The community of plants and animals which occupies a large geographical area within a particular climate zone is called a Biome.
A biome is a large, distinct ecological region characterized by a specific type of climate and a particular assemblage of plants and animals adapted to that climate. Biomes can range from tropical rainforests to deserts to tundra, and they are defined primarily by factors such as temperature, precipitation, and vegetation. In contrast, a niche refers to the specific role or position that an organism occupies within an ecosystem, and a habitat refers to the physical location where an organism lives.
To know more about Biome click here:
brainly.com/question/2492913
#SPJ4
all bacterial cells have group of answer choices flagella. fimbriae. endospores. a chromosome. capsules.
Among the answer choices given, not all bacterial cells have flagella, fimbriae, endospores, or capsules. But all bacterial cells have chromosomes.
A chromosome is a single and long DNA molecule that is wound tightly around the proteins. It includes all of the genes required for an organism's development, growth, and reproduction. Chromosomes are found in the nuclei of cells in eukaryotic organisms, including animals, plants, and fungi, as well as in the cytoplasm of bacteria and archaea.
Flagella are hair-like structures that are used to propel bacterial cells through liquids. Flagella come in a variety of shapes and sizes, but they are all composed of protein subunits called flagellin. Bacterial cells use flagella to navigate through their environment, locate food and other resources, and avoid harmful chemicals or predators.
Fimbriae are tiny, hair-like structures that are found on the surface of some bacterial cells. They are involved in a variety of functions, including cell attachment, biofilm formation, and bacterial motility. The fimbriae of some bacterial cells are used to adhere to host cells or other surfaces in the environment.
Learn more about chromosomes here:
https://brainly.com/question/30993611
#SPJ11
the first and third reactions of the glycolytic pathway result in consumption of atp. these are examples of
The first and third reactions of the glycolytic pathway result in the consumption of ATP.
This is an example of ATP hydrolysis, which is a process in which the ATP molecule is broken down into ADP and inorganic phosphate, releasing energy in the process.
The glycolytic pathway is a series of enzymatic reactions that occur in the cytoplasm of cells and is responsible for the breakdown of glucose into two molecules of pyruvate, with the production of ATP and NADH as intermediate products.
The first and third reactions of the glycolytic pathway are examples of ATP hydrolysis, which is the process of ATP being broken down into ADP (adenosine diphosphate) and inorganic phosphate (Pi), releasing energy in the process.
In the first reaction of glycolysis, glucose is phosphorylated by the enzyme hexokinase, which requires ATP as a phosphate donor. This ATP is hydrolyzed, resulting in the addition of a phosphate group to glucose, forming glucose-6-phosphate.
The hydrolysis of ATP provides the energy needed to drive the phosphorylation of glucose, making it more reactive and allowing it to be further metabolized.
In the third reaction of glycolysis, the enzyme phosphoglycerate kinase catalyzes the transfer of a phosphate group from 1,3-bisphosphoglycerate to ADP, forming ATP and 3-phosphoglycerate.
This reaction also involves ATP hydrolysis, as ATP donates a phosphate group to ADP to form ATP, releasing energy that is used to drive the formation of ATP.
for more questions related to ATP hydrolysis, refer here:
https://brainly.com/question/30457911#
#SPJ11
in the absence of oxygen, what anaerobic pathways can occur after glycolysis? (check all that apply.)
In the absence of oxygen, the two anaerobic pathways that can occur after glycolysis in the absence of oxygen are alcohol fermentation and lactate fermentation. The correct answer is option c.
These pathways help the cells to generate ATP by processing pyruvate in the absence of oxygen. During alcohol fermentation, pyruvate is converted to acetaldehyde, and this acetaldehyde is then converted to ethanol. On the other hand, in lactate fermentation, pyruvate is converted to lactate. Both of these pathways allow glycolysis to continue to produce ATP when oxygen is not available.
