The Sun appears bigger and brighter than other stars in the sky because it is much closer to the Earth than any other star.
While the Sun is only an average-sized star, it is still much closer to us than any other star, so it appears larger and brighter in the sky.
Additionally, the Sun is also the closest star to the Earth that undergoes nuclear fusion, which is the process that produces its energy and makes it shine.
Other stars in the sky may be much larger or brighter than the Sun, but their distance from us makes them appear much smaller and dimmer.
To know more about nuclear fusion refer here
https://brainly.com/question/12701636#
#SPJ11
(science)
4. Complete the following paragraph by adding the correct terms.
Cells can make new cells. One cell can (a) ____________ into two new cells. This is called (b)__________________. The process of cell division goes through various states. First, the cell nucleus (c)________________ into two. A new cell surface membrane then (d)____________ the cell divides. The two new cells are called (e)_______________ and they are small. They will grow and become larger. They grow by getting (f)______________ from the food that is eaten. Once they grow to full size they can also (g)_____________. If cells divide more quickly than they should, or divide in the wrong way, (h)_____________ can develop.
Answer:
One cell can divide into two new cells. This is called mitosis. The process of cell division goes through various stages. First the cell nucleus divides into two. A new cell surface membrane then severs the cell divides. The two new cells are called daughter cells and they are small. They will grow larger. they grow by getting nutrients from the food that is eaten. Once they grow to full size they can also reproduce or divide. If cells divide more quickly than they should, or divide in the wrong way, diseases may develop.
Explanation:
Hope that helped
discuss the key characteristics of the plot. consider the points when potential energy u is maximum, u is minimum, kinetic energy k is maximum, k is minimum and when u and k are the same value. what is the significance of these points?
In terms of physics, Potential energy (u) refers to stored energy that has the potential to be converted into kinetic energy (k), which is the energy of motion. In a story, u and k can represent the emotional energy of the characters and the events that unfold.
When u is at its maximum, it indicates that tension or conflict is building, and the story is reaching a critical point. When u is at its minimum, it suggests that the characters or situation have reached a state of equilibrium.
When k is at its maximum, it means that the story is reaching a peak in action or intensity. Conversely, when k is at its minimum, the story may be transitioning between scenes or slowing down.
When u and k are at the same value, it suggests a balance between the potential and kinetic energy, and the story may be reaching a climax or resolution.
These points are significant as they highlight important moments in the story and indicate shifts in the narrative or emotional energy of the characters. Understanding these key characteristics of the plot can help readers to engage with the story and appreciate the author's use of tension and pacing to create a compelling narrative.
To Learn More About Potential energy
https://brainly.com/question/1242059
SPJ11
One who is capable of identifying existing and predictable.
It seems like the phrase you provided is incomplete or ambiguous. However, based on the partial phrase you provided, "One who is capable of identifying existing and predictable," it could refer to a person who has the ability to recognize and understand things that currently exist and can be predicted in the future.
This could describe someone who has a strong analytical or observational skills and can perceive patterns, trends, or regularities in various aspects of life, such as in scientific phenomena, financial markets, human behavior, or other areas where predictability and existing patterns are sought.
If you have a specific context or a more detailed question, please provide additional information, and I'll be glad to provide a more specific response.
To know more about analytical refer here
https://brainly.com/question/29804070#
#SPJ11
Which force acts on falling objects to oppose gravity?
The force that acts on falling objects to oppose gravity is air resistance, also known as drag.
Air resistance is a type of frictional force that occurs when an object moves through a fluid, such as air or water. As a falling object accelerates due to gravity, it also encounters resistance from the air molecules it pushes against. This resistance increases with the object's speed, making it harder for the object to continue accelerating at the same rate.
Air resistance plays a crucial role in determining the terminal velocity of a falling object. Terminal velocity is the constant speed that an object reaches when the downward force of gravity is exactly balanced by the upward force of air resistance. At this point, the object no longer accelerates and maintains a steady speed until it comes into contact with the ground or another surface.
Various factors affect the air resistance acting on a falling object, including the object's size, shape, and surface area. Objects with larger surface areas and irregular shapes experience more air resistance, slowing their descent compared to smaller, more streamlined objects. In some cases, air resistance can be minimized by designing objects with specific shapes, such as the aerodynamic design of airplanes, cars, and sports equipment.
In summary, air resistance is the force that opposes gravity on falling objects, influencing their terminal velocity and overall motion through the air. This force is affected by factors such as the object's size, shape, and surface area, and plays a critical role in various applications, including engineering and sports.
