Why Phenol is weak acid?

Answers

Answer 1

The stability of the aromatic ring in phenol makes it a weak acid because it is not as willing to donate a proton as aliphatic alcohols, which lack the resonance stabilization of the negative ion.

Phenol is a weak acid because it has a relatively stable aromatic ring structure that makes it difficult to lose a proton. The hydroxyl group in phenol can donate a proton to form a negatively charged phenoxide ion, but this is not as favorable as it is in aliphatic alcohols due to resonance stabilization of the phenoxide ion. In phenol, the negative charge is delocalized over the entire ring, which reduces the stability of the phenoxide ion.

Learn more about Phenol here: brainly.com/question/10361409

#SPJ4


Related Questions

What are the factors that influence the intensity of an IR absorption band?

Answers

The factors that influence the intensity of an IR absorption band are: Concentration of the sample, Path length of the sample, Polarization of the radiation, temperature, Molecular dipole moment, Molecular weight.

Concentration of the sample: An increase in the concentration of the sample leads to an increase in the intensity of an IR absorption band.

Path length of the sample: The intensity of an IR absorption band is directly proportional to the path length of the sample.

Temperature: The intensity of an IR absorption band decreases with an increase in temperature. This is because the molecular vibrations decrease at higher temperatures.

Polarization of the radiation: The intensity of an IR absorption band depends on the polarization of the radiation. When the polarization of the radiation is perpendicular to the vibrational dipole moment of the molecule, the intensity is low. But, when the polarization is parallel to the vibrational dipole moment, the intensity is high.

Molecular dipole moment: The intensity of an IR absorption band is directly proportional to the molecular dipole moment of the molecule. This is because the change in dipole moment during the vibration is directly proportional to the intensity of the absorption band.

Molecular weight: The intensity of an IR absorption band is inversely proportional to the molecular weight of the molecule. This is because the larger the molecule, the lower the frequency of the absorption band.

Learn more about IR absorption band here:

https://brainly.com/question/31115658

#SPJ11

How does magma move within the mantle?

Answers

Magma is molten rock that exists beneath the Earth's surface, primarily in the mantle layer. The movement of magma within the mantle is driven by several factors, including heat, pressure, and gravity.

The mantle is a layer of the Earth's interior that extends from the bottom of the crust to the top of the core, and it is composed of solid rock. However, within the mantle, there are regions of the rock that are partially melted, forming magma. This magma is less dense than the surrounding solid rock and tends to rise towards the Earth's surface.

The movement of magma within the mantle is influenced by convection currents, which are caused by the heat generated by the Earth's core. These convection currents cause magma to rise towards the Earth's surface, where it may form volcanoes or other types of volcanic activity.

Additionally, the movement of tectonic plates can also play a role in the movement of magma within the mantle. As plates move apart, magma can rise up to fill the space between them, leading to the formation of new crust.

Overall, the movement of magma within the mantle is a complex process that is influenced by a variety of factors, including heat, pressure, gravity, and the movement of tectonic plates.

In the titration of 25.0 mL of 0.1 M CH3COOH with 0.1 M NaOH, how is the pH calculated after 8 mL of titrant is added?
a The pH is 14.
b The pH is calculated using the H-H equation for a buffer solution, using the ratio of the concentrations of the weak base and the weak acid, and the pKaof the acid.
c The pH is 1.
d The pH is calculated by determining the concentration of weak conjugate acid present in the solution, using an ICE table to calculate the proton concentration present after hydrolysis, and taking the negative log of the result.
e The pH is based on the concentration of protons present in the solution, which is equal to the original concentration of the base.
f The pH = pKa of the acid.
g The pH is 7.
h The pH is calculated by determining the concentration of weak conjugate base present in the solution, using an ICE table to calculate the hydroxide ion concentration present after hydrolysis, subtracting pOH from 14, and taking the negative log of the result.
i The pH is calculated by determining the concentration of leftover hydroxide ions in the solution, subtracting pOH from 14, and taking the negative log of the result.

Answers

When 8 mL of titrant is added to the titration of 25.0 mL of 0.1 M CH3COOH with 0.1 M NaOH,the pH is calculated by determining the concentration of weak conjugate base present in the solution, using an ICE table to calculate the hydroxide ion concentration present after hydrolysis, subtracting pOH from 14, and taking the negative log of the result.

What is a titration?

Titration is a technique of quantitative analysis used to determine the concentration of an unknown solution by reacting it with a standard solution of known concentration called a titrant.Titration curve

The plot of the pH of the solution as the volume of titrant added to it is referred to as the titration curve.

The titration curve's endpoints indicate the neutralization point, where the moles of acid and base are equal. The equivalence point is when the amount of acid is equal to the number of moles of base.

A weak acid, CH3COOH, with a concentration of 0.1 M is taken, which will form a buffer solution with NaOH.

When 8 ml of NaOH is added to it, it will neutralize a portion of CH3COOH and produce its conjugate base, CH3COO-. NaOH + CH3COOHCH3COONa+ + H2OL Let's assume that "x" moles of CH3COOH have been neutralized by NaOH. So, the remaining moles of CH3COOH will be "0.1-x."

The moles of CH3COO- formed in the reaction are equal to "x" because they are formed by the neutralization of "x" moles of CH3COOH. So, the molecular weight of CH3COO- = x/1000 (1 mL = 1 cm3).

