10. Which of the following is the best definition of point of view?Ohow narrators make the reader think of them as undependable or untrusting by saying things that are not truehswhen narrators make the reader think of them as dependable and trusting by stating things that are truehow a narrator or character sees or thinks about what is happeningwhen a narrator has complete and total awareness, understanding, or knowledge Please select the graphic organizer you would use to illustrate the following:Identifying which books have romantic or heroic themes.TimelineVenn diagramO ChartO Graph When the U.S. Constitution is not clear, how do we interpret the meaning? Given the chart of bond energies, calculate the enthalpy change for the reaction below. Show all work to receive full credit. In planning, what would be your basis for assigning priority to specific task? list all the Factors. circle the GCF.6:9:list 7 multiples.Circle the LCM.5:2: A shopper has $430 to spend on a winter coat. Write and solve an inequality to find the prices p of coats that the shopper can buy. Assume that p is greater than or equal to 175. You are the film review editor at a magazine called The Caribbean Film Critic. View the following documentary and write a 2000-2500-word critique for the magazine. Film title- Neither Here Nor There-Indo Caribbean Diaspora Particles q1 = +8. 0 C, 92 = +3. 5 uc, andq3 = -2. 5 uC are in a line. Particles qi and q2 areseparated by 0. 10 m and particles q2 and q3 areseparated by 0. 15 m. What is the net force onparticle q?Remember: Negative forces (-F) will point LeftPositive forces (+F) will point Right-2. 5 +8. 0 C+91+3. 5 +9293K 0. 10 m+0. 15 m Tell whether finding the answer requires finding a greatest common factor or a least common multiple. You do not need solve the problem. A string of holiday lights at a store have three colors that flash at different times. Red lights flash every fifth second. Blue lights flash every third seconds. Green light flashes every four seconds. The store owner turns on the lights. After how many seconds will all three lights flash at the same time for the first time?A. ) Greatest Common Factor B. ) Lest Common Multiple Help me please man, Im stuck During the trial which two constitutional Right of Ernesto Miranda did the court consider to have been violated write a report in 250 words of an interview you had with a sport star Please help me with this