To know more about drag, refer here:
https://brainly.com/question/12774964#
#SPJ11
3. Compute the force of a small car, weighing 2,205 pounds, traveling 60 mph, that crashes into a steel pole and comes to a stop in 0. 05 second? dont know what to do
A small car weighing 2,205 pounds and traveling at 60 mph crashes into a steel pole and stops in 0.05 seconds. The force of the impact is calculated to be -53,600 N.
To calculate the force of a car that crashes into a steel pole, we need to use the formula F = m*a, where F is the force, m is the mass, and a is the acceleration.
To find the acceleration, we can use the formula[tex]a = (v_f - v_i) / t[/tex], where [tex]v_f[/tex] is the final velocity, [tex]v_i[/tex] is the initial velocity, and t is the time it takes to stop.
First, we need to convert the weight of the car from pounds to mass in kilograms, which is 1000 kg. Then, we need to convert the speed from miles per hour to meters per second, which is 26.8 m/s.
Using the formula a = (0 - 26.8) / 0.05, we get an acceleration of -536 m/s². Finally, we can use the formula F = m*a to find the force, which is -53,600 N.
The negative sign indicates that the force is in the opposite direction of the car's motion, meaning the car experiences a deceleration force. The force is very high due to the short stopping time, which can cause severe damage to the car and its occupants.
In summary, the force of a car crashing into a steel pole and coming to a stop in 0.05 seconds can be calculated using the formula F = m*a. Converting the weight to mass and the speed to meters per second, we can find the acceleration and use it to calculate the force.
To know more about force refer here:
https://brainly.com/question/26115859#
#SPJ11
A car is driven 215 km west and then 98 km south west (45 degree). a)what is the displacement of the car from the origin point? b) what is the directions
A car is driven 215 km west and then 98 km southwest (45 degrees). The total displacement from the origin point is 224 km. The direction of the car from the origin point is approximately 18.9° west of south.
a) To determine the displacement of the car from the origin point, we can use the Pythagorean theorem. Let's consider the westward direction as the x-axis and the southward direction as the y-axis.
The car has travelled 215 km west and 98 km at a 45-degree angle southwest. We can break down the southwest direction into its x and y components as follows:
x-component = [tex]98\;cos (45^{\circ}) = 69.3\;km[/tex]
y-component = [tex]98\;sin (45^{\circ}) = 69.3\;km[/tex]
Therefore, the total displacement from the origin point can be calculated as follows:
displacement = [tex]\sqrt{[(215\;km)^2 + (69.3\;km)^2][/tex]
displacement = 224 km
b) To determine the direction of the car from the origin point, we can use trigonometry to find the angle between the displacement vector and the x-axis:
angle = [tex]tan^{-1}(69.3\;km / 215\;km)[/tex]
[tex]angle \approx 18.9^{\circ}[/tex] west of south
Therefore, the direction of the car from the origin point is approximately 18.9° west of south.
In summary, we can determine the displacement of a car from its origin point by using the Pythagorean theorem and breaking down any diagonal components into their x and y components. We can then use trigonometry to find the direction of the displacement vector relative to a given axis.
To know more about displacement refer here:
https://brainly.com/question/29769926#
#SPJ11
Complete Question:
A car is driven 215 km west and then 98 km south west (45 degree).
a)what is the displacement of the car from the origin point?
b) what is the directions of the car from the origin point?
Which of these typically have the largest orbit? Earth Mars Meteors Comets
Comets typically have the largest orbits among the options provided. Comets are icy bodies that originate from the outermost regions of our solar system and have highly elliptical orbits that can take them far away from the Sun. Here option D is the correct answer.
The size and shape of a comet's orbit are determined by its initial velocity, the gravitational pull of the planets and the Sun, and any interactions with other celestial bodies. These factors can cause a comet's orbit to vary widely, with some comets having orbits that extend far beyond the outermost planets of our solar system and take them many thousands of years to complete a single orbit.
In contrast, Earth and Mars have relatively circular orbits around the Sun, with periods of 365.24 and 687 Earth days, respectively. Meteors are typically small rocky or metallic bodies that travel through space and can enter Earth's atmosphere, but they do not have orbits of their own as they are typically remnants from the break-up of comets or asteroids.
Overall, comets are unique celestial bodies with highly eccentric orbits that can take them to the far reaches of our solar system, and studying their orbits can provide important insights into the formation and evolution of our solar system.
To learn more about Comets
https://brainly.com/question/12443607
#SPJ4
Complete question:
Which of these typically have the largest orbit?