The initial number of moles of CH3COOH in the solution = 0.1 x 25/1000 = 0.0025 mol

We can obtain the pH of the solution by first calculating the number of moles of CH3COOH that have been converted to CH3COO and then using the weak acid dissociation constant (Ka) to calculate the pH of the resulting buffer solution.

Then, we can determine the hydroxide ion concentration using the relation: [OH-] = Kb/[CH3COO-] and calculate pOH by taking the negative logarithm of the OH- concentration.

Finally, we can subtract pOH from 14 to obtain the pH of the buffer solution.

pH = 14 - pOH Please note that the pOH of a buffer solution can be calculated using the Henderson-Hasselbalch equation.

The correct option is h.

To know more about the titrant https://brainly.com/question/30836835

#SPJ11

What is the CN covalent bond that is formed between the carboxyl group of an amino acid?

Answers

The CN covalent bond that is formed between the carboxyl group (-COOH) of an amino acid and the amino group (-NH2) of another amino acid is called a peptide bond.

Peptide bonds are formed through a condensation reaction, where a molecule of water is removed, and the carboxyl group of one amino acid combines with the amino group of another amino acid, forming a peptide bond and releasing a molecule of water. This process can be repeated to form longer chains of amino acids, known as polypeptides or proteins. Peptide bonds are strong and stable, and they play a critical role in the structure and function of proteins in living organisms.

Amino acids are the building blocks of proteins, and they are joined together by peptide bonds to form polypeptides and proteins. Peptide bonds are formed through a condensation reaction, where the carboxyl group of one amino acid reacts with the amino group of another amino acid, releasing a molecule of water. The resulting covalent bond is a peptide bond, which is a type of CN covalent bond.

To know more about Amino acids, visit: brainly.com/question/14583479

#SPJ4

A piece of dry ice (solid carbon dioxide) with a mass of 28. 8 g sublimes (converts from solid to gas) into a large balloon. Assuming that all of the carbon dioxide ends up in the balloon, what is the volume of the balloon at 22 °C and a pressure of 742 mmHg?

Answers

If all of the carbon dioxide is absorbed by the balloon, its volume is 0.0175 L, or 17.5 mL.

To solve this problem, we can use the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

First, we need to determine the number of moles of carbon dioxide in the dry ice sample. We can do this by dividing the mass of the dry ice by its molar mass. The molar mass of carbon dioxide is 44.01 g/mol.

n = 28.8 g / 44.01 g/mol = 0.654 mol

Next, we need to determine the volume of the balloon. Since the carbon dioxide is a gas, we can use the ideal gas law to solve for the volume of the gas.

V = nRT/P

Before we can substitute the values into the equation, we need to convert the temperature to Kelvin. To do this, we add 273.15 to the Celsius temperature.

T = 22 °C + 273.15 = 295.15 K

Substituting the values into the equation, we get:

V = (0.654 mol)(0.08206 L·atm/mol·K)(295.15 K)/(742 mmHg)

Note that we have converted the pressure from mmHg to atm by dividing by 760, which is the number of mmHg per atm.

V = 0.0175 L

Therefore, the volume of the balloon is 0.0175 L, or 17.5 mL, assuming that all of the carbon dioxide ends up in the balloon.

To learn more about ideal gas law refer to:

brainly.com/question/28257995

#SPJ4

Classify the organisms based on how they obtain food.

Answers

Answer:

First, I will give you a brief summary of what heterotrophs and autotrophs are:

Autotrophs are known as producers because they are able to make their own food from raw materials and energy. Examples include plants, algae, and some types of bacteria. Heterotrophs are known as consumers because they consume producers or other consumers. Dogs, birds, fish, and humans are all examples of heterotrophs.

Now, to get to the question.

The first option, which is the image of trees and grass will go into the autotroph box. This is because plants make food for themselves.

The second option, which is the image of the tiger, will go in the heterotroph box. This is because tigers eat foods like deer and wild boar, and those are heterotrophs.

The third option, which is the image of the deer, belongs in the heterotroph box. deers eat plants to survive, which are autotrophs, meaning that a deer is a heterotroph.

The fourth option, which is the image of some algae, belongs in the autotroph box. As I explained before, all algae are autotrophs.

The fifth option, which is the image of a human, belongs in the heterotroph box. Humans can't produce any food by themselves, so that makes them a heterotroph.

Finally, the last option, which is the image of some carrots, belongs in the autotroph box. Carrots provide their own food for themselves.

I hope this could help you! A brainilist is highly appreciated and helpful!

what is the mass of 2.00 moles of ca(oh)2? group of answer choices 122.5 g 222.4 g 148.2 g 74.1 g 56 g

Answers

The mass of 2.00 moles of Ca(OH)₂ is 148.2 g.

What is a mole?

A mole is a unit of measurement used in chemistry to represent particles, such as atoms, molecules, or ions. A mole is defined as the amount of a substance that contains the same number of entities (such as atoms, molecules, or ions) as there are in 12 grams of pure carbon-12.

Moles and mass are directly proportional to each other since they both represent the quantity of substance.

Moles = Mass/Molar mass

Mass = Moles x Molar mass

The molar mass of Ca(OH)₂ is calculated as follows:

Molar mass of Ca = 40.1 g/mol

Molar mass of O = 16.0 g/mol

Molar mass of H = 1.0 g/mol2 atoms of oxygen, 2 atoms of hydrogen, and 1 atom of calcium are present in Ca(OH)₂.

