Two similar cylinders have heights 6cm and 30cm. The volume of the smaller cylinder is 90cm3. What is the volume of the larger cylinder?
Answer:
Step-by-step explanation:
Since the two cylinders are similar, their corresponding dimensions (radius and height) are proportional. Let the radius of the smaller cylinder be r.
Then, we can write:
r / 6 = R / 30
where R is the radius of the larger cylinder.
Simplifying this equation, we get:
R = 5r
Now, we can use the formula for the volume of a cylinder to find the volume of the larger cylinder:
Volume of smaller cylinder = πr^2h = 90 cm^3
Volume of larger cylinder = πR^2H = π(5r)^2(30) = 750πr^2 cm^3
Substituting R = 5r, we get:
Volume of larger cylinder = 750πr^2 cm^3
Therefore, the volume of the larger cylinder is 750π times the volume of the smaller cylinder:
Volume of larger cylinder = 750π(90 cm^3) = 67,500π/ cm^3 (approx. 211,239.74 cm^3 rounded to five decimal places).
Evaluate the triple integral ∫∫∫ (x+8y)dV where E is bounded by the parabolic cylinder
y = 7x^2 and the planes
2 = 2x, y = 35x, and
2 = 0.
The triple integral ∫∫∫ (x+8y)dV where E is bounded by the parabolic cylinder is 512,604.17.
The triple integral is ∫∫∫(x+8y)dV.
Curves from the question are:
y = 7x², z = 2x, y = 35x, z = 0
Then, 7x² = 35x
Divide by x on both side, we get
7x = 35
Divide by 7 on both side, we get
x = 5
And z = 2x or z = 0. So
2x = 0
x = 0
Now the limits are:
x = 0 to x = 5
y = 7x² to y = 35x
z = 0 to z = 2x
Now the integral is
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\int_{7x^{2}}^{35x}\int_{0}^{2x}(x+8y)dzdydx[/tex]
Now first integrate with respect to z
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\int_{7x^{2}}^{35x}(x+8y)[z]_{0}^{2x}dydx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\int_{7x^{2}}^{35x}(x+8y)[2x-0]dydx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\int_{7x^{2}}^{35x}(2x^2+16xy)dydx[/tex]
Now integrate with respect to y
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\left[2x^2(y)_{7x^{2}}^{35x}+16x(\frac{y^2}{2})_{7x^{2}}^{35x}\right]dx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\left[2x^2(35x - 7x^2)+16x(\frac{1225x^2}{2}-\frac{49x^4}{2})\right]dx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\left[2x^2(35x - 7x^2)+8x(1225x^2-49x^4)\right]dx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\left[70x^3 - 14x^4+9800x^3-392x^5\right]dx[/tex]
∫∫∫(x+8y)dV = [tex]\left[\frac{70x^4}{4} - \frac{14x^5}{5}+\frac{9800x^4}{4}-\frac{392x^6}{6}\right]_{0}^{5}[/tex]
∫∫∫(x+8y)dV = [tex]\left[\frac{70(5)^4}{4} - \frac{14(5)^5}{5}+\frac{9800(5)^4}{4}-\frac{392(5)^6}{6}\right]-\left[\frac{70(0)^4}{4} - \frac{14(0)^5}{5}+\frac{9800(5)^4}{4}-\frac{392(5)^6}{6}\right][/tex]
∫∫∫(x+8y)dV = [10937.5 - 8750 + 1531250 - 1020833.33]-0
∫∫∫(x+8y)dV = 512,604.17
To learn more about triple integral link is here
brainly.com/question/30404807
#SPJ4
The complete question is:
Evaluate the triple integral ∫∫∫(x+8y)dV where E is bounded by the parabolic cylinder.
y = 7x² and the planes
z = 2x, y = 35x, and
z = 0
Line segment RS is shown below with coordinates R(-8, -3)
and S(3, -3). Which coordinate below would represent R' if
point R was reflected across the x-axis?
A. (-8, 3)
B. (3, 3)
C. (8, -3)
D. (-3,-3)
10 9 8 7 6 5 4 3 2 1 1
R
2
4
-5
-6
10
•S.
