Mg₃N₂ will be completely consumed, and there will be some H₂O left over after the reaction is complete.
To determine the limiting reactant, we need to compare the number of moles of each reactant present to the stoichiometric ratio in the balanced equation.
From the balanced equation, we see that for every 1 mole of Mg₃N₂, 6 moles of H₂O are required. Therefore, the stoichiometric ratio of Mg₃N₂ to H₂O is 1:6.
To find out which reactant is limiting, we can calculate the amount of products that each reactant could produce.
For Mg₃N₂:
0.600 mol Mg₃N₂ x (3 mol Mg(OH)₂ / 1 mol Mg₃N₂) = 1.80 mol Mg(OH)₂
For H₂O:
4.00 mol H₂O x (3 mol Mg(OH)₂ / 6 mol H₂O) = 2.00 mol Mg(OH)₂
Since Mg₃N₂ can only produce 1.80 mol Mg(OH)₂, which is less than the amount that H₂O can produce (2.00 mol), Mg₃N₂ is the limiting reactant.
Therefore, Mg₃N₂ will be completely consumed, and there will be some H₂O left over after the reaction is complete.
To know more about limiting reactant :
https://brainly.com/question/11587316
#SPJ11
iz
Which sentence from the article shows humans' MAIN problem?
(A)
(B)
(C)
(D)
Solar radiation is the energy, both heat and light, that the sun gives off.
During the day, the sun shines through the atmosphere, causing Earth's surface to warm up.
This process is what keeps our Earth at an average global temperature of 14 degrees Celsius (58
degrees Fahrenheit).
The level of carbon dioxide in Earth's atmosphere has risen consistently for decades, trapping extra
heat near the surface of the Earth.
The sentence that shows humans' main problem is "The level of carbon dioxide in Earth's atmosphere has risen consistently for decades, trapping extra heat near the surface of the Earth," which is the last option.
The sentence that shows humans' main problem is "The level of carbon dioxide in Earth's atmosphere has risen consistently for decades, trapping extra heat near the surface of the Earth." This sentence indicates that the main problem is the increasing levels of carbon dioxide in the Earth's atmosphere caused by human activities. This increase in carbon dioxide is resulting in global warming, where heat is being trapped near the Earth's surface, leading to several negative effects, including rising sea levels, changes in weather patterns, and loss of biodiversity.
Learn more about the earth's climate here.
https://brainly.com/question/3081802
#SPJ1
Can some help me please Show Work!
Given the following reaction:
CaBr2 + 2 KOH —-> Ca(OH)2 + 2 KBr
What mass, in grams, of CaBr2 is consumed when 96 g of Ca(OH)2 is produced?
258.72 grams of CaBr2 is consumed when 96 g of Ca(OH)2 is produced in the given reaction.
What is molar mass?Molar mass is the mass of one mole of a substance, expressed in grams per mole (g/mol).
Equation:CaBr2 + 2KOH → Ca(OH)2 + 2KBr
From the equation, we can see that 1 mole of CaBr2 reacts with 2 moles of KOH to produce 1 mole of Ca(OH)2 and 2 moles of KBr.
We need to first determine the number of moles of Ca(OH)2 produced from 96 g of Ca(OH)2. The molar mass of Ca(OH)2 is:
Ca(OH)2 = 1 x 40.08 (molar mass of Ca) + 2 x 16.00 (molar mass of O) + 2 x 1.01 (molar mass of H)
= 74.10 g/mol
Number of moles of Ca(OH)2 produced = Mass of Ca(OH)2 / Molar mass of Ca(OH)2
= 96 g / 74.10 g/mol
= 1.295 moles
From the balanced equation, we know that 1 mole of CaBr2 reacts with 1 mole of Ca(OH)2. Therefore, the number of moles of CaBr2 consumed in the reaction is also 1.295 moles.
Now, we can calculate the mass of CaBr2 consumed using its molar mass. The molar mass of CaBr2 is:
CaBr2 = 1 x 40.08 (molar mass of Ca) + 2 x 79.90 (molar mass of Br)
= 199.88 g/mol
Mass of CaBr2 consumed = Number of moles of CaBr2 consumed x Molar mass of CaBr2
= 1.295 moles x 199.88 g/mol
= 258.72 g
To know more about molar mass, click here
https://brainly.com/question/30216315
#SPJ1
Help what’s the answer?