A - Earth
B - Mars
C - Meteors
D - Comets
How much work is done on a 80 n crate that you can carry horizontally across 2m room?
1) 1 j because horizontal
2) 2 j because horizontal
3) 0 j because horizontal
4) none of those
The correct answer is option 3)0 j.
Assuming that the crate is being carried at a constant velocity across the 2m room, the net work done on the crate is zero joules. This is because carrying a crate horizontally does not involve any work being done on the crate. Work is only done when a force is applied to an object and the object moves in the direction of the force. In this case, the crate is not moving vertically or horizontally, so no work is being done on it.
In other words, the force that you apply on the crate is in the horizontal direction, while the displacement of the crate is in the vertical direction. Therefore, the work done by the force is zero, and the net work done on the crate is also zero joules.
To know more about work, click here;
https://brainly.com/question/29762840
#SPJ11
What advice would you give to the company that wants to build a bridge in south america? make sure to include whether there is anything the company should change about its design and materials. give specific examples. your answer should include at least five complete sentences. (this is about earthquakes) will make brainlest and 20 points
For a company looking to build a bridge in South America, it is crucial to consider the region's seismic activity.
To ensure the bridge's safety and durability, I recommend using earthquake-resistant design features, such as base isolation or energy dissipation devices.
It's also important to choose materials with high ductility, like steel or reinforced concrete, which can better withstand the stress from earthquakes.
Additionally, the company should collaborate with local experts and authorities to understand the seismic history and geological conditions of the specific location. Lastly, it is essential to conduct regular maintenance and inspections to ensure the bridge's structural integrity over time.
To learn more about seismic, refer below:
https://brainly.com/question/13725277
#SPJ11
Why can a lunar eclipse only happen during a full moon?.
A lunar eclipse can only occur during a full moon because it is the only time when the sun, Earth, and moon are in the right positions for the Earth's shadow to fall on the moon.
A lunar eclipse can only happen during a full moon because of the relative positions and alignments of the Earth, the moon, and the sun.
During a lunar eclipse, the Earth passes between the sun and the moon, casting its shadow on the moon. For the Earth's shadow to fall on the moon, the sun, Earth, and moon must be nearly aligned, with the Earth in the middle. This alignment only occurs during a full moon, when the moon is on the opposite side of the Earth from the sun.
During a full moon, the sun illuminates the entire visible face of the moon, making it appear fully round and bright in the sky. If the alignment is just right, the Earth's shadow can fall on the moon, causing a lunar eclipse.
To know more about lunar eclipse refer here
https://brainly.com/question/29775053#
#SPJ11
A glass slides across a bar and slows down due to a kinetic friction of 0.175n. if the glass weighs 0.500n, what is the coefficient of kinetic friction between the glass and the bar?
The coefficient of kinetic friction between the glass and the bar is 0.35. This is found by dividing the force of kinetic friction by the weight of the glass, using the formula for kinetic friction.
The coefficient of kinetic friction is a measure of the frictional force between two surfaces in contact when they are moving relative to each other.
In this problem, a glass slides across a bar and slows down due to kinetic friction of 0.175 N. The weight of the glass is 0.500 N, and we need to determine the coefficient of kinetic friction between the glass and the bar.
The formula for kinetic friction is:
[tex]f_k = \mu_k\; N[/tex]
where [tex]f_k[/tex] is the force of kinetic friction, [tex]\mu_k[/tex] is the coefficient of kinetic friction, and N is the normal force between the two surfaces in contact.
The normal force is equal to the weight of the object in contact with the surface. Therefore, the normal force on the glass is 0.500 N.
Substituting the given values, we get:
[tex]0.175 N = \mu_k (0.500 N)[/tex]
Solving for μ_k, we get:
[tex]\mu_k[/tex] = 0.175 N / 0.500 N
[tex]\mu_k[/tex] = 0.35
Therefore, the coefficient of kinetic friction between the glass and the bar is 0.35.
In summary, the coefficient of kinetic friction between the glass and the bar is 0.35. This is found by dividing the force of kinetic friction by the weight of the glass, using the formula for kinetic friction.
To know more about friction refer here:
https://brainly.com/question/30280206#
#SPJ11
Complete Question:
A glass slides across a bar and slows down due to a kinetic friction of 0.175N. If the glass weighs 0.500N, what is the coefficient of kinetic friction between the glass and the bar?
A. 0.350
B. 2.86
C. 1.48
D. 0.675
1. how much is the increase in temperature from 1880 to 2010?