For more such questions on glycolysis, click on:
https://brainly.com/question/1966268
#SPJ11
The probable question may be:
in the absence of oxygen, what anaerobic pathways can occur after glycolysis? (check all that apply.)
a) alcohol fermentation
b) lactate fermentation
c) both
several cases of an emerging infectious disease are reported in workers at a research station that borders a tropical rainforest region. the pathogen is identified as a species of bacteria carried by nematodes that infect mosquitos, and disease transmission occurs in a human host following a mosquito bite. which organisms should be targeted in the treatment of infected patients?
We have to target nematodes that infect mosquitoes to stop the transmission of the bacteria causing the disease.
The pathogen is identified as a species of bacteria carried by nematodes that infect mosquitoes, and disease transmission occurs in a human host following a mosquito bite. Antibiotics should be used in the treatment of infected patients.
Why antibiotics?
Antibiotics are substances used to treat bacterial infections. Infection-causing bacteria can be destroyed using antibiotics. Since the pathogen causing the disease is identified as a species of bacteria carried by nematodes that infect mosquitoes, antibiotics should be used to target the bacteria.The patients will be given antibiotics to combat the bacterial infection in their bodies. By taking the right dose of antibiotics, the bacteria will be destroyed, resulting in a complete recovery of the patient. Antibiotics should be administered as soon as possible after an individual has been diagnosed with a bacterial infection.
Why Nematodes?
Nematodes are worms that are parasitic in nature. They are known to cause a variety of diseases, and they are frequently transferred through insect vectors like mosquitoes. The bacteria in question in this question are carried by nematodes that infect mosquitoes.
To know more about "bacteria" refer here:
https://brainly.com/question/8008968#
#SPJ11
the main tube that carries air to and from the lungs is called ?
Answer:
trachea
Explanation:
Answer: trachea
Explanation:
The trachea is an essential tube connecting the larynx to the bronchi of the lungs and allowing air to be carried to and from the lungs. It is commonly known as the windpipe and about four inches long and less than an inch in diameter.
Write a paragraph on harms caused by micro organisms.
This image will help you o
3. Why is an adult's heartbeat slower than a child's?
Adult hearts get smaller and weaker.
Adult hearts get bigger and stronger
Adult hearts get bigger and weaker.
Adult hearts get smaller and stronger.
I would put my bets on B since the heart does get bigger and im sure it also gets stronger
dna is soluble in water, but not in ethanol. what does this fact have to do with our method of extraction? explain what happened when the ethanol came in contact with the strawberry extract
DNA is soluble in water but not in ethanol. This fact is significant in the method of extraction.
Ethanol is used in DNA extraction as it is a polar solvent that can dissolve molecules with polar functional groups. DNA contains polar functional groups such as nitrogenous bases, phosphate groups, and hydroxyl groups, therefore, it is soluble in water.
Ethanol is used as a precipitating agent to separate DNA from other cellular components in the extraction process.
Explanation:
When ethanol came in contact with the strawberry extract, it caused the DNA to precipitate out of the solution. Ethanol is used in DNA extraction as it can dissolve molecules with polar functional groups such as DNA.
However, when ethanol is added to an aqueous solution containing DNA, it causes the DNA to become insoluble and precipitate out of the solution. This is because ethanol is less polar than water, and when it is added to a water-based solution containing DNA, it disrupts the hydrogen bonds between the nitrogenous bases and the water molecules.
As a result, the DNA molecules become less hydrated and are no longer soluble in the solution. The DNA molecules then come out of solution and can be collected by centrifugation or filtration. In summary, the fact that DNA is soluble in water but not in ethanol is significant in the method of DNA extraction.
Ethanol is used to precipitate DNA out of a solution containing other cellular components. When ethanol comes in contact with a solution containing DNA, it causes the DNA to become insoluble and precipitate out of the solution. The precipitated DNA can then be collected and further purified.
To know more about Ethanol refer here:
https://brainly.com/question/21584633#
#SPJ11
at what point does the embryo become a fetus? at the end of week 6 of life at the beginning of week 12 of life at the end of week 12 of life at the beginning of week 16 of life
The embryo becomes a fetus at the beginning of week 12 of life, which is around the end of the embryonic period.
The embryonic period starts from the fertilization of the egg by the sperm and lasts until the end of the eighth week of gestation. During this period, the major organ systems and structures of the body are formed.