S
Answer:
If point R is reflected across the x-axis, its y-coordinate will change sign. Therefore, the y-coordinate of R' will be 3 (the opposite of -3). Thus, the answer is A. (-8, 3)
Step-by-step explanation:
Will mark brainliest (to whoever explains this clearly)
lizzie came up with a divisibility test for a certain number m that doesn't equal 1:
-break a positive integer n into two-digit chunks, starting from the ones place. (for example, the number 354764 would break into the two-digit chunks 64, 47, 35.)
- find the alternating sum of these two-digit numbers, by adding the first number, subtracting the second, adding the third, and so on. (in our example, this alternating sum would be 64-47+35=52.)
- find m, and show that this is indeed a divisibility test for m (by showing that n is divisible by m if and only if the result of this process is divisible by m).
Lizzie's divisibility test works for numbers that are multiples of 11.
How does Lizzie's divisibility test work?Lizzie's divisibility test for a number m works as follows: break a positive integer n into two-digit chunks, find the alternating sum of these two-digit numbers, and if the result is divisible by m, then n is also divisible by m.
For example, if we have a number n = 354764, we would break it into the two-digit chunks 64, 47, and 35, then find the alternating sum of these numbers (64 - 47 + 35 = 52).
If we want to test if n is divisible by m = 4, we check if 52 is also divisible by 4. If 52 is divisible by 4, then we can conclude that 354764 is also divisible by 4.
Learn more about Lizzie's divisibility
brainly.com/question/16820899
#SPJ11
Think about your daily experience how is probability utilized in news papers, television, shows, and radio programs that interest you? What are your general impression of the ways in which probability is used in the print media and entertainment industry
Probability is frequently used in news reports to convey the possibility of an event occurring.
Generally, in my opinion, probability is used well in the media space.
How Probability is Utilized?Probability is frequently used in news reporting to demonstrate the likelihood of an event occurring. A news story, for example, might mention that there is a 50% chance of rain tomorrow. Similarly, sports writers may use probability to forecast the outcome of games and goals to be scored.
Overall, I feel probability is utilized fairly responsibly in the media and entertainment industries, with a focus on informing or entertaining audiences rather than misleading them. However, in some cases, such as political polling or advertising, the use of probability may be incorrect or exploited to influence audiences.
Learn more about probability here: https://brainly.com/question/13604758
#SPJ1
A function is a rule that assingns each value of independent variable to exactly value of the dependent variable
A function is a rule that assingns each value of independent variable to exactly one value of the dependent variable.
A function is a mathematical concept that relates two sets of values, known as the domain and the range. The domain is the set of independent variables, while the range is the set of dependent variables. A function is a rule that assigns to each value in the domain exactly one value in the range.
For example, if we have a function f(x) = 2x + 3, the domain would be any possible value of x, and the range would be any possible value of 2x + 3. So if we put x = 2, then f(x) = 2(2) + 3 = 7. Therefore, the function assigns the value of 7 to the value of 2 in the domain.
Functions are used in various branches of mathematics, science, and engineering to model and analyze relationships between two or more variables. They are an important concept in calculus, where they are used to study rates of change and optimization problems.
Learn more about function at https://brainly.com/question/21084589
#SPJ11
Question: Nora needs to cut some equal pieces of yarn for her Science project. The piece of yarn she has is 67. 6 inches long. Each piece of yarn must be 1. 3 inches in lenght. How many pieces of yarn will Nora have.
Nora will be able to cut 52 equal pieces of yarn for her Science project.
To find out how many equal pieces of yarn Nora can cut for her Science project, we need to divide the total length of the yarn by the length of each piece.
Total length of yarn: 67.6 inches
Length of each piece: 1.3 inches
Step 1: Divide the total length by the length of each piece.
67.6 inches ÷ 1.3 inches = 52
Nora will have 52 equal pieces of yarn, each 1.3 inches long, for her Science project.
Learn more about division,
https://brainly.com/question/28119824
#SPJ11
Dixon made a $2,000 down payment on an $8,000 car. The down
payment was what percent of the price?
Answer:
25%
Step-by-step explanation:
one 4th of 8,000 is 2,000 convert it to a percent and there you go!
Give brainliest please! Enjoy your night!