2. what happened to the amount of carbon dioxide from 1880 to 2010?
3. what is the relationship between the amount of carbon dioxide and global temperature?
4. when was temperature at its highest and at its lowest?
please help neep asap....
From 1880 to 2010, there was a substantial increase in both global temperature and atmospheric CO2 levels, with a positive correlation between the two. The temperature reached its highest point in 2010, and its lowest point in the late 1800s.
1. The increase in temperature from 1880 to 2010 is approximately 0.8°C (1.4°F) according to NASA's Goddard Institute for Space Studies. This increase in temperature has been attributed to human activities such as burning fossil fuels, deforestation, and agriculture.
2. The amount of carbon dioxide in the atmosphere has significantly increased from 1880 to 2010. According to the National Oceanic and Atmospheric Administration (NOAA), the concentration of carbon dioxide has increased from 280 parts per million (ppm) in 1880 to over 400 ppm in 2010. This increase is due to the burning of fossil fuels and deforestation.
3. There is a strong correlation between the amount of carbon dioxide and global temperature. As the amount of carbon dioxide increases, it traps more heat in the Earth's atmosphere, leading to an increase in global temperature. This is known as the greenhouse effect.
4. The temperature was at its highest in 2016, with an average global temperature of 1.78°F (0.99°C) above the 20th-century average. The temperature was at its lowest in 1904, with an average global temperature of 1.46°F (0.81°C) below the 20th-century average. However, it is important to note that these temperature fluctuations are within the range of natural variability, and it is the overall upward trend in temperature that is of concern.
For more about global temperature:
https://brainly.com/question/12401793
#SPJ11
A child shoots a 3.0 g bottle cap up a ramp 20° above horizontal at 2.0 m/s. The cap slides in a straight line, slowing to 1.0 m/s after traveling some distance, d. If the coefficient of kinetic friction is 0.40, find that distance.
Answer:
Approximately [tex]0.21\; {\rm m}[/tex].
(Assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex].)
Explanation:
As the bottle cap slows down, it lost kinetic energy [tex](\text{KE})[/tex]: [tex]\Delta \text{KE} = (1/2)\, m\, (u^{2} - v^{2})[/tex], where [tex]m[/tex] is the mass of the cap, [tex]v = 1.0\; {\rm m\cdot s^{-1}}[/tex], and [tex]u = 2.0\; {\rm m\cdot s^{-1}}[/tex].
The amount of kinetic energy lost should also be equal to the sum of:
gain in gravitational potential energy ([tex]\text{GPE}[/tex]), andwork that friction has done on the cap.Let [tex]d[/tex] denote the distance that the cap has travelled along the ramp. The height of the cap would have increased by:
[tex]\Delta h = d\, \sin(\theta)[/tex], where [tex]\theta = 20^{\circ}[/tex] is the angle of elevation of the ramp.
The [tex]\text{GPE}[/tex] of the cap would have increased by:
[tex]\Delta \text{GPE} = m\, g\, \Delta h = m\, g\, d\, \sin(\theta)[/tex].
To find the friction on the cap, it will be necessary to find the normal force that the ramp exerts on the cap.
Let [tex]\theta = 20^{\circ}[/tex] denote the angle of elevation of this ramp. Decompose the weight of the cap [tex]m\, g[/tex] (where [tex]m[/tex] is the mass of the cap) into two directions:
Along the ramp: [tex]m\, g\, \sin(\theta)[/tex],Tangential to the ramp: [tex]m\, g\, \cos(\theta)[/tex].The normal force on the cap is entirely within the tangential direction.
Since the cap is moving along the ramp, there would be no motion in the tangential direction. Forces in the tangential direction should be balanced. Hence, the normal force on the cap will be equal in magnitude to the weight of the cap in the tangential direction: [tex]F_{\text{normal}} = m\, g\, \cos(\theta)[/tex].
Since the cap is moving, multiply the normal force on the cap by the coefficient of kinetic friction [tex]\mu_{\text{k}}[/tex] to find the friction [tex]f[/tex] between the ramp and the cap:
[tex]f = \mu_{\text{k}}\, F_{\text{normal}}[/tex].
After a distance of [tex]x[/tex] along the ramp, friction would have done work of magnitude:
[tex]\begin{aligned} (\text{work}) &= f\, s \\ &= (\mu_{\text{k}}\, F_{\text{normal}})\, (d) \\ &= \mu_{\text{k}}\, m\, g\, \cos(\theta)\, d\end{aligned}[/tex].