After the embryonic period, the developing human is referred to as a fetus. The fetal period begins at the start of week 9 and continues until birth. During this period, the fetus undergoes significant growth and development, with continued maturation of organs and systems that were formed during the embryonic period.
To know more about embryonic period
brainly.com/question/12111533
#SPJ4
Select ALL statements that correctly describe rod cells and cone cells. O The opsin proteins in the membranes of both rods and cones have the same retinal pigments. O Absorption of light by rods decreases neurotransmitter release, while absorption of light by cones results in increased neurotransmitter release. O Absorption of light by both rods and cones alters the shape of their retinal pigments. O All rod cells have the same type of opsin protein; each type of cone (red, green, blue) has a different type of opsin protein.
ALL sentences that accurately describe rod cells and cone cells are :The retinal pigments in the opsin proteins and Absorption of light by rods inhibits neurotransmitter release. Option 1, 2 are correct.
The retinal pigments in the opsin proteins found in the membranes of rods and cones are identical. The retina of the eye contains two main types of photoreceptor cells: rod cells and cone cells. In order for us to see and comprehend the visual world, they are in responsible of detecting light and relaying instructions to the brain via the optic nerve.
Absorption of light by rods inhibits neurotransmitter release, while absorption of light by cones leads in increased neurotransmitter release. Rod cells, which are more light-sensitive, are in charge of seeing in poorly illuminated conditions, such as at night. They are more common than cone cells and are primarily present in the retina. Option 1, 2 are correct.
Learn more about Absorption of light Visit: brainly.com/question/13525607
#SPJ4
Correct Question:
Select ALL statements that correctly describe rod cells and cone cells.
1. The opsin proteins in the membranes of both rods and cones have the same retinal pigments.
2. Absorption of light by rods decreases neurotransmitter release, while absorption of light by cones results in increased neurotransmitter release.
3. Absorption of light by both rods and cones alters the shape of their retinal pigments.
4. All rod cells have the same type of opsin protein; each type of cone (red, green, blue) has a different type of opsin protein.
how is bacterial dna replication similar to eukaryotic dna replication? multiple choice both bacterial and eukaryotic dna replication have a single origin of replication. both bacterial and eukaryotic dna replication are semiconservative. both bacterial and eukaryotic dna replication result in one dna double helix that was the template and one completely new dna double helix. both bacterial and eukaryotic dna replication occur in a bidirectional manner and are semiconservative. both bacterial and eukaryotic dna replication occur in a bidirectional manner.
The bacterial dna replication similar to eukaryotic dna replication is b. both bacterial and eukaryotic dna replication are semiconservative.
DNA replication occurs in all living organisms, and the process of DNA replication in bacteria is quite similar to that of eukaryotes. Furthermore, DNA replication has three main steps that include initiation, elongation, and termination. Bacterial DNA replication and eukaryotic DNA replication have a single origin of replication, and both are semiconservative. Both bacterial and eukaryotic DNA replication result in one DNA double helix that was the template and one entirely new DNA double helix. Moreover, both bacterial and eukaryotic DNA replication occur in a bidirectional manner, and DNA replication occurs continuously and occurs in bursts.
Moreover, the DNA replication process is accomplished through the coordinated action of multiple proteins that are involved in elongation, initiation, and termination of replication. DNA polymerase III is the primary enzyme that is involved in elongation during DNA replication, and it has high processivity and high fidelity. Bacterial DNA replication occurs in three stages: initiation, elongation, and termination. DNA replication initiates when an initiator protein binds to the origin of replication (oriC) sequence. Eukaryotic DNA replication is also similar, but it involves many more proteins and many more steps. Eukaryotic DNA replication can also occur in a discontinuous manner because of the large size of the DNA molecule.
Learn more about DNA replication at:
https://brainly.com/question/28341068
#SPJ11
The step that commits the cell to metabolize glucose is catalyzed by
a. hexokinase.
b. phosphoglucomutase.
c. aldolase.
d. phosphofructokinase
The step that commits the cell to metabolize glucose is catalyzed by phosphofructokinase. So, option D is correct.