Therefore, the molar mass of Ca(OH)₂ = 40.1 g/mol + 2(16.0 g/mol) + 2(1.0 g/mol) = 74.1 g/mol

The mass of 2.00 moles of Ca(OH)₂ = Moles × Molar mass= 2.00 × 74.1= 148.2 g

Hence, 148.2 g is the mass of 2.00 moles of Ca(OH)₂.

Learn more about moles on:

https://brainly.com/question/29367909

#SPJ11

Prophase is the first step of mitosis, during which chromosomes condense and the nuclear envelope dissolves.

Answers

Prophase is the first stage of mitosis, a process of cell division that leads to the formation of two genetically identical daughter cells.

During prophase, the chromatin fibers that make up the genetic material condense into visible chromosomes. The nucleolus, a non-membrane-bound structure in the nucleus, disappears, and the nuclear envelope, which separates the nucleus from the cytoplasm, breaks down. This allows the condensed chromosomes to be released into the cytoplasm where they can interact with the microtubules that will eventually separate them into the two daughter cells. Prophase is followed by prometaphase, metaphase, anaphase, and telophase, all of which are critical steps in the process of mitosis.

To learn more about Prophase visit;

https://brainly.com/question/13883655

#SPJ4

predict what precipitate will form when a solution of aluminum chloride is mixed with a solution of potassium phosphate. AlPO4NaCl Na3Cl3 Al3PO4

Answers

When a solution of aluminum chloride is mixed with a solution of potassium phosphate, a precipitate of aluminum phosphate (AlPO4) will form. The reaction between aluminum chloride and potassium phosphate can be represented as follows: AlCl3 + K3PO4 → AlPO4 + 3KCl .

This is due to the fact that the aluminum ion (Al3+) and the phosphate ion (PO43-) can react to form a solid precipitate, which is insoluble in water.

Therefore, when a solution of aluminum chloride is mixed with a solution of potassium phosphate, a white precipitate of aluminum phosphate (AlPO4) will form, while potassium chloride (KCl) will remain in solution.

To know more about aluminum phosphate (AlPO4), here

brainly.com/question/15146433

#SPJ4

What is the difference between alkali metal and alkaline earth metals?

Answers

The difference between alkali metal and alkaline earth metals is in their atomic structure leading to differences in their reactivity and behavior

Alkali metals and alkaline earth metals differ in their physical and chemical properties. The atomic structure of these metals is different, leading to differences in their reactivity and behavior. Alkali metals are more reactive than alkaline earth metals. When reacting with water, alkali metals such as lithium, sodium, and potassium produce hydrogen gas and a basic solution. Alkaline earth metals, such as magnesium, calcium, and barium, react with water to produce hydrogen gas and a slightly basic solution.

Alkaline earth metals have higher melting points and densities than alkali metals, and they are less reactive as a result. Alkali metals have one valence electron, while alkaline earth metals have two, this difference in electron configuration affects the way they bond with other elements. Alkali metals have a larger atomic radius than alkaline earth metals due to the increased number of electrons in the outermost shell, resulting in a decreased ionization energy. Alkaline earth metals have a lower reactivity than alkali metals, but they are still very reactive. They also have a lower melting point and density than alkali metals, making them softer and more malleable.

Learn more about alkaline earth at:

https://brainly.com/question/12835232

#SPJ11

2. State a chemical test you could perform to distinguish between unlabelled samples of the following
solutions. Give the expected observations.
a) sodium sulfate & calcium nitrate
b) sodium sulfate & sodium nitrate
c) strontium nitrate & strontium hydroxide
d) barium chloride & lithium chloride
3. Compound A gives a lilac flame test colour and produces a white precipitate when added to a solution
of barium chloride. Identify compound A.

Answers

Answer:

2. Chemical tests to distinguish between unlabelled samples of the following solutions and their expected observations are:

a) Sodium sulfate and calcium nitrate: Add dilute hydrochloric acid to the unknown solution. Calcium nitrate will produce a white precipitate while sodium sulfate will not produce any precipitate.

b) Sodium sulfate and sodium nitrate: Add silver nitrate solution to the unknown solution. Sodium nitrate will produce a white precipitate of silver chloride while sodium sulfate will not react.

c) Strontium nitrate and strontium hydroxide: Add dilute hydrochloric acid to the unknown solution. Strontium hydroxide will produce a white precipitate while strontium nitrate will not produce any precipitate.

d) Barium chloride and lithium chloride: Add a few drops of dilute sulfuric acid to the unknown solution, followed by a few drops of a solution of potassium dichromate. Barium chloride will produce a green color while lithium chloride will not show any color.

3. Compound A giving a lilac flame test color and producing a white precipitate when added to a solution of barium chloride indicates the presence of potassium ion (K+). Therefore, compound A is most likely potassium chloride (KCl).

At standard pressure, which substance becomes less soluble in water as temperature increases from 10.°C to 80.°C?
answer choices
KCl
HCl
NaCl
NH4Cl

Answers

Answer:

HCl

Explanation:

The substance is HCl as reference table G shows HCl becomes less soluble as the temperature increases from 10 C to 80 C.

what experimental evidence do you have that 1-bromobutane is the major product, instead of 2-bromobutane?

Answers

There are a number of experimental findings that show 1-bromobutane to be the major product over 2-bromobutane like kinetics of reaction, stereochemistry of the reaction and quantitative comparison of the reaction rates.