What is the probability of spinning a 1 or 2? Write your answer as a fraction AND decimal
Answer:
Probability of spinning 1 or a 2
Fraction=6/8
decimal=0.75
Let me know if it helped
10. Determine the line of regression and use it to find the best predicted new mileage rating of a ( point) four-wheel-drive vehicle given that the old rating is 19 mi/gal old 6 27 1 33 28 24 8 22 20 29 21 New 15 24 15 29 25 22 6 20 826 19 Oy 0.808 0.863x; 18.1 mi/gal Oy = 0.863 + 0.808x; 16.2 mi/gal oy 0.863 + 0.808x; 22.4 mi/gal y-0.808+ 0.863x; 17.2 mi/gal
The line of regression equation for the mileage rating of a ( point) four wheel drive vehicle is [tex]\hat y = 16.111 + 0.365x,[/tex] and the best predicted new mileage rating of a ( point) four-wheel drive vehicle when x = 19 mi/gal, is equals to the 23.046 mi/gal. So, option(b) is right one.
A linear regression line has an equation of the form [tex]\hat y = a + bx,[/tex]
where x is the independent variable and y is the dependent variable. The slope of the line is b, and a is the estimated intercept (the value of y when x = 0). We have a table form data of old and new rating of four-wheel-drive vehicles. We have to determine the line of regression. Now, we have to calculate the value of 'a' and 'b'. Let the old and new mileage rating of four-wheel-drive vehicles be represented by vaiables 'x' and 'y'. Using the following formulas, [tex]b =\frac{ S_{xy}}{S_{xx}}[/tex] where, [tex]S_{xx} = \sum x² - \frac{ (\sum x)² }{n} [/tex]
[tex]S_{xy} = \sum xy - \frac{ (\sum y \sum x) }{n}[/tex][tex]a = \bar y - b \bar x,[/tex]where , [tex]\bar x = \frac{\sum x }{n}[/tex]
[tex]\bar y = \frac{\sum y }{n}[/tex]Here, n = 11, [tex]\sum x[/tex] = 235
[tex]\sum xy[/tex] = 263, [tex]\sum x²[/tex] = 5733, [tex]\sum xy[/tex] = 5879, so
[tex]S_{xx}[/tex] = 5733 - (235)²/11
= 5733 - 5020.454 = 712.546
[tex]S_{xy}[/tex] = 5879 - (235×263)/11
= 260.364
Now, b = 260.364/712.546 = 0.365
a = (263/11) - 0.365 ( 235/11)
= 23.909 - 7.798
= 16.111
So, regression line equation is
[tex]\hat y = 16.111 + 0.365x,[/tex]
The best predicted value of y, when x = 19 mi/gal, [tex]\hat y = 19× 0.365 + 16.111[/tex]
=23.046 mi/gal
Hence, the best predicted value is
For more information about line of regression, visit:
https://brainly.com/question/732489
#SPJ4
Complete question:
10. Determine the line of regression and use it to find the best predicted new mileage rating of a ( point) four-wheel-drive vehicle given that the old rating is 19 mi/gal
old 6 27 17 33 28 24 8 22 20 29 21
New 15 24 15 29 25 22 6 20 82 6 19
a) y cap = 0.863 + 0.808x; 16.2 mi/gal
b) y cap = 16.111 + 0.365x; 23.04 mi/gal
c) y cap =0.808+ 0.863x; 17.2 mi/gal
d) y cap = 0.808 0.863x; 18.1 mi/gal
Simplify rational ( trinomial only)
Simplify the following expression completely.
Answer: [tex]\frac{x-4}{x-7}[/tex]
Step-by-step explanation:
[tex]\frac{x^{2}-5x+4 }{x^{2} -8x+7}[/tex]
factor the top and bottom by finding numbers that multiply to the last term but add to middle
for top part:
-4 and -1 multiply to +4 and add to -5
for bottom part:
-7 and -1 multiply to to +7 and add to -8
Those are your factored numbers, put into factored form
[tex]\frac{(x-4)(x-1)}{(x-7)(x-1)}[/tex] now cross off same factors from top and bottom only
[tex]\frac{x-4}{x-7}[/tex]
A local flooring company is retiling your kitchen. Your kitchen is a rectangle with dimensions of 7 ft by 15 ft. You are going to use square tiles that measure 6 by 6 inches. Assuming the tiles lay completely flush with one another on the floor (no space in between) How many tiles will the flooring company need to buy?
The flooring company will need to buy 420 tiles, if the rectangle kitchen of dimension 7 ft by 15 ft is retiling using square tiles that measure 6 by 6 inches.