Phosphofructokinase is an important enzyme involved in the glycolytic pathway, which is responsible for the breakdown of glucose to produce energy in the form of ATP. It catalyzes the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate, which is a critical step in the glycolytic pathway. This reaction commits the cell to metabolize glucose, as it is an irreversible step and leads to the production of pyruvate, which is further metabolized to produce ATP through oxidative phosphorylation. This step is considered to be the rate-limiting step in glycolysis, meaning that it regulates the overall speed of the pathway. Once this step is completed, the cell is committed to metabolizing glucose and generating ATP through the glycolysis pathway.
To know more about Phosphofructokinase
brainly.com/question/14182274
#SPJ4
what should the vascular technologist be on the lookout for around tortuous vessels to prove whether increased velocities around the tortuosity are from true stenosis or from the tortuosity?
As a vascular technologist, when evaluating vessels, you should be on the lookout for the following to differentiate between true stenosis and tortuosity-related increased velocities:
Look for asymmetry: In the case of true stenosis, the area of narrowing will create an asymmetrical shape in the vessel. In contrast, in tortuous vessels, the velocity will be increased symmetrically throughout the tortuous segment.
Evaluate the angle of the tortuosity: A sharp angle (greater than 45 degrees) in a tortuous segment can cause increased velocities. Thus, the angle of the tortuosity should be measured to help determine whether increased velocities are due to stenosis or tortuosity.
Evaluate the length of the tortuosity: A long tortuous segment can cause increased velocities. Therefore, measuring the length of the tortuous segment can help differentiate between stenosis and tortuosity-related increased velocities.
Assess for other signs of stenosis: Look for other signs of stenosis such as turbulence or post-stenotic turbulence in the distal vessel.
It's important to note that these factors are interrelated and must be considered in context with the patient's clinical history and physical exam.
To know more about Vessels, visit: brainly.com/question/29553798
#SPJ4
which of the following statements about schistosomiasis is false? group of answer choices the pathogen penetrates human skin. a parasite of birds causes swimmer's itch in humans. eggs are shed in feces. it is caused by a roundworm. the intermediate host is an aquatic snail.
Schistosomiasis is caused by a roundworm. This is the false statement about schistosomiasis.
What is Schistosomiasis?Schistosomiasis, also known as bilharzia, is a parasitic disease caused by blood flukes (trematodes) of the genus Schistosoma. Schistosomiasis is a disease caused by a type of parasitic worm known as Schistosoma that lives in freshwater in subtropical and tropical regions.
Schistosomiasis is caused by helminths or worms known as blood flukes of the genus Schistosoma, which burrow into the skin of humans. They are transmitted to humans by freshwater snails, which are the intermediate host, and their life cycle is completed in humans.
Signs and symptoms of schistosomiasis can include abdominal pain, diarrhea, blood in the stool, or blood in urine. Schistosomiasis can be treated with medications, including praziquantel, which can help kill the worms that cause the disease.In conclusion, schistosomiasis is caused by blood flukes and not by a roundworm. Therefore, the statement, "It is caused by a roundworm," is false.
Learn more about Schistosomiasis: https://brainly.com/question/16156992
#SPJ11
in modern chinese medicine, cannabis seeds have little medicinal value. true or false
how do the events of meiosis i promote the production of new combinations of alleles?
Meiosis I promotes the production of new combinations of alleles through homologous chromosomes pairing up and exchanging segments of genetic material through a process called crossing-over. The orientation of homologous chromosomes along the metaphase plate is random, which helps to ensure that new combinations of alleles are created.
Meiosis is a process that reduces the number of chromosomes in cells by half, generating haploid cells (sperm and eggs in animals) that are unique in their genetic composition. The two successive cell divisions that occur during meiosis (meiosis I and meiosis II) each have specific characteristics that help to ensure that the resulting cells have half the number of chromosomes as the original cell.
During prophase I, homologous chromosomes pair up and then exchange segments of genetic material through a process called crossing-over. This exchange results in new combinations of genetic information that are not present in the original chromosomes, which increases the diversity of the resulting cells.
During metaphase I, the orientation of homologous chromosomes along the metaphase plate is random. This means that each pair of homologous chromosomes is equally likely to align with either the maternal or paternal pole, which results in even more variation in the resulting cells.