First, the kinetics of the reaction. Because the SN2 mechanism requires the nucleophile to attack the primary carbon at a 180 degree angle, 2-bromobutane will be a bit slower to react than 1-bromobutane. As a result, when the reaction is allowed to run for a certain amount of time, more 1-bromobutane is formed. Second, a quantitative comparison of the reaction rates of the two substrates.

Because the SN2 reaction mechanism is so sensitive to steric hindrance, a quantitative comparison of the reaction rates of the two substrates could be carried out to determine which one is the better substrate. This would be a direct experimental measurement of the relative reactivity of the two substrates, and would show that 1-bromobutane is more reactive than 2-bromobutane.

Finally, the stereochemistry of the reaction products. When a stereocenter is created during an SN2 reaction, the resulting product is always an enantiomeric pair of molecules. Because the SN2 reaction requires the nucleophile to attack the primary carbon from the back side, the product will be a pair of enantiomers with opposite stereochemistry.

If 1-bromobutane is the major product, then the product will be a pair of enantiomers with opposite stereochemistry. If 2-bromobutane is the major product, then the product will be a pair of enantiomers with the same stereochemistry. So, by analyzing the stereochemistry of the product, we can determine which substrate is the better SN2 substrate.

To know more about 1-bromobutane, refer here:

https://brainly.com/question/30841540#

#SPJ11

Determine the root-mean-square speed of CO2 molecules that have an average kinetic energy of
4.21 × 10–21 J per molecule.

Answers

the root-mean-square is a way of describing the average speed of the particles in a system.

The root-mean-square (rms) speed of gas molecules is related to the average kinetic energy (KE) of the molecules by the following equation:

rms speed = √(3RT/M)

Where R is the gas constant, T is the temperature in Kelvin, and M is the molar mass of the gas.

To solve this problem, we need to rearrange the above equation to solve for the rms speed:

rms speed [tex]= \sqrt{(3RT/M)} = \sqrt{(3kE_avg/M)}[/tex]

where k is the Boltzmann constant [tex](1.38* 10^{-23} J/K)[/tex]  and [tex]E_{avg}[/tex] is the average kinetic energy per molecule.

Substituting the given values, we get:

rms speed = √(3 × 1.38 * 10⁻²³ J/K × 300 K / (44.01 g/mol × 1 kg/1000 g × 6.022 × 10²³ molecules/mol)) *  4.21 × 10⁻²¹J/molecule

Simplifying, we get:

rms speed [tex]= \sqrt{ (3 * 1.38 * 300 / (44.01 * 6.022))} * 4.21 *10^{-21}[/tex]

rms speed ≈ 416 m/s

Therefore, the root-mean-square speed of CO₂ molecules with an average kinetic energy of [tex]4.21 *10^{-21}[/tex] J per molecule is approximately 416 m/s.

To learn more about molar mass visit;

https://brainly.com/question/7585012

#SPJ4

researchers estimated that 0.07%, by mass, of a 12-gram sample of an orchid plant consists of the fattyacid eicosadienoic acid. based on this estimate, whatis the mass of eicosadienoic acid, in grams, in thisorchid sample?

Answers

The mass of eicosadienoic acid, in grams, in thisorchid sample is 0.0084 grams.

In this particular question, we are asked for the mass of eicosadienoic acid, in grams, in a 12-gram sample of an orchid plant based on an estimate that 0.07% (percent by mass), of the sample consists of this fatty acid. To solve this problem, we can use a simple proportion:

0.07/100 = x/12

where x is the mass of eicosadienoic acid, in grams, in the 12-gram sample. To solve for x, we can cross-multiply and simplify:

0.07 × 12 = 100 × x

0.84 = 100x

x = 0.0084 grams

Therefore, the mass of eicosadienoic acid in the 12-gram sample of the orchid plant is 0.0084 grams.

Learn more about percent by mass here: https://brainly.com/question/26150306

#SPJ11

single displacement or NR (no reaction)
Lead (II) + Nitric acid → ? + ? (Product)

Answers

Answer:

There will be a displacement reaction, with Lead (II) + Nitric acid → Lead (II) Nitrate + Hydrogen.

Explanation:

In the reactivity series, Lead is more reactive than Hydrogen (within the nitric acid) meaning that it will displace it forming Lead(II) Nitrate and Hydrogen gas.

This leads to the equation:

Lead (II) + Nitric acid → Lead (II) Nitrate + Hydrogen

Pb (s) + 2HNO3 (aq) → Pb(NO3)2 (aq) + H2 (g)

If the nitric acid was dilute (which the question does not mention, so shouldn't be mentioned) however it will form:

Lead (II) + Nitric acid → Lead (II) Nitrate + Nitrogen Dioxide + Water

Pb (s) + 4HNO3 (aq)  → Pb(NO3)2 (aq) + 2NO2 (g) + 2H2O (l)

Hope this helps!!!

what type of orbitals overlap to form the n-h bond in nh3?

Answers

The three hydrogen atoms in an [tex]NH_{3}[/tex] hybridization will be centred around the nitrogen atom. Only the s orbitals of the hydrogen atoms overlap those sp3 orbitals.

An sp3 orbital in N crosses over with a s orbital in H to form the N-H bond. The second option is the proper response. This is because the nitrogen atom in [tex]NH_{3}[/tex] has four electron domains that together create four sp3 orbitals.