First, we need to convert all the measurements to the same unit. We can convert the dimensions of the kitchen from feet to inches by multiplying by 12:
Length: 7 ft x 12 in/ft = 84 in
Width: 15 ft x 12 in/ft = 180 in
Next, we need to find the area of the kitchen in square inches:
Area = length x width = 84 in x 180 in = 15,120 sq in
Now, we can find the area of one tile in square inches:
Area of one tile = 6 in x 6 in = 36 sq in
Finally, we can divide the area of the kitchen by the area of one tile to find the total number of tiles needed:
Number of tiles = Area of kitchen / Area of one tile
Number of tiles = 15,120 sq in / 36 sq in = 420
Therefore, the flooring company will need to buy 420 tiles.
To learn more about measurements : https://brainly.com/question/777464
#SPJ11
Assuming an approximately normal data set, find the 68% confidence interval for systolic blood pressure in
women given a sample size of 1000 with a mean of 123.4 and a standard deviation of 19.9.
There is not enough evidence to conclude that Devon's true proportion of good serves is greater than 72%.
Find out the 68% confidence interval for systolic blood pressure in women from the given samples?The correct conclusion for Devon to reach is: Because the P-value of 0.06 > a (where a = 0.05), Devon should fail to reject H0. There is no convincing evidence that the proportion of services that are good is more than 72%.
The null hypothesis, H0, states that the true proportion of good serves for Devon is equal to 72%. The alternative hypothesis, Ha, states that the true proportion of good serves for Devon is greater than 72%.
The P-value is the probability of obtaining a test statistic as extreme or more extreme than the observed data, assuming that the null hypothesis is true. In this case, the P-value is 0.06, which means that if the true proportion of good serves for Devon is actually 72%, there is a 6% chance of observing a sample of 50 serves with 42 or more good serves.
Since the P-value is greater than the significance level of 0.05, we fail to reject the null hypothesis.
Learn more about Interval
https://brainly.com/question/14797546
#SPJ11
The 68% confidence interval for systolic blood pressure in women, based on the given sample, is approximate: (122.77, 124.03)
How to find a confidence interval for systolic blood pressure in women?To find the 68% confidence interval for systolic blood pressure in women, we can use the standard formula:
Confidence Interval = Mean ± (Z * (Standard Deviation / √n))
Where:
Mean = 123.4 (sample mean)
Standard Deviation = 19.9 (sample standard deviation)
n = 1000 (sample size)
Z = Z-score corresponding to the desired confidence level (in this case, 68% corresponds to 1 standard deviation on each side of the mean)
To find the Z-score, we can refer to the standard normal distribution table or use a calculator. For a 68% confidence level, the Z-score is 1.
Plugging in the values, we get:
Confidence Interval = 123.4 ± (1 * (19.9 / √1000))
Calculating the square root of 1000, we have:
Confidence Interval = 123.4 ± (1 * (19.9 / 31.62))
Simplifying further, we get:
Confidence Interval = 123.4 ± (0.6301)
Therefore, the 68% confidence interval for systolic blood pressure in women, based on the given sample, is approximate: (122.77, 124.03).
Learn more about systolic blood pressure in women.
brainly.com/question/14507800
#SPJ11
what is the x-intercept of the graph of the function f(x) = x-16x + 64
The x-intercept of the function f(x) = x² - 16x + 64 is x = 8.
How to find the x-intercept of a graph?The x-intercept of the graph can be found as follows:
f(x) = x² - 16x + 64
The x-intercept is the point at which the graph of an equation crosses the x-axis. In other words, the x-intercept is where a line crosses the x-axis on a graph.
The x-intercept is the value of x when y = 0.
Therefore,
x² - 16x + 64 = 0
Let's factorise
x² - 8x - 8x + 64 = 0
x(x - 8) -8(x - 8) = 0
Therefore,
(x - 8)(x - 8) = 0
Therefore,
x = 8
learn more on x -intercept here: https://brainly.com/question/7106056
#SPJ1
if the circumference is 24 inches what is the radius
Answer:
3.819inch
Step-by-step explanation:
Circumference(C)=24inch
radius(R)=?