Learn more about the important event in meiosis occurs during prophase at: https://brainly.com/question/26007962
#SPJ11
the floating leaf disk assay measures oxygen production as an indication of photosynthetic activity. what other substances could be measured as alternate ways of measuring photosynthesis?
The other substances that can be measured as alternate ways of measuring photosynthesis are: CO2 uptake, Changes in pH, The rate of glucose formation, Chlorophyll
Photosynthesis can be measured by measuring the production of oxygen gas. However, there are many other ways in which photosynthesis can be measured.
CO2 uptake: During photosynthesis, carbon dioxide is consumed, and oxygen is produced. Therefore, the consumption of carbon dioxide can be measured as an indication of photosynthetic activity.Changes in pH: Photosynthesis produces oxygen, which can alter the pH of the medium in which it is occurring. Therefore, the pH can be measured as an indication of photosynthetic activity.The rate of glucose formation: Photosynthesis is the process by which glucose is formed. Therefore, the rate of glucose formation can be measured as an indication of photosynthetic activity.Chlorophyll content: Chlorophyll is the pigment responsible for photosynthesis. Therefore, the chlorophyll content can be measured as an indication of photosynthetic activity.To know more about photosynthesis refer here:
https://brainly.com/question/29775046#
#SPJ11
what fraction of the offspring resulting from a heterozygous ´ heterozygous dihybrid cross are homozygous recessive for both traits?
The fraction of the offspring resulting from a heterozygous × heterozygous dihybrid cross that are homozygous recessive for both traits is 1/16.
A dihybrid cross is a breeding experiment in which the traits of two different characteristics are studied. For example, crossing plants with yellow wrinkled peas and green smooth peas will produce offspring with yellow smooth peas and green wrinkled peas in a dihybrid cross.
A cross between two parents who are heterozygous for both alleles is known as a heterozygous x heterozygous dihybrid cross.
Therefore, the fraction of the offspring resulting from a heterozygous × heterozygous dihybrid cross that are homozygous recessive for both traits is 1/16.
For such more question on heterozygous:
https://brainly.com/question/3676361
#SPJ11
on the first day of spring, it is said that the day and night are exactly what length?
On the first day of spring, also known as the vernal equinox, the day and night are approximately the same length of time.
This occurs because of the way the Earth tilts on its axis and orbits around the Sun. During the equinox, the Sun is directly above the equator, causing the amount of daylight and darkness to be nearly equal across the globe.
This phenomenon occurs twice a year, once during the spring equinox and again during the fall equinox. The exact length of day and night may vary slightly depending on the location and the time zone.
To learn more about vernal equinox refer to:
brainly.com/question/30833797
#SPJ4
Glycolysis is active when cellular energy levels are _____; the regulatory enzyme, phosphofructokinase, is _____ by ATP.a. low; inhibitedb. high; inhibitedc. low; activatedd. high; activated
Glycolysis is active when cellular energy levels are low; the regulatory enzyme, phosphofructokinase, is inhibited by ATP. the correct option is A
Glycolysis is the process by which cells break down glucose molecules to obtain energy. This process requires a certain level of cellular energy, which is determined by the concentration of ATP. When the levels of ATP are low, phosphofructokinase, the enzyme responsible for controlling the rate of glycolysis, is inhibited, thereby slowing down the rate of glycolysis.
As a result, cells must rely on other forms of energy such as fatty acids and ketone bodies to obtain energy. On the other hand, when cellular energy levels are high, phosphofructokinase is activated and glycolysis is sped up to meet the cells' energy needs. Therefore, glycolysis is activated when cellular energy levels are low, and the regulatory enzyme, phosphofructokinase, is inhibited by ATP. Therefore the correct option is A
The complete question is :
Glycolysis is active when cellular energy levels are _____; the regulatory enzyme, phosphofructokinase, is _____ by ATP.
a. low; inhibited
b. high; inhibited
c. low; activated
d. high; activated
Know more about ATP here:
https://brainly.com/question/30770497
#SPJ11
definition Description Of Plastic
Answer:
i need your big help begging you mark me brainlist always be happy here comes ans=
Explanation:
Plastic is defined as a material that contains an essential ingredient an organic substance of large molecular weight. It is also defined as polymers of long carbon chains. Carbon atoms are linked in chains and are produced in long-chain molecules.