An sp3 orbital in N crosses a s orbital in H to form the N-H bond.

Tetrahedral in shape, the nitrogen atom in [tex]NH_{3}[/tex] contains four hybridised sp3 orbitals that house its four valence electrons. A hydrogen atom's valence electron is situated in a s orbital. The N-H bond is produced when the sp3 hybrid orbital of a nitrogen atom and the s orbital of a hydrogen atom overlap.

This overlap is due to the covalent bond that is created when nitrogen and hydrogen share electrons. Accurate orbital overlap that leads to the formation of the N-H bond in [tex]NH_{3}[/tex]

To know more about nitrogen atom, click the below link

brainly.com/question/2396742

#SPJ4

co, co2, so2, no, and no2, most hydrocarbons, and most suspended particles which are mixed vertically and horizontally in our atmosphere and then dispersed and diluted by churning before they react with other compounds are labeled as what general category?

Answers

The general category for compounds like CO, CO2, SO2, NO, NO2, most hydrocarbons, and most suspended particles which are mixed vertically and horizontally in our atmosphere and then dispersed and diluted by churning before they react with other compounds is: air pollutants.


Air pollutants are any type of gaseous, solid, or liquid substance that are released into the atmosphere. These pollutants come from a variety of sources including industrial facilities, vehicles, and the burning of fossil fuels. They can also be naturally occurring and caused by events like volcanic eruptions.


Pollutants such as CO, CO2, SO2, NO, NO2, hydrocarbons, and suspended particles can enter the atmosphere in a variety of ways. In many cases, they can be released directly from an industrial facility or a vehicle. They can also be released as a result of chemical reactions that occur in the atmosphere or from other sources such as the burning of fossil fuels.


Once in the atmosphere, air pollutants can mix vertically and horizontally with other substances and be dispersed and diluted by churning. This churning process can cause pollutants to react with other compounds such as ozone and form secondary pollutants. These secondary pollutants are often more harmful than the original pollutants and can contribute to smog and acid rain.


Air pollution can have negative impacts on both human health and the environment. Some of these impacts include increased respiratory problems, decreased visibility, and reduced crop yields. To reduce the amount of air pollution, governments and businesses are working to reduce emissions and promote cleaner technologies.


In conclusion, compounds such as CO, CO2, SO2, NO, NO2, hydrocarbons, and suspended particles that are mixed vertically and horizontally in our atmosphere and then dispersed and diluted by churning before they react with other compounds are categorized as air pollutants. These pollutants can cause a variety of health and environmental issues if not managed properly.

To know more about hydrocarbons refer here:

https://brainly.com/question/30907363#

#SPJ11

100 POINTS! Please help! (silly answers will be reported)

How many grams of NO2 can be produced from 15.0 g of NO and 5.60 g of O2 according to the equation:

2 NO + O2
2NO2

Answers

According to the balanced chemical equation you provided, 2 moles of NO react with 1 mole of O2 to produce 2 moles of NO2. The molar mass of NO is 30.01 g/mol and the molar mass of O2 is 32.00 g/mol. This means that 15.0 g of NO is equivalent to 0.5 moles and 5.60 g of O2 is equivalent to 0.175 moles.
Since the ratio of NO to O2 in the reaction is 2:1, the limiting reactant in this case is O2. This means that all of the available O2 will be consumed in the reaction and only 0.35 moles (0.175 x 2) of NO will be consumed.
The molar mass of NO2 is 46.01 g/mol, so 0.35 moles of NO2 has a mass of approximately 16.1 grams.
Approximately 16.1 grams of NO2 can be produced from the given amounts of NO and O2.

Answer:

16.1 g

Explanation:

We want to find how many grams of NO₂ can be produced from 15.0 g of NO and 5.60 g of O₂ according to the balanced chemical equation:

[tex]\sf 2 NO + O_2\;\; \longrightarrow \;\;2NO_2[/tex]

First, convert the given masses of both reactants, NO and O₂, to moles using their respective relative formula masses [tex]\sf(M_r)[/tex].

Relative formula masses:

[tex]\sf M_r\;of\;NO: 30.01\;g/mol[/tex][tex]\sf M_r \; of\; O_2: 31.999\;g/mol[/tex]

Therefore:

[tex]\sf moles\;of\;NO=\dfrac{mass\;(g)}{M_r}=\dfrac{15.0}{30.01}=0.500[/tex]

[tex]\sf moles\;of\;O_2=\dfrac{mass\;(g)}{M_r}=\dfrac{5.60}{31.999}=0.175[/tex]

Now look at the ratio of the reactants:

2 mol NO : 1 mol O₂ = 0.5 mol NO : 0.25 mol O₂

There are only 0.175 moles of O₂ (instead of 0.25 moles), so the O₂ will run out first. It is the limiting reactant.

Use the moles of the limiting reactant to calculate the mass of the product, remembering to use the molar ratio between the limiting reactant and the product.

Limiting reactant : product = 1 mol O₂ : 2 mol NO₂

Therefore, 0.175 mol O₂ will make 0.35 mol NO₂.

Finally, convert the moles of NO₂ to grams:

[tex]\begin{aligned}\sf Mass\;of\; NO_2 &= \sf moles \times M_r \\&= \sf 0.35 \times 46.0055\\ &= \sf 16.1\; g\end{aligned}[/tex]

the slope of the titration curve near the equivalence point is steep group of answer choices true false

Answers

It is true that the slope of titration curve near equivalence point is steep.