Now,
C=2piR
24=2piR
12=piR
12/pi=R
R=3.819
Devon's tennis coach says that 72% of Devon's serves are good serves. Devon thinks he has a higher proportion of good serves. To test this, 50 of his serves are randomly selected and 42 of them are good. To determine if these data provide convincing evidence that the proportion of Devon's serves that are good is greater than 72%, 100 trials of a simulation are conducted. Devon's hypotheses are H o p = 72% and H a p > 72%, where p = the true proportion of Devon's serves that are good. Based on the results of the simulation, the estimated P-value is 0. 6. Using a= 0. 05, what conclusion should Devon reach? Because the P-value of 0. 06 > a, Devon should reject Ha. There is convincing evidence that the proportion of serves that are good is more than 72%. Because the P-value of 0. 06 > a, Devon should reject H a. There is not convincing evidence that the proportion of serves that are good is more than 72% Because the P-value of 0. 06 > a Devon should fail to reject H o. There is convincing evidence that the proportion of serves that are good is more than 72%. Because the P-value of 0. 06 > a Devon should fail to reject H o. There is not convincing evidence that the proportion of serves that are good is more than 72%
There is no convincing evidence that the proportion of Devon's serves that are good is more than 72%. The data collected does not provide sufficient evidence to support Devon's claim that he has a higher proportion of good serves than what his coach stated.
Based on Devon's hypotheses, H₀ states that p = 72%, while Hₐ states that p > 72%, where p represents the true proportion of Devon's good serves. To test this, 50 of his serves are randomly selected, and 42 are good. A simulation is conducted with 100 trials, resulting in an estimated P-value of 0.06. The significance level (α) is set at 0.05.
In this case, the P-value (0.06) is greater than the significance level (0.05). According to the rules of hypothesis testing, we should fail to reject the null hypothesis (H₀) when the P-value is greater than the significance level. Therefore, Devon should fail to reject H₀.
You can learn more about hypotheses at: brainly.com/question/18173488
#SPJ11
Help please!
the elevation of death valley, california is -282 feet. the elevation of tallahassee, florida is 203 feet. the elevation of westmorland, california is 157 feet.
1: compare the elevations of death valley and tallahassee using > or <.
2: compare the elevations of death valley and westmorland.
The elevation of Death Valley, California and Tallahassee, Florida can be compared by using the inequality symbol > or <. On comparing death valley and tallahassee, Tallahassee elevation > Death Valley elevation. On comparing death valley and westmorland, Westmorland elevation > Death Valley elevation.
1.
Since the elevation of Death Valley is -282 feet, which is a negative value, and the elevation of Tallahassee is 203 feet, which is a positive value, we can conclude that the elevation of Tallahassee is greater than the elevation of Death Valley.
Therefore, we can use the > symbol to compare the elevations of these two locations, and write the inequality as: Tallahassee elevation > Death Valley elevation.
2.
The elevation of Death Valley is -282 feet, while the elevation of Westmorland is 157 feet.
Since the elevation of Westmorland is a positive value and is greater than the elevation of Death Valley, we can use the > symbol to compare the elevations of these two locations, and write the inequality as:
Westmorland elevation > Death Valley elevation.
To learn more about Death valley: https://brainly.com/question/13642969
#SPJ11
The circle has Center O. It’s radius is 4cm, and the central angle a measures 140 degrees. what is the area of the shaded region. give the exact answer in terms of n , and be sure to include the correct unit in you’re answer
The area of the shaded region in term of π is 6.22π cm²
What is area of sector?A sector is a region or space bounded by two radii and an arc. There are two types of sector, the major sector and the minor sector. The of the sector is determined by the angle formed the two radii.
Area of sector = tetha/ 360 × πr²
where r is the radius of the circle.
= 140/360 × π × 4²
= 2240π/360
Area = 6.22 πcm²
Therefore the area of the shaded part is 6.22π cm²
learn more about area of sector from
https://brainly.com/question/22972014
#SPJ1
The sum of the measurement of angle p and angle s is 140°.
• the measurement in degrees of angle p is represented by the expression (5x + 30)°
• the measure of angle s is 80°
What is the value of x?
A)38
B)6
C)10
D)22
Answer:
x=6
Step-by-step explanation:
(5x+30)+80=140
5x+110=140
5x=30
x=6
answer: B
If 2/3 of a mini pizza cost $2. 40, what would 1/2 of a mini pizza cost?