Answer:
Plastic is a synthetic or semi-synthetic polymer material that is commonly used in the manufacturing of a wide range of products due to its versatility and durability. It is made up of long chains of molecules called polymers, which are formed by chemically bonding individual monomers (basic building blocks) together.
Plastic can be molded or shaped into various forms and can be made in a wide range of colors and textures. It is lightweight, strong, and relatively inexpensive to produce, which makes it ideal for use in many applications. Plastic can be found in everyday items such as water bottles, food containers, toys, electronic devices, and many other products.
While plastic has many advantages, it also poses significant environmental challenges. Plastic waste takes hundreds of years to break down and can accumulate in the environment, polluting waterways and harming wildlife. Some types of plastic also contain harmful chemicals that can leach into the environment and pose a risk to human health.
To address these challenges, there is growing interest in developing more sustainable alternatives to traditional plastic, such as biodegradable plastics made from renewable materials, as well as efforts to reduce plastic waste through recycling and other strategies.
what is the role of the first structural gene (lacz) in the lac operon? select all that apply. choose one or more: a. it binds to and inactivates the lac repressor. b. it breaks down lactose into glucose and galactose. c. it transports lactose into the cell. d. it isomerizes lactose into allolactose. e. it causes camp levels to rise in the presence of increasing concentrations of lactose.
The role of the first structural gene (lacz) in the lac operon are as follows: it binds to and inactivates the lac repressor, it isomerizes lactose into allolactose, it causes camp levels to rise in the presence of increasing concentrations of lactose. The correct answers are a, d and e.
The lac operon is an operon that is responsible for lactose metabolism in some bacterial cells. The lac operon consists of three structural genes: lacZ, lacY, and lacA.
LacZ encodes β-galactosidase, an enzyme that breaks down lactose into glucose and galactose.
LacY encodes lactose permease, a membrane protein that transports lactose into the cell.
LacA encodes transacetylase, which is not directly involved in lactose metabolism.
The role of the first structural gene (lacz) in the lac operon is as follows:
LacZ plays a role in lactose metabolism by encoding β-galactosidase, which is responsible for breaking down lactose into glucose and galactose. LacZ also plays a role in the regulation of the lac operon by encoding β-galactosidase, which is responsible for the isomerization of lactose into allolactose, which is an inducer of the lac operon.
The production of allolactose causes cAMP levels to rise in the presence of increasing concentrations of lactose. LacZ does not bind to and inactivate the lac repressor, nor does it transport lactose into the cell.
Therefore, the correct answer is A, D and E.
For more such questions on lac operon, click on:
https://brainly.com/question/1427299
#SPJ11
The role of the first structural gene (lacz) in the lac operon are as follows: it binds to and inactivates the lac repressor, it isomerizes lactose into allolactose, it causes camp levels to rise in the presence of increasing concentrations of lactose. The correct answers are a, d and e.
The lac operon is an operon that is responsible for lactose metabolism in some bacterial cells. The lac operon consists of three structural genes: lacZ, lacY, and lacA.
LacZ encodes β-galactosidase, an enzyme that breaks down lactose into glucose and galactose.
LacY encodes lactose permease, a membrane protein that transports lactose into the cell.
LacA encodes transacetylase, which is not directly involved in lactose metabolism.
The role of the first structural gene (lacz) in the lac operon is as follows:
LacZ plays a role in lactose metabolism by encoding β-galactosidase, which is responsible for breaking down lactose into glucose and galactose. LacZ also plays a role in the regulation of the lac operon by encoding β-galactosidase, which is responsible for the isomerization of lactose into allolactose, which is an inducer of the lac operon.
The production of allolactose causes cAMP levels to rise in the presence of increasing concentrations of lactose. LacZ does not bind to and inactivate the lac repressor, nor does it transport lactose into the cell.
Therefore, the correct answer is A, D and E.