How is the slope of the titration curve near the equivalence point?

The slope of the titration curve near the equivalence point is steep because there is a rapid change in pH with the addition of small amount of titrant. At the equivalence point, all the analyte has reacted with titrant, and the solution contains only salt and water. Any further addition of titrant causes a rapid increase in pH . The steepness of slope depends on the strength of acid and base involved, as well as their concentrations.

The point at which chemically equivalent quantities of reactants have been mixed is known as equivalence point of a chemical reaction .

To know more about equivalence point, refer

https://brainly.com/question/2496608

#SPJ1

I need help with this!! it’s due by the end of the day


The second question asks “What is the percentage of water in the hydrated sample?”

Answers

A. The number of moles of water that were absorbed is 0.094 mole

B. The percentage of water in the hydrate is 25.4%

1. How do i determine the mole of water?

The number of mole water absorbed can be obtain as follow:

Mass increase = 1.70 grams Mass of water = Mass increase = 1.70 grams Molar mass of water = 18 g/mol Mole of water =?

Mole = mass / molar mass

Mole of water = 1.70 / 18

Mole of water = 0.094 mole

B. How do i determine the percentage of water?

We can obtain the percentage of water as follow:

Mass of water = 1.70Mass of anhydrous = 5.00 gramsMass of hydrate = 11.7 + 5 = 6.7 gramsPercentage of water =?

Percentage of water = (mass of of water / mass of hydrate) × 100

Percentage of water = (1.7 / 6.7) × 100

Percentage of water = 25.4%

Learn more about mole:

https://brainly.com/question/13314627

#SPJ1

what key absorbance indicative of starting material 2-methylcyclohexanone should be absent? give wavenumber, bond type and functional group.

Answers

The key absorbance indicative of starting material 2-methyl cyclohexanone that should be absent is the carbonyl stretch at around [tex]1710-1735 cm^{-1}.[/tex] , the bond type is C=O and the functional group is Ketone.

Infrared spectroscopy is a useful technique in identifying functional groups in organic compounds. The carbonyl stretch, which is typically found at 1710-1735 cm^-1, is a characteristic absorption band for ketones and aldehydes. Since 2-methyl cyclohexanone is a ketone, it should exhibit this absorption band in its infrared spectrum.

However, if this band is absent in the spectrum, it suggests that the compound has undergone a chemical reaction and the carbonyl functional group has been transformed into a different functional group. The absence of the carbonyl stretch at around 1710-1735 cm⁻¹ is indicative of the absence of the starting material, 2-methyl cyclohexanone.

This peak is characteristic of the C=O bond stretch in a ketone functional group. In 2-methyl cyclohexanone, this bond is present in the starting material but absent in the product after the reaction.

The bond type and functional group of this key absorbance are:

Bond type: C=O bond

Functional group: Ketone (C=O group attached to two alkyl or aryl groups)

By observing the absence of this peak in the IR spectrum of the product, we can confirm that the reaction has taken place and the starting material has been consumed. This technique is commonly used in organic chemistry to monitor the progress of reactions and determine the identity of products.

To know more about Infrared spectroscopy, refer here:

https://brainly.com/question/13265448#

#SPJ11

a second student makes a buffer by dissolving 0.100 mol of nano2(s) in 100. ml of 1.00 m hno2(aq). which is more resistant to changes in ph when a strong acid or a strong base is added, the buffer made by the second student or the buffer made by the first student in part (c)? justify your answer.

Answers

The buffer solution made by second student is more resistant to changes in pH when a strong acid or a strong base is added.

Generally buffer solution is defined as a water solvent based solution that consists of a mixture which contains a weak acid and also the conjugate base of the weak acid, or a weak base and also the conjugate acid of the weak base. Basically buffer solution are capable of resisting a change in pH upon dilution or upon the addition of small amounts of acid/alkali to them.

Here, the concentration of the second student is 10 times higher than the first student and due to this it has a greater capacity to neutralize acids and bases.

Learn more about buffer solution from the link given below.

https://brainly.com/question/24262133

#SPJ4

a 100.0 ml sample of 0.18 m hcl is titrated with 0.27 m naoh. what is the ph of the solution after the addition of 30.0 ml of naoh?

Answers

The pH of the solution after the addition of 30.0 ml of 0.27 M NaOH in titration is 1.43.

To find the pH of a solution, we use the formula given below:

pH = -log [H+]

where [H+] denotes the concentration of H+ ions (hydrogen ions).

This formula is based on the fact that pH is a measure of the acidity or basicity of a solution. It is the negative logarithm of the hydrogen ion concentration.

Therefore, the pH scale ranges from 0 to 14. The pH scale ranges from 0 to 14, with 7 representing neutral. pH < 7 is acidic, while pH > 7 is basic (alkaline).