Sorry for bad handwriting
if i was helpful Brainliests my answer ^_^
1/2 of a mini pizza would cost $0.60.
If 2/3 of a mini pizza cost $2.40, then 1/3 of a mini pizza would cost half of that:
1/3 of a mini pizza = 1/2 * $2.40 = $1.20
To find the cost of 1/2 of a mini pizza, we can divide the cost of 1/3 of a mini pizza by 2:
1/2 of a mini pizza = 1/2 * $1.20 = $0.60
Therefore, 1/2 of a mini pizza would cost $0.60.
To learn more about cost, click here:
https://brainly.com/question/30045916
#SPJ11
If a 1. 5-volt cell is to be completely recharged, each electrion must be supplied with a minimum energy of
To completely recharge a 1.5-volt cell, each electron in the cell must be
supplied with a minimum energy of 2.403 × 10^-19 joules.
To completely recharge a 1.5-volt cell, each electron in the cell must be
supplied with an energy greater than or equal to the potential difference of
the cell, which is 1.5 volts.
The minimum energy required to supply to each electron can be
calculated
using the formula:
E = qV
where E is the energy in joules (J), q is the charge of an electron (1.602 ×
10^-19 coulombs), and V is the potential difference in volts.
Substituting the given values, we get:
[tex]E = (1.602 × 10^-19 C) × (1.5 V)E = 2.403 × 10^-19 J[/tex]
To know more about energy refer here https://brainly.com/question/1932868# #SPJ11
A new car is purchased for 29,000 and over time it’s value depreciates by one half every 3. 5 years what is the value of the car 20 years after it was purchased to the nearest hundred dollars
The required answer is the nearest hundred dollars: $902.09 is approximately $900.
To find the value of the car 20 years after it was purchased, we can use the formula for exponential decay:
Value = Initial value * (1 - Depreciation rate) ^ (time elapsed / time for depreciation)
1. Determine the depreciation rate: The car's value depreciates by one half every 3.5 years, so the depreciation rate is 50% or 0.5.
Depreciation is a term that refers to two aspects of the same concept: first, the actual decrease of fair value of an asset, such as the decrease in value of factory equipment each year as it is used and wears, and second, the allocation in accounting statements of the original cost of the assets to periods in which the assets are used (depreciation with the matching principle).
Depreciation is thus the decrease in the value of assets and the method used to reallocate, or "write down" the cost of a tangible asset (such as equipment) over its useful life span
2. Calculate the number of depreciation periods: Since the car's value halves every 3.5 years, we need to find out how many 3.5-year periods are in 20 years. To do this, divide 20 by 3.5: 20 / 3.5 ≈ 5.71 periods.
3. Use the exponential decay formula:
Value = 29,000 * (1 - 0.5) ^ (5.71)
Value ≈ 29,000 * (0.5) ^ (5.71)
Value ≈ 29,000 * 0.0311
Value ≈ 902.09
4. Round the value to the nearest hundred dollars: $902.09 is approximately $900.
So, the value of the car 20 years after it was purchased is approximately $900.
To know more about depreciation value. Click on the link.
https://brainly.com/question/28498512
#SPJ11
This system of equations has been placed in a matrix: y = 700x + 200
y = 5,000 − 75x
Complete the matrix by filling in the missing numbers
The completed matrix represents the system of equations in a convenient format for solving using matrix operations.
How to find the matrix ?The given system of equations has been represented in a matrix form, where the coefficients of the variables x and y and the constant terms are arranged in a matrix. To solve the system of equations, we can use matrix operations to isolate the variables and find their values. The completed matrix shows that the coefficient of x is 700, the coefficient of y is -200, and the constant term is 0 for the first equation. Similarly, the coefficient of x is -75, the coefficient of y is 200, and the constant term is 5000 for the second equation.
To solve this system using matrix operations, we can perform row operations to eliminate one of the variables. For example, we can multiply the first row by 75 and the second row by 200, and then add the two rows to eliminate x. This gives us a new system of equations with only one variable, which we can solve to find the values of x and y.
Learn more about matrix
brainly.com/question/9967572
#SPJ11
Find the diameter of a circle with a circumference of 63 feet. Round your answer to the nearest thousandth.
Answer: 20.054
Step-by-step explanation:
D = 2R
R = (C/2π)
(Dilations MC)
Triangle ABC with vertices at A(-3, -3), B(3, 3), C(0, 3) is dilated to create triangle A'B'C' with vertices at A(-6, -6), B(6, 6), C(0, 6). Determine the scale factor used.