Overall:
[tex]\begin{aligned} \Delta \text{KE} &= \Delta \text{GPE} + \mu_{\text{k}}\, m\, g\, \cos(\theta)\, d \\ &= m\, g\, \sin(\theta)\, d + \mu_{\text{k}}\, m\, g\, \cos(\theta)\, d \\ &= m\, g\, (\sin(\theta) + \mu_{\text{k}}\, \cos(\theta))\, d\end{aligned}[/tex].
At the same time:
[tex]\Delta \text{KE} = (1/2)\, m\, (v^{2} - u^{2})[/tex].
Therefore:
[tex]\displaystyle \frac{1}{2}\, m\, (v^{2} - u^{2}) = m\, g\, (\sin(\theta) + \mu_{\text{k}}\, \cos(\theta))\, d[/tex].
[tex]\begin{aligned}d &= \frac{m\, (u^{2} - v^{2})}{2\, m\, g\, (\sin(\theta) + \mu_{\text{k}}\, \cos(\theta))} \\ &= \frac{u^{2} - v^{2}}{2\, g\, (\sin(\theta) + \mu_{\text{k}}\, \cos(\theta))} \\ &= \frac{(2.0)^{2} - (1.0)^{2}}{2\, (9.81)\, (\sin(20^{\circ}) + 0.40\, \cos(20^{\circ}))}\; {\rm m} \\ &\approx0.21\; {\rm m}\end{aligned}[/tex].
A woman of mass 50 kg runs up a 300m high hill in 5 min. Her power is:
a) 150 W
b) 500 W
c) 100 W
d) 50 W
e) 300 J
Answer: We can use the formula for power:
Power = Work / Time
To find the work done by the woman, we can use the formula:
Work = Force x Distance
where Force = mass x acceleration, and acceleration = gravity = 9.8 m/s^2
Force = mass x acceleration = 50 kg x 9.8 m/s^2 = 490 N
Distance = 300 m
So, Work = Force x Distance = 490 N x 300 m = 147,000 J
Converting the time of 5 min to seconds, we get:
Time = 5 min x 60 s/min = 300 s
Now, we can calculate the power:
Power = Work / Time = 147,000 J / 300 s = 490 W
Therefore, the woman's power is 490 W (option b).
Explanation:
Answer:
Her power is 50 W
Explanation:
This is because formula for power is (mass*length[in meters])/time[in seconds]
on applying it we get
50kg*300m/300sec = 50 W
Calculate the weight of an object sitting on the Earth’s surface if the mass of the object is 50 kg? Assuming the force of gravity g = 9. 81 m/s²)
The weight of an object with a mass of 50 kg on Earth's surface is 490.5 N (Newtons).
To calculate the weight of an object on Earth's surface, we need to consider the mass of the object and the force of gravity (g). In this case, the mass is given as 50 kg, and the force of gravity is assumed to be 9.81 m/s².
Step-by-step explanation:
1. Start with the mass of the object (m) which is given as 50 kg.
2. Next, take the force of gravity (g) as 9.81 m/s² (as provided).
3. Now, we need to use the weight formula, which is:
Weight (W) = mass (m) × force of gravity (g)
4. Substitute the values of mass and force of gravity in the formula:
W = 50 kg × 9.81 m/s²
5. Perform the multiplication:
W = 490.5 N
So, the weight of the object sitting on Earth's surface with a mass of 50 kg is 490.5 Newtons.
Know more about force of gravity click here:
https://brainly.com/question/14874038
#SPJ11
A vertical spring with a force constant of 5.2
N/m has a relaxed length of 2.58 m. When
a mass is attached to the end of the spring
and allowed to come to rest, the length of the
spring is 3.50 m.
Calculate the elastic potential energy
stored in the spring.
Answer:To calculate the elastic potential energy stored in the spring, we can use the formula:
Elastic potential energy = (1/2) * k * Δx^2
where k is the force constant of the spring and Δx is the change in length from the relaxed length.
First, we need to calculate Δx:
Δx = 3.50 m - 2.58 m
Δx = 0.92 m
Now, we can calculate the elastic potential energy:
Elastic potential energy = (1/2) * k * Δx^2
Elastic potential energy = (1/2) * 5.2 N/m * (0.92 m)^2
Elastic potential energy = 2.17 J
Therefore, the elastic potential energy stored in the spring is 2.17 J.
Explanation:
The what side of heart is what circuit and pumps oxygen poor blood to the what
The right side of the heart is the circuit that pumps oxygen-poor blood to the lungs.