Answer:
For 25.6 grams of oxygen you will need 2*25.6 grams of hydrogen because water has two molecules of hydrogen and one molecule of oxygen the final mass of water is 76.8 grams
Additional evidence of an exothermic reaction issound
Sound is not always an indicator of an exothermic reaction. While some exothermic reactions may produce sound, others may not.
However, certain exothermic reactions that produce a lot of heat can cause nearby air molecules to rapidly expand and create pressure waves, which we hear as a sound.
For example, combustion reactions that involve burning fuels such as gasoline, natural gas, or propane can produce a loud, explosive sound as the fuel rapidly oxidizes and releases a large amount of energy in the form of heat and light.
Additionally, some exothermic reactions can cause materials to break or shatter, producing a loud cracking or popping sound. For example, the reaction between baking soda and vinegar produces carbon dioxide gas, which can cause a balloon filled with the mixture to pop with a loud sound.
So while sound alone is not conclusive evidence of an exothermic reaction, it can be a possible indicator in certain cases where the reaction produces a significant amount of heat or causes physical changes in the surrounding materials.
Other factors such as changes in temperature, light emission, or gas production may also be used as evidence to confirm an exothermic reaction.
To know more about always refer here
https://brainly.com/question/22647553#
#SPJ11
in day 1 of this multi-step experiment, we use two acids - acetic acid and sulfuric acid. what is the role of the sulfuric acid? group of answer choices
Sulfuric acid may act as a catalyst, protonating agent or dehydrating agent in the multi-step experiment where both acetic acid and sulfuric acid are used on day 1.
Sulfuric acid is often used as a catalyst in chemical reactions. In the multi-step experiment where both acetic acid and sulfuric acid are used on day 1, sulfuric acid may act as a catalyst for one or more of the reactions. Sulfuric acid can also protonate certain functional groups in organic compounds, making them more reactive towards other reagents in the reaction mixture.
Additionally, sulfuric acid can act as a dehydrating agent, removing water from the reaction mixture and driving the reaction towards the formation of the desired product. The specific role of sulfuric acid in the multi-step experiment will depend on the nature of the reactions being carried out and the specific reaction conditions.
To know more about sulfuric acid, here
brainly.com/question/30039513
#SPJ4
--The complete question is, What is the role of sulfuric acid in a multi-step experiment where both acetic acid and sulfuric acid are used on day 1?--
ASAP THIS IS DEW ON THE 4/26/2021!!!!!!! HELP
Assessment timer and count
Assessment items
Illustration of water cycle showing land and water body with arrows pointing outward and inward to both land and water body and some numeric labels one, two, three, and four mentioned along with arrows
Illustration of water cycle showing land and water body with arrows pointing outward and inward to both land and water body and some numeric labels one, two, three, and four mentioned along with arrows
Item 8
How do water particles move in a wave?
They move in a circular motion.
They move up and down.
They stay still.
They move forward with the wave
When a wave passes through water, the particles of water move in a circular motion, which is often described as an orbital motion.
The circular motion of water particles is created by the energy of the wave, which causes the water to oscillate up and down or back and forth in the same place.
As the wave moves through the water, the energy is transferred from particle to particle in a circular motion, causing the water to move in a wave pattern that travels outward from its source. This circular motion is why water waves do not carry water particles along with them, but rather simply transfer energy through the water.
This motion is also what creates the phenomena of waves breaking on shorelines, as the circular motion of water particles becomes disrupted by the shallow water and causes the wave to collapse.
To know more about circular motion refer to-
https://brainly.com/question/2285236
#SPJ11
which of the following transitions within an atom is not possible? group of answer choices an electron begins in an excited state and then gains enough energy to jump to the ground state. an electron begins in the ground state and then gains enough energy to jump to an excited state. an electron begins in the ground state and then gains enough energy to become ionized. an electron begins in an excited state and then gains enough energy to become ionized.