02
1|2
03
-in
The scale factor used is 2.
What is triangle?It is one of the simplest polygon shapes and is commonly used in mathematics and geometry. The sum of the internal angles of a triangle is always 180 degrees.
Define vertices of triangle?The vertices of a triangle are the three points in a two-dimensional (2D) or three-dimensional (3D) space that define the corners or corners of the triangle. In a 2D plane, the vertices are typically denoted as A, B, and C, and in a 3D space, they can be represented as (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) where (x, y, z) are the coordinates of each vertex along the x, y, and z axes respectively. The vertices of a triangle are connected by three line segments, known as edges, to form the sides of the triangle. The combination of the three vertices and the edges connecting them determines the shape and size of the triangle.
To find the scale factor used to dilate triangle ABC to A'B'C', we can compare the corresponding side lengths of the two triangles.
The distance between A(-3, -3) and B(3, 3) is √((3-(-3))^2 + (3-(-3))^2) = 6√2.
The distance between A'(-6, -6) and B'(6, 6) is √((6-(-6))^2 + (6-(-6))^2) = 12√2.
So the scale factor used to dilate triangle ABC to A'B'C' is:
scale factor = length of corresponding side in A'B'C' / length of corresponding side in ABC
= (12√2) / (6√2)
= 2
Therefore, the scale factor used is 2.
Learn more about scale factor here:
https://brainly.com/question/29464385
#SPJ1
In this problem you will only find the models. But make sure that you show all work to support
your answers. Use function notation in your final answers.
Suppose two types of wire will be used to form the edges of a rectangle. The wire used
for the width costs $2.50 per foot and the wire used for the height costs $4.25 per foot. Express the total cost of building the rectangle out of wire as a function of the with if the
enclosed area must be 500 square feet.
To start, let's call the width of the rectangle "w" and the height "h". We know that the area must be 500 square feet, so we can write an equation:
w*h = 500
We can solve this equation for h:
h = 500/w
Now we can express the total cost of the wire in terms of w. The cost of the wire for the width is $2.50 per foot, so the cost for that side is:
2.5w
The cost of the wire for the height is $4.25 per foot, so the cost for that side is:
4.25h = 4.25(500/w) = 2125/w
So the total cost of the wire is:
C(w) = 2.5w + 2125/w
This is our final answer expressed in function notation.
Let's denote the width of the rectangle as w and the height as h. We are given that the area of the rectangle must be 500 square feet, so we have:
w * h = 500
Now, we need to find the cost function based on the width. The cost of the wire for the width is $2.50 per foot and for the height is $4.25 per foot. Therefore, the total cost (C) can be expressed as:
C(w) = 2.50 * w + 4.25 * h
We need to express the height (h) in terms of the width (w) using the area equation:
h = 500 / w
Now, we can substitute this expression for h in the cost function:
C(w) = 2.50 * w + 4.25 * (500 / w)
This is the cost function for building the rectangle out of wire as a function of its width, given that the enclosed area must be 500 square feet.
Learn more about rectangle here: brainly.com/question/29123947
#SPJ11
The coordinates of the vertices of △ABC are A(3,0), B(2,−3), and C(0,3). The coordinates of the vertices of △XYZ are X(1,0), Y(0,3), and Z(−2,−3). Which series of transformations correctly shows that △ABC≅△XYZ?
A: a translation 2 units down and a reflection over the x-axis
B: a translation 2 units up and a reflection over the y-axis
C: a translation 2 units right and a reflection over the y-axis
D: a translation 2 units left and a reflection over the x-axis
The series of transformations correctly shows that △ABC≅△XYZ is D
a translation 2 units left and a reflection over the x-axis.