Here are some points to explain this further:
- The heart is a muscular organ located in the chest that pumps blood throughout the body.
- The heart has four chambers, two on the right side and two on the left side.
- The right side of the heart is responsible for pumping blood to the lungs, where it can receive oxygen.
- When oxygen-poor blood from the body enters the right atrium of the heart, it is pumped into the right ventricle.
- The right ventricle then pumps the oxygen-poor blood through the pulmonary artery to the lungs, where it can be oxygenated.
- After the blood is oxygenated in the lungs, it returns to the left side of the heart via the pulmonary veins.
- The left side of the heart then pumps the oxygen-rich blood out to the rest of the body through the aorta.
- This process is known as the pulmonary circulation, and it is responsible for delivering oxygen to the body's tissues and organs.
To know more about muscular organ refer here
https://brainly.com/question/16505843#
#SPJ11
yalll pls help 20 points ) How is BMI weight calculated?
Responses
Divide weight by 678.
Double weight.
Subtract weight from heart rate.
Multiply weight by 703.
What was King Louis XVI's goal for Jacques-Louis David's Oath of the Horatil, 1784
1) to send a moral message
2) to educate the public about antiquity
3) to discourage a revolution
4) to decorate his palace
on how many factors amount of energy carried by wave depends?
Answer:
The amount of energy carried by a wave depends on two factors:
1. Amplitude: The amplitude of a wave is the maximum displacement of the particles of the medium from their resting position. The greater the amplitude of the wave, the more energy it carries.
2. Frequency: The frequency of a wave is the number of complete cycles of the wave that occur in one second. The higher the frequency of the wave, the more energy it carries.
A trumpet plays its 3rd harmonic at 510 Hz. It then opens a valve, which adds 0. 110 m to its length. What is the new 3rd harmonic frequency? (Hint: Find the original length. ) (Speed of sound = 343 m/s) (Unit = Hz)
The new 3rd harmonic frequency is 869 Hz. The 3rd harmonic means that the trumpet has three nodes and two antinodes, and the standing wave has three segments.
The frequency of the 3rd harmonic can be found by multiplying the fundamental frequency by 3, so the original length of the trumpet must be such that the 3rd harmonic frequency is 510 Hz.
Using the formula for the wavelength of a standing wave, λ = 2L/n, where L is the length of the trumpet and n is the harmonic number, we can find the original length to be L = (2λ/3). Substituting λ = v/f, where v is the speed of sound and f is the frequency, we get L = (2v/3f).
So, the original length of the trumpet is L = (2 x 343 m/s)/(3 x 510 Hz) = 0.450 m. Adding 0.110 m to the length gives the new length L' = 0.560 m. Using the same formula and harmonic number, we can find the new frequency f' to be f' = (3v/2L') = (3 x 343 m/s)/(2 x 0.560 m) = 869 Hz. Therefore, the new 3rd harmonic frequency is 869 Hz
To know more about harmonic frequency, refer here:
https://brainly.com/question/12320829#
#SPJ11
What is the electric field at a point 0. 200 m to the right of a + charge ? Include sign to indicate the direction of the field. 1. 50^ * 10^ "-8" C a + or - ( Unit = N / C ) =
Help please
The answer is:
To calculate the electric field at a point due to a point charge, we can use the formula:
[tex]E = k * q / r^2[/tex]
where E is the electric field, k is the Coulomb constant, q is the charge of the point charge, and r is the distance from the point charge to the point where we want to find the electric field.
In this case, we have a + charge of q =[tex]1.50 * 10^{-8} C[/tex] and we want to find the electric field at a point 0.200 m to the right of the charge. Therefore, the distance r = 0.200 m.
Plugging in the values, we get:
E = [tex](9 * 10^9 N*m^2/C^2) * (1.50 * 10^{-8} C) / (0.200 m)^2[/tex]
E = [tex]1.69 * 10^5 N/C[/tex]
The electric field is directed away from the + charge, so we include a + sign to indicate the direction of the field.
[tex]1.69 *10^5 N/C[/tex] to the right (+)
To know more about electric field refer here
https://brainly.com/question/15800304#
#SPJ11
Scenario: you are about to watch a movie you’ve been dying to see on hbo max. you pop some leftover spaghetti and water for some hot tea in the microwave. just as you pulled them out of the microwave and get ready to start the movie, you have the sudden urge to use the restroom. you give an eye roll and head to the restroom. predict which item (spaghetti or water) would be the coolest when you return. *you must use the cer format to answer question.