Steps to find the pH of the solution

Step 1: Calculate the number of moles of HCl present in the given solution:

moles of HCl = Molarity × volume (in liters)

= 0.18 mol/L × 0.1000 L

= 0.018 mol

Step 2: Calculate the number of moles of NaOH added to the solution:

moles of NaOH = Molarity × volume (in liters)

= 0.27 mol/L × 0.0300 L

= 0.0081 mol

Step 3: Calculate the total number of moles of NaOH after it has been added to the solution:

moles of NaOH = 0.0081 mol + excess NaOH (due to the reaction with HCl)

Step 4: Calculate the number of moles of HCl that reacted with NaOH:

moles of HCl reacted with NaOH = 0.0081 mol (since NaOH and HCl react in a 1:1 ratio)

Step 5: Calculate the number of moles of HCl remaining after the reaction:

moles of HCl remaining = 0.018 mol - 0.0081 mol = 0.0099 mol

Step 6: Calculate the concentration of H+ ions in the solution:

[H+] = moles of H+ / volume (in liters)

= 0.0099 mol / 0.1000 L

= 0.099 mol/L

Step 7: Calculate the pH of the solution:

pH = -log [H+] = -log (0.099) = 1.043

Note: The final pH should be corrected for the dilution of the solution due to the addition of NaOH.

Therefore, pH would be 1.43.

To know more about titration, refer here:

https://brainly.com/question/2728613#

#SPJ11

how many grams of calcium carbonate are necessary to weigh out 9.50 moles?

Answers

The molar mass of calcium carbonate (CaCO₃) is approximately 100.09 g/mol. The gram is commonly used to measure the mass of small objects, such as food items, coins, and jewelry.

What is a gram ?

A gram is a unit of mass in the metric system, abbreviated as  It is defined as one-thousandth of a kilogram, which is the base unit of mass in the International System of Units (SI).

It is also used in scientific measurements, such as in chemistry and physics, to express the mass of atoms, molecules, and other particles.

To calculate the mass of 9.50 moles of calcium carbonate, we can use the following formula:

mass = moles x molar mass

Substituting the given values, we get:

mass = 9.50 moles x 100.09 g/mol

mass = 950.45 g

Therefore, 9.50 moles of calcium carbonate would have a mass of approximately 950.45 grams.

To know more about mass visit :

brainly.com/question/12127497

#SPJ1

2. What would the volume of air inside a 40. 0 L tire under 218 kPa of pressure occupy if it all escaped into a balloon at 101. 3 kPa?

Answers

The volume of air inside a 40.0 L tire under 218 kPa of pressure that would occupy at 101.3 kPa pressure is 86.1 L.

To calculate the volume of air inside a 40.0 L tire under 218 kPa of pressure that would occupy at 101.3 kPa pressure, we can use the following formula, known as Boyle's law:

P₁V₁ = P₂V₂

where P₁ is the initial pressure, V₁ is the initial volume, P₂ is the final pressure, and V₂ is the final volume.

In this case, we know:

P₁ = 218 kPa

V₁ = 40.0 L

P₂ = 101.3 kPa

V₂ = ?

Now we can rearrange the formula to solve for V₂:

V₂ = (P₁ x V₁) / P₂

Substituting the values, we get:

V₂ = (218 kPa x 40.0 L) / 101.3 kPa

= 86.1 L

To know more about volume here

https://brainly.com/question/1578538

#SPJ4

enantiomers vs diastereomers vs constitutional isomers

Answers

Enantiomers are mirror images of each other, Diastereomers are molecules with similar but not identical structures and Constitutional isomers are molecules with completely different structures but similar molecular formulas.

Enantiomers, diastereomers, and constitutional isomers are three different types of molecules that differ in their molecular structures. Enantiomers are molecules that are mirror images of each other; they are non-superimposable and cannot be converted into each other without breaking the chemical bonds.

Diastereomers are molecules with similar, but not identical, structures; they are non-superimposable and can be converted into each other without breaking the chemical bonds. Constitutional isomers are molecules with completely different chemical structures, but similar or identical molecular formulas.

To differentiate between enantiomers, diastereomers, and constitutional isomers, one must consider both their structural and stereochemical properties. Enantiomers have identical physical and chemical properties, except for their optical activity.

Diastereomers also have identical physical and chemical properties, but their stereochemistry is different from each other. Constitutional isomers differ in both their physical and chemical properties, as well as in their stereochemistry.

In conclusion, enantiomers are mirror images of each other, diastereomers are molecules with similar but not identical structures and constitutional isomers are molecules with completely different structures but similar molecular formulas.

To know more about Enantiomers refer here:

https://brainly.com/question/30401546#

#SPJ11

A 2.498M solution contains 245 g of HzSO4 What is the volume of the solution? The Periodic Table of Elements EE

Answers

The volume of the 2.498 M H2SO4 solution containing 245 g of H2SO4 is 1L.

Explanation:

To find the volume of the 2.498 M H2SO4 solution containing 245 g of H2SO4, follow these steps:

1. Determine the molar mass of H2SO4. From the Periodic Table of Elements, the molar masses of H, S, and O are approximately 1 g/mol, 32 g/mol, and 16 g/mol, respectively.

So, the molar mass of H2SO4 = (2 x 1) + 32 + (4 x 16) = 2 + 32 + 64 = 98 g/mol.

2. Calculate the moles of H2SO4 in the solution.

Moles = mass/molar mass = 245 g / 98 g/mol = 2.5 mol.

3. Determine the volume of the solution using the molarity formula.

Molarity (M) = moles/volume (L).

Rearrange the formula to solve for the volume: volume (L) = moles/M = 2.5 mol / 2.498 M = 1 L.

The volume of the 2.498 M H2SO4 solution containing 245 g of H2SO4 is 1 liter.

To know more about molar mass calculation, visit: https://brainly.com/question/22997914

#SPJ11

7. what is the balanced chemical equation for the dissolution of ammonium chloride in water?