For more such questions on lac operon, click on:
brainly.com/question/1427299
#SPJ11
which three organs are accessory organs for the digestive system?
The digestive system is a complex system that involves multiple organs working together to break down and absorb nutrients from the food we eat. In addition to the primary organs of the digestive system, such as the mouth, stomach, and intestines, there are three accessory organs that play important roles in the digestive process: the liver, pancreas, and gallbladder.
The liver produces bile, which is stored in the gallbladder and released into the small intestine to help break down fats. The pancreas produces digestive enzymes and bicarbonate, which help to further break down carbohydrates, proteins, and fats in the small intestine. Together, the liver, pancreas, and gallbladder play critical roles in aiding the digestive process and ensuring that nutrients are properly absorbed by the body. Without these accessory organs, the digestive system would not be able to function efficiently, leading to malnutrition and other health problems.
To know more about digestive system click here:
brainly.com/question/29664043
#SPJ4
True/False? in the sense-integrate-act loop, the brain is always where signals are integrated.
Answer:
True.
Explanation:
:)
Imagine you are a red blood cell sitting in the right atria of the heart. In your laboratory journal, write a paragraph that describes what happens to this red blood cell as it moves through the body. What structures will it pass through?
How will it interact with oxygen? Think back to Unit 3 and make sure to include the word hemoglobin in your response.
Answer:
Right atrium -----> Atria contracts and passes through the tricuspid valve -------> Now in right ventricle ------> Ventricles eventually contract and now blood goes past pulmonary valve into the pulmonary trunk into pulmonic circulation where gas exchange occurs in the alveoli and CO2 is exhaled & released from the carboxyhemoglobin portion of hemoglobin and O2 inspired and binds to one of the alpha/beta chains of hemoglobin ---------> Blood now returns via pulmonary veins and ends up in the left atrium ----------> atria contract and blood passes the mitral valve ----------> blood now in the left ventricle -----------> left ventricle eventually contracts and blood passes through the aortic semilunar valve into the aorta to go out into systemic circulation.
Explanation:
Hope this helps!!
Mark me brianliest and good luck!
do insect-borne diseases tend to have higher or lower virulence than diseases that are spread by direct contact? why? are they both thought to have arisen via recombination? how do we know?
Insect-borne diseases tend to have lower virulence than diseases spread by direct contact. This is because diseases with lower virulence allow their hosts to live longer, thus giving the insects more time to spread the disease to other hosts. If the disease was too virulent, it would kill the host too quickly, reducing the chances of transmission to other hosts.
Both insect-borne and direct contact diseases could have arisen via recombination, which is a process where genetic material from different organisms is combined to create new genetic sequences. This can lead to the emergence of new diseases or changes in existing ones. We know that recombination plays a role in the evolution of diseases because researchers have observed genetic changes in various pathogens and have seen that these changes can result from recombination events.
Learn more about Insect-borne diseases here: https://brainly.com/question/1621516
#SPJ11
what are the different macromolecule polymers and their monomers? which are non polar and which are polar
The different macromolecule polymers and their monomers are as follows:
CarbohydratesThe primary component of carbohydrates is glucose.
Polysaccharides are carbohydrates composed of many monosaccharide monomers.
Polysaccharides are divided into two categories: storage and structural.
Cellulose, for example, is a structural polysaccharide found in plant cell walls, while glycogen is a storage polysaccharide found in animal cells.
ProteinsAmino acids are the monomers that make up proteins. Proteins are composed of up to four levels of structural complexity. The sequence of amino acids, the polypeptide chain's shape, the interaction of different polypeptide chains, and the final functional structure are the four levels of organization.
LipidsLipids, unlike carbohydrates and proteins, do not have a unique monomer that makes up their structure. Instead, lipids are made up of fatty acids and glycerol molecules. The difference between a fatty acid and a glycerol molecule is that fatty acids have a long hydrocarbon chain, while glycerol does not.
Nucleic acidsNucleotides are the building blocks of nucleic acids. Nucleotides are composed of a sugar, a phosphate group, and a nitrogenous base. DNA and RNA are examples of nucleic acids, and they both have different nucleotide base sequences.