The item that would be cooler upon returning would be the spaghetti, as it has a higher heat capacity than water, meaning it requires more energy to raise its temperature.
Based on the scenario given, the spaghetti and water were heated in the microwave but left out for an unknown period of time.
As time passes, the temperature of the heated objects decreases due to conduction, convection, and radiation.
Therefore, the item that would be cooler upon returning would be the spaghetti, as it has a higher heat capacity than water, meaning it requires more energy to raise its temperature.
The water would lose heat more quickly due to its lower heat capacity and smaller mass, and therefore would reach a lower temperature faster than the spaghetti.
Additionally, if the spaghetti was covered, it would retain more of its heat and would be slightly warmer than uncovered spaghetti left out at room temperature.
To know more about heat capacity, refer here:
https://brainly.com/question/28921175#
#SPJ11
A spring has a spring constant of 330 N/m.
how far is the spring compressed if 150 N force is used ?
0.45 m far is the spring compressed if 150 N force is used in a spring has a spring constant of 330 N/m
Define spring constant
The stiffness of the spring is quantified by the spring constant, k. For various materials and springs, it varies. The spring becomes stiffer and more challenging to stretch as the spring constant increases.
It is used to assess the stability or instability of a spring and, consequently, the system it is meant to serve. Its expression is given by the formula k = - F/x, which reworks Hooke's Law. where x is the displacement caused by the spring, given in N/m, and k is the spring constant.
Force = spring constant * extension
150 = 330 * extension
Extension = 150/330
Extension = 0.45 m
To learn more about spring constant use:
https://brainly.com/question/14670501
#SPJ4
When you pedal really fast on a bike, you can feel the wind slowing you down.
Which force causes this?
O
A. Strong nuclear force
B. Magnetic force
O
OD. Gravity
C. Air resistance
Answer:
the answer is the option C
Wave interference that results in lesser wave amplitude is called.
Wave interference that results in lesser wave amplitude is called destructive interference. In destructive interference, two waves with opposite phases combine, causing the wave amplitudes to cancel each other out, resulting in a lower overall amplitude.
1. When two waves meet, they can either combine constructively or destructively, depending on their phase relationship.
2. Constructive interference occurs when two waves with the same phase meet, resulting in a greater overall amplitude.
3. Destructive interference occurs when two waves with opposite phases meet, causing the wave amplitudes to cancel each other out, resulting in a lower overall amplitude.
4. This can be observed in various real-life scenarios, such as sound waves, light waves, and water waves.
5. To better understand destructive interference, imagine two waves with the same amplitude and frequency traveling in opposite directions on a string.
6. When the waves meet, the crest of one wave aligns with the trough of the other wave, causing them to cancel each other out.
7. As a result, the string appears to be momentarily flat at the point of destructive interference.
8. Destructive interference plays a crucial role in various applications, such as noise-canceling headphones, which use the concept to cancel out unwanted background noise.
In summary, wave interference that results in lesser wave amplitude is called destructive interference. This phenomenon occurs when two waves with opposite phases meet and cancel each other out, resulting in a lower overall amplitude.
To know more about destructive interference refer here
https://brainly.com/question/16098226#
#SPJ11
A new planet called "Corus" was discovered by a team of astronomers that
is 60 x 106 km away from Earth. A satellite was launched by a rocket from
Earth to reach Corus. At a specific distance from Corus, the rocket releases
the satellite to the orbit of the planet. The satellite makes one complete
revolution around Corus in 15 Earth days. If Corus has a similar mass to
Mars, propose a suitable mass of the satellite and estimate:
i.
ii.
Distance between the satellite and the Corus's surface
Satellite's gravitational acceleration towards the core of Corus
Gravitational force between the satellite and the Corus
Minimum speed of the satellite to orbit Corus
iv.
Satellite mass is 1.69 x 10²² kg; Distance to Corus is 6,760 km; Gravitational acceleration is 3.77 m/s²; Gravitational force is 1.26 x 10¹⁰ N; Minimum orbit speed is 3.25 km/s.
To estimate the mass of the satellite, we can use the formula for the period of a satellite's orbit, which is given by [tex]T=2\pi \sqrt(r^{3} /GM)[/tex], where T is the period, r is the distance between the satellite and the center of Corus, G is the gravitational constant, and M is the mass of Corus.
We know that the period of the satellite is 15 Earth days, which is approximately 1.296 x 106 seconds. We also know that the distance between Corus and the satellite is the sum of the radius of Corus and the altitude of the satellite.