Answers

The balanced chemical equation for the dissolution of ammonium chloride in water is given below:

NH4Cl(s) → NH4+(aq) + Cl-(aq)

Balanced equation for the dissolution of ammonium chloride in water: NH4Cl(s) → NH4+(aq) + Cl-(aq)Ammonium chloride is a compound composed of ammonium ions (NH4+) and chloride ions (Cl-). When ammonium chloride dissolves in water, it dissociates into these two ions, according to the above chemical equation. The ions are in the aqueous phase, meaning they are dissolved in water.

Ammonium chloride (NH4Cl) is a white crystalline salt formed by combining hydrochloric acid (HCl) and ammonia (NH3). Ammonium chloride is a very soluble compound that is often used in fertilizers, pharmaceuticals, and food. It is also used in various industrial applications.

Know more about equations

https://brainly.com/question/17145398

#SPJ11

what are the key properties of solids (in contrast to liquids and gases)? check all that apply. what are the key properties of solids (in contrast to liquids and gases)?check all that apply. solids may be crystalline (ordered) or amorphous (disordered). solids are not easily compressed. solids can only be crystalline (ordered). solids are easily compressed. solids have an indefinite shape and do assume the shape of their container. solids can only be amorphous (disordered). solids have a definite shape and do not assume the shape of their container. solids usually have higher densities than liquids. solids usually have lower densities than liquids.

Answers

Solids have a definite shape and do not assume the shape of their container and solids are not easily compressed are the key properties of solids in contrast to liquids and gases.

Let's discuss the given options one by one:

Solids may be crystalline (ordered) or amorphous (disordered) - This statement is true. But it's not the key property of solids in contrast to liquids and gases.

Solid can only be crystalline (ordered) - This statement is false. Solids can be either crystalline (ordered) or amorphous (disordered).Solid are easily compressed - This statement is false. Solids are not easily compressed. In contrast to liquids and gases, solids are not easy to compress.

Solid have an indefinite shape and do assume the shape of their container - This statement is false. In contrast to liquids, solids have a definite shape and do not assume the shape of their container. Solid can only be amorphous (disordered) - This statement is false. Solids can be either crystalline (ordered) or amorphous (disordered).

Solid have a definite shape and do not assume the shape of their container - This statement is true. Solids have a definite shape and do not assume the shape of their container. Solid usually have higher densities than liquids - This statement is true. But it's not the key property of solids in contrast to liquids and gases.

Solid usually have lower densities than liquids - This statement is false. Solids usually have higher densities than liquids. Therefore, the key properties of solids in contrast to liquids and gases are "Solids have a definite shape and do not assume the shape of their container" and "Solids are not easily compressed".

Know more about solids

https://brainly.com/question/752663

#SPJ11

Other Questions
also called biomedical therapies, treatments that reduce or eliminate the symptoms of psychological disorders by altering aspects of body functioning. assume that the test scores of a college entrance exam fits a normal distribution. the mean test score is 72, and the standard deviation is 5. what is the percentage of students scoring 84 or more in the exam? She measured the mass of the metal to be 352.3 grams. Then she dropped the metal into a measuring cup and found that it displaced 18.0 mL of water Technology In 2002, there were approximately 544,000,000 Internet usersworldwide. Write this number in scientific notation.mplify. What measurements are taken at the scene of the accident that helps them understand the motion of the car and the reaction of the driver? on assessment the nurse notices that the fetal heart rate is 100 beats/min. which is a possible cause for this condition what is the angular momentum about the origin of a particle with a mass of 500 g when it is located at Why was the book As i Lay Dying banned by several schools? what is the term for the concept where organizations assimilate social and environmental concerns in their business operations and in their interactions with stakeholders Discuss how the Nominal and real values of things affect the aggregate behavior of a society. Give an example. . The table shows how many books studentsin a class read each week for two months.Graph the data.Week 1 2 3BooksRead10 974 5 687 89674What is the difference between the greatest numbbooks read and the least number of books read? Im wondering if its correct and if its not, I give u 20 points 20 POINTS How are deaf babies similar to normal hearing babies when it comes to the sequence of languages learning Identify which of the following was a likely profile of a member of the Essex Junto. POV: you are Zheng He writing to yongle emperor about trade goods what would your letter say?Someone pls help me this is due tmr how does chemical fertilizer decrease the oxygen level in water? Please help me out on this one THX if economies of scale are an industry's primary entry barrier, a new entrant's major concern is: group of answer choices the inferior quality of its products. its inability to counter brand loyalty that customers have for established companies in the industry. its inability to produce in sufficient volume to match the cost advantages of established producers. its inability to get buyers to switch to its product. its inability to match the innovation of the established firm. Your school's server just crashed, and it's an hour before the big presentation. Your team is starting to panic. How can you be a good leader in this situation? A. Tell everyone that you've got this. Ask if anyone has a backup copy or older copy on their computer that you can use in the time that you have. B. commiserate with everyone else. Afterall, if your school server is down, everyone else will be in the same boat, so no one will have their presentation materials either. C. send a panicked e-mail to your teacher asking what to do. E-mail the other teams to see what they are doing. D. Tell everyone to work on their own and try to reconstruct their work from scratch. You have an hour. You should be able to put something together. A point R (-5, 6) is reflected across X axis to obtain point S, write the coordinates of S.