How do you solve for the transformation?if a translation happens to each point of △ABC horizontally to the left by 2 units, which means subtracting 2 from the x-coordinate of each vertex, we notice that a transformation of ABC to coordinates that are almost identical to XYZ but let it be called it A'B'C'
A(3, 0) ⇒ A'(1, 0)
B(2, -3) ⇒ B'(0, -3)
C(0, 3) ⇒ C'(-2, 3)
Secondly, if a reflection happens to A'B'C' at the x axis the transformation becomes identical to △XYZ
A'(1, 0) ⇒ X(1, 0)
B'(0, -3) ⇒ Y(0, 3)
C'(-2, 3) ⇒ Z(-2, -3)
Find more exercises on transformation;
https://brainly.com/question/13801312
#SPJ1
1. A tree was cut down. What 3D shape does it closely resemble?
A. Prism
B. Pyramid
C. Cylinder
D. Cone
2. A ball with radius 5. 5 cm fits tightly inside a cube. Find the volume of the
unoccupied space inside the cube. Round to the nearest cm.
A. 531
B. 166
C. 697
D. 634
The volume of the unoccupied space inside the cube is the volume of the cube minus the volume of the ball, which is approximately 166.
1. D. Cone. When a tree is cut down, its trunk typically has a roughly cylindrical shape with a tapered end, which closely resembles a cone.
2. B. 166. The diameter of the ball is 11 cm, which is also the length of the diagonal of the cube. Let's call the side length of the cube "s". Then, we can use the Pythagorean theorem to find s:
s^2 + s^2 + s^2 = 11^2
3s^2 = 121
s^2 = 121/3
The volume of the cube is s^3, which is approximately 166. The volume of the ball is (4/3)πr^3, where r is the radius of the ball. Since the ball fits tightly inside the cube, its diameter is equal to the side length of the cube, which is s√3. Thus, r = (s√3)/2 - 5.5.
The volume of the unoccupied space inside the cube is the volume of the cube minus the volume of the ball, which is approximately 166.
To know more about volume of the cube refer here:
https://brainly.com/question/23526372
#SPJ11
Let f(x)= 3x and g(x)= 3(x+1)^2. Find (fg)(x) and (f/g)(x).
State the domain of each.
Evaluate the following: (fg)(5) and (f/g)(5)
The value of the domains is given as:
(fg)(5) equals 1620 (f/g)(5) is equivalent to 5/36.How to solveIn order to find the results of (fg)(x) and (f/g)(x), we must begin by multiplying and dividing the two functions, respectively:
(fg)(x) = f(x) * g(x) = [tex]3x * 3(x + 1)^2 = 9x(x + 1)^2[/tex]; its domain containing all real numbers.
Similarly, (f/g)(x) = f(x) / g(x) = in a domain that does not [tex]3x / 3(x + 1)^2 = x / (x + 1)^2[/tex]include x = -1 (if g(x) ≠ 0).
Let us now evaluate (fg)(5) and (f/g)(5):
(fg)(5) =[tex]9(5)(5 + 1)^2 = 9(5)*(6)^2[/tex] = 9(5(36)) = 1620 while
(f/g)(5) = [tex]5/(5 + 1)^2 = 5/(6)^2[/tex] = 5/36.
Consequently, (fg)(5) equals 1620 and (f/g)(5) is equivalent to 5/36.
Read more about domain here:
https://brainly.com/question/26098895
#SPJ1
To the nearest hundredth, what is the value of x?
Use a trigonometric ratio to compute a distance
Therefore, to the nearest hundredth, the value of x is 42.31 units.
What is triangle?A triangle is a three-sided polygon, which is a closed shape made up of straight lines. It is one of the simplest geometric shapes and is used extensively in mathematics, science, and engineering. In a triangle, each side connects two vertices or corners, and each vertex is where two sides intersect. The three angles of a triangle always add up to 180 degrees, and the sum of the lengths of any two sides is always greater than the length of the third side. Triangles can be classified by the lengths of their sides and the sizes of their angles, which gives rise to different types such as equilateral, isosceles, scalene, acute, right, and obtuse triangles. Triangles have many applications, such as in geometry, trigonometry, physics, and engineering, and they are fundamental to understanding the properties of other shapes and mathematical concepts.
Here,
In a right triangle, the sine of an angle is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse. So, for this triangle, we have:
sin(53°) = opposite / hypotenuse
sin(53°) = x / 53
To solve for x, we can rearrange the equation as follows:
x = 53 * sin(53°)
Using a calculator to evaluate sin(53°), we get:
sin(53°) = 0.7986 (rounded to four decimal places)
Substituting this value into the equation, we get:
x = 53 * 0.7986
x = 42.308 (rounded to two decimal places)
To know more about triangle,
https://brainly.com/question/28600396
#SPJ1