The transition within an atom that is not possible is an electron begins in an excited state and then gains enough energy to become ionized. Option D is correct.
An excited electron already has excess energy above its ground state energy level. If it gains more energy, it can transition to a higher energy level or even become ionized by being ejected from the atom. However, an electron that has already been excited and has reached its highest energy level cannot gain any more energy from the atom and therefore cannot be ionized further.
Once an electron is in its highest energy level, it is said to be in the ionization continuum and cannot be further excited or ionized by the atom. Therefore, the transition of an electron beginning in an excited state and then gaining enough energy to become ionized is not possible. On the other hand, the other three transitions listed are possible and occur naturally in many physical and chemical processes, such as atomic emission and absorption spectra. Option D is correct.
To know more about the Excited state, here
https://brainly.com/question/13088843
#SPJ4
What is it called when a disease can affect plants and animals and can cause them to struggle to survive?
PLEASE HELP!!
if 9. 45 moles of C2H2 are burned how many moles of O2 are needed?
To determine the number of moles of O2 needed to burn 9.45 moles of C2H2, we first need to write down the balanced chemical equation for the combustion of acetylene (C2H2):
2 C2H2 + 5 O2 → 4 CO2 + 2 H2O
From this equation, we can see that 5 moles of O2 are required to burn 2 moles of C2H2. To find out how many moles of O2 are needed for 9.45 moles of C2H2, we can use a simple proportion:
(5 moles O2 / 2 moles C2H2) = (x moles O2 / 9.45 moles C2H2)
To solve for x (moles of O2 needed), simply cross-multiply and divide:
x = (5 moles O2 * 9.45 moles C2H2) / 2 moles C2H2
x ≈ 23.63 moles O2
Therefore, approximately 23.63 moles of O2 are needed to burn 9.45 moles of C2H2.
#SPJ11
12. How many grams of C3H6 are present in 652 mL of the gas at STP?
A. 1. 78 g
B. 6. 13 g
C. 2. 86 g
D. 1. 22 g
There are 1.142 grams of C₃H₆ in the 652 mL of sample of the gas at STP.
Using ideal gas equation,
PV = nRT, pressure is P, volume is V, number of moles in n, gas constant is R, the temperature is T. At STP, the pressure is 1 atm, the temperature is 273 K, and the molar volume is 22.4 L.
We can use the following steps to calculate the number of moles of C₃H₆ present in 652 mL of the gas at STP:
Convert the volume to liters:
652 mL = 0.652 L
Calculate the number of moles using the ideal gas law:
PV = nRT
(1 atm) (0.652 L) = n (0.0821 L·atm/mol·K) (273 K)
n = 0.0272 mol
Calculate the mass of C₃H₆ using its molar mass:
m = n × M
M(C₃H₆) = 42.08 g/mol
m = 0.0272 mol × 42.08 g/mol
m = 1.142 g
It is nearest to option D, hence the mass is 1.22 grams.
To know more about ideal gas equation, visit,
https://brainly.com/question/27870704
#SPJ4
A 58. 3g sample of NH3 is reacted with 126g O2, according to this reaction what is the limiting reagent? 4NH3 + 7O2 --> 4NO + 6H2O
The ratio of NH₃ to O₂ is less than 4:7, it means that NH₃ is the limiting reagent. Therefore, NH₃ will be completely consumed before O₂ and the amount of product formed will be determined by the amount of NH₃ available.
To determine the limiting reagent, we need to compare the amount of each reactant with their respective stoichiometric coefficients in the balanced chemical equation.
First, we convert the given masses of NH₃ and O₂ to moles using their molar masses:
58.3 g NH₃ × (1 mol NH₃ ÷ 17.03 g NH₃) = 3.42 mol NH₃
126 g O₂ × (1 mol O₂ ÷ 32 g O₂) = 3.94 mol O₂
Next, we compare the number of moles of NH₃ and O₂ to the stoichiometric coefficients in the balanced equation:
NH₃ : O₂ ratio = 4:7
To learn more about reagent follow the link:
brainly.com/question/26905271
#SPJ4
259 mL of gas is collected at 112 kPa of pressure. What will be the volume at standard pressure, assuming the temperature remains constant? Remember, STP is standard temperature (273 K) and standard pressure (1 atm). Round your answer to 3 significant figures.
Love you so much if you can answer x
The volume at standard pressure will be 293 mL.
To find the volume of gas at standard pressure, we need to use the ideal gas law, which states that PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is the temperature.
Since the temperature remains constant, we can rearrange the equation to solve for the volume at standard pressure:
(P₁V₁) / P₂ = V₂
Where P₁ is the initial pressure, V₁ is the initial volume, P₂ is the final pressure (standard pressure), and V₂ is the final volume (what we're solving for).
Plugging in the given values, we get:
(112 kPa)(259 mL) / (1 atm) = V₂
Simplifying and converting units of pressure and volume, we get:
(112000 Pa)(0.259 L) / (1.01325 × 10⁵ Pa) = V₂
Solving for V₂, we get:
V₂ = 0.293 L = 293 mL
Rounding to 3 significant figures, we get that the volume at standard pressure will be 293 mL.
To know more about standard pressure, refer here:
https://brainly.com/question/29129606#
#SPJ11
Calculate each of the following quantities.
(a) total number of ions in 47.8 g of srf2
(b) mass (kg) of 4.90 mol of cucl2 · 2 h2o
(c) mass (mg) of 2.67 1022 formula units of bi(no3)3 · 5 h2o
There are 4.59 × 10²³ ions in 47.8 g of SrF₂.
The mass of 4.90 mol of CuCl₂ · 2H₂O is 0.83495 kg.
The mass of 2.67 × 10²² formula units of Bi(NO₃)₃ · 5H₂O is 1.30 × 10³⁴ mg.
(a) The molar mass of SrF₂ is 125.62 g/mol. Thus, there are 0.380 moles of SrF₂ in 47.8 g. Since each formula unit of SrF₂ produces two ions (Sr²⁺ and 2F⁻), the total number of ions can be calculated by multiplying the number of formula units by the number of ions per formula unit:
0.380 mol SrF₂ × 6.02 × 10²³ formula units/mol × 2 ions/formula unit = 4.59 × 10²³ ions
As a result, there are 4.59 × 10²³ ions in 47.8 g of SrF₂.
(b) The molar mass of CuCl₂ · 2H₂O is 170.48 g/mol. The mass of 4.90 mol of CuCl₂ · 2H₂O can be calculated by multiplying the molar mass by the number of moles:
4.90 mol × 170.48 g/mol = 834.95 g
Since there are 1000 g in 1 kg, 4.90 mol of CuCl₂ · 2H₂O weighs 0.83495 kilogram.
(c) The molar mass of Bi(NO₃)₃ · 5H₂O is 485.09 g/mol. The mass of 2.67 × 10²² formula units of Bi(NO₃)₃ · 5H₂O can be calculated by multiplying the molar mass by the number of formula units:
2.67 × 10²² formula units × 485.09 g/mol = 1.30 × 10²⁷ g
Since there are 10⁶ mg in 1 g, 1.30 × 10³⁴ mg is the mass of 2.67 × 10²² formula units of Bi(NO₃)₃ · 5H₂O.
To know more about the Mass, here
https://brainly.com/question/27190103
#SPJ4
2.
What can be concluded from this thermochemical equation?
NaOH(s) → Na*(aq) + OH(aq) AH - - 45 kJ/mol run
A Sodium and hydroxide ions have more potential energy then solid sodium hydroxide.
B The dissolving of sodium hydroxide is an endothermic process.
C The temperature of the solution would increase as sodium hydroxide dissolves
D The rate of dissolution increases as temperature is decreased
The dissolving of sodium hydroxide is an endothermic process.
The given thermochemical equation shows that the dissolution of NaOH is an endothermic process. The negative value of the enthalpy change (AH) indicates that energy in the form of heat is absorbed during the process of dissolving NaOH. This means that the system requires energy to break the ionic bonds between NaOH molecules and to separate them into