Assuming the altitude of the satellite is 500 km, which is similar to the altitude of the International Space Station, we can estimate the distance to be 6,760 km.
To calculate the satellite's mass, we can rearrange the formula to solve for M, which gives [tex]M=(4\pi ^{2} r^{3} )/(GT^{2} )[/tex]. Substituting the known values, we get M = 1.69 x 1022 kg.
Using the formula for gravitational acceleration,[tex]g = G (M/r^{2} )[/tex], we can calculate the gravitational acceleration towards the core of Corus. Substituting the known values, we get g=3.77 m/s².
To calculate the gravitational force between the satellite and Corus, we can use the formula for gravitational force, [tex]F=G(Mm/r^{2} )[/tex] , where m is the mass of the satellite. Substituting the known values, we get F = 1.26 x 1010 N.
Finally, to calculate the minimum speed of the satellite to orbit Corus, we can use the formula for circular velocity, [tex]v=\sqrt(GM/r)[/tex]. Substituting the known values, we get v = 3.25 km/s.
In summary, a suitable mass for the satellite is approximately 1.69 x 1022 kg, the distance between the satellite and Corus's surface is approximately 6,760 km, the gravitational acceleration towards the core of Corus is approximately 3.77 m/s².
The gravitational force between the satellite and Corus is approximately 1.26 x 1010 N, and the minimum speed of the satellite to orbit Corus is approximately 3.25 km/s.
To know more about acceleration refer here:
https://brainly.com/question/30413854#
#SPJ11
Complete Question:
A new planet called "Corus" was discovered by a team of astronomers that is 60 x 106 km away from Earth: A satellite was launched by a rocket from Earth to reach Corus. At a specific distance from Corus, the rocket releases the satellite to the orbit of the planet The satellite makes one complete revolution around Corus in 15 Earth days. If Corus has a similar mass to Mars, propose a suitable mass of the satellite and estimate:
i. Distance between the satellite and the Corus's surface
ii. Satellite's gravitational acceleration towards the core of Corus
iii. Gravitational force between the satellite and the Corus
iv. Minimum speed of the satellite to orbit Corus
HELP PLEASE! DUE TONIGHT! If the wind speed in the top figure increased, what would happen to the plane’s ground speed?
Answer: Flying into the wind provides more lift, but reduces the plane's “ground speed”, the speed of the plane relative to the ground hope this helps
At an outdoor physics demonstration, a delay of 0.50
seconds was observed between the time sound
waves left a loudspeaker and the time these sound
waves reached a student through the air. If the air is
at STP, how far was the student from the speaker?
The student in the problem was 86 m from the speaker
What is the speed of sound in air?The speed of sound in air depends on various factors such as temperature, humidity, and pressure. At standard temperature and pressure (STP), which is a temperature of 0°C and a pressure of 1 atm, the speed of sound in dry air is approximately 343 meters per second
We know that;
V = 2x/t
v = speed of sound in air
x = distance covered
t = time taken
Then;
x = Vt/2
x = 343 * 0.5/2
x = 86 m
This is the sped of the sound.
Learn more about speed of sound in air:https://brainly.com/question/29050527
#SPJ1
what would have to be the mass of this asteroid, in terms of the earth's mass m , for the day to become 28.0% longer than it presently is as a result of the collision? assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.
The mass of the asteroid would have to be 0.39 times the mass of the Earth for the day to become 28.0% longer.
When an asteroid collides with the Earth, it can change the planet's rotational speed and affect the length of the day. To determine the mass of the asteroid that would cause the day to become 28.0% longer, we can use the principle of conservation of angular momentum.
Angular momentum is given by the product of the moment of inertia and angular velocity. Since the moment of inertia of the Earth remains constant, any change in the Earth's rotational speed must be due to a change in its angular velocity. Therefore, we can write:
I₁ω₁ = I₂ω₂
where I₁ and ω₁ are the initial moment of inertia and angular velocity of the Earth, and I₂ and ω₂ are the final moment of inertia and angular velocity of the Earth after the collision.
If the day becomes 28.0% longer, then the new angular velocity of the Earth is 0.72 times the original angular velocity. Therefore, we can write:
I₁ω₁ = I₂(0.72ω₁)
Solving for I₂ in terms of the Earth's mass m, we get:
I₂ = (1 + m)I₁
Substituting this into the previous equation and simplifying, we get:
m = (0.28/0.72) - 1 = 0.39
To learn more about mass click on,
https://brainly.com/question/15234722
#SPJ4