DNA is an example of a nonpolar macromolecule because it is primarily composed of hydrophobic base pairs, whereas RNA is polar because it is composed of hydrophilic base pairs.
To know more about polymer refer to-
brainly.com/question/17354715#
#SPJ11
Complete question
what are the different macromolecule polymers and their monomers? which are non polar and which are polar- carbohydrate, protein, lipid, nucleic acid.
PLEASE HELP ASAP!!!
You and a friend are debating the pros and cons of cooking in a convection oven or
using the heat from a fireplace. Compare and contrast the movement of heat in the
convection oven and a fireplace and identify the kind of heat transfer occurring in
both systems.
Answer:
Explanation:
In a convection oven, heat transfer occurs through convection, which is a more efficient method of heat transfer because it adds the element of motion. A convection oven has a fan that blows hot air around, which heats food faster than an ordinary oven 1.
In a fireplace, heat transfer occurs through conduction, convection, and radiation. Radiation is responsible for most of the heat transferred into the room while conduction transfers heat into the room at a much slower rate 2.
Alternate response
A convection oven and a fireplace both generate heat, but they operate in different ways and transfer heat differently.
A convection oven circulates hot air using fans, which creates an even temperature throughout the oven. The hot air surrounds the food, cooking it from all sides, and the circulating air helps to transfer heat more efficiently. The heat transfer that occurs in a convection oven is convection, which is the transfer of heat through the movement of fluids or gases. In this case, the fluid is the hot air.
On the other hand, a fireplace radiates heat outward from its flames and embers. As the fire burns, it emits infrared radiation, which heats up the objects and surfaces in the room, including people. The heat transfer that occurs in a fireplace is primarily radiation, which is the transfer of heat through electromagnetic waves. Some convection also occurs as the hot air rises from the fire, creating a flow of hot air that can circulate throughout the room.
In terms of pros and cons, a convection oven offers more precise temperature control and even heating, making it ideal for baking and roasting. However, it may not provide the same smoky flavor and texture that a fireplace can offer, especially for grilling or smoking meats. A fireplace is great for creating a cozy and warm atmosphere, but it can be difficult to control the heat output and may not be as efficient for cooking.
In summary, while both a convection oven and a fireplace generate heat, they operate differently and transfer heat through different methods. The convection oven relies on circulating hot air, while the fireplace radiates heat through infrared radiation and also has some convection. The heat transfer occurring in a convection oven is convection, and in a fireplace, it is primarily radiation. Each has its pros and cons, depending on the cooking task at hand.
air moves out of the lungs when the pressure inside the lungs is ________.
Air moves out of the lungs when the pressure inside the lungs is greater than the atmospheric pressure outside. This process is called expiration, and it is a passive process that occurs when the muscles of the diaphragm and rib cage relax, causing the volume of the lungs to decrease.
When the pressure inside the lungs is greater than the atmospheric pressure outside, air moves out of the lungs. This process is known as expiration. Expiration, in general, refers to the process of exhaling or breathing out. It is a physiological process in which the diaphragm, muscles, and other structures in the thorax contract, resulting in the expulsion of air from the lungs.In a relaxed position, the pressure inside the lungs is equal to the pressure outside. However, during expiration, the pressure inside the lungs increases due to the contraction of the muscles in the thorax. As a result, air moves out of the lungs and into the environment where the atmospheric pressure is lower. Therefore, the pressure inside the lungs becomes lower than the atmospheric pressure outside, and air flows out of the lungs.
Learn more about the mechanism of breathing at: brainly.com/question/27010145
#SPJ11
How long has the breakdown of the ozone layer been occurring?
Answer:
The breakdown of the ozone layer has been occurring since the 1970s. It was first discovered in the mid-1980s that human-made chemicals, such as chlorofluorocarbons (CFCs), were destroying the ozone layer, which protects the Earth from harmful ultraviolet radiation from the sun. The discovery led to the signing of the Montreal Protocol in 1987, which was an international treaty designed to phase out the production and use of ozone-depleting substances. Thanks to the Montreal Protocol, the ozone layer has started to recover, and it is expected to return to pre-1980 levels by the middle of this century.
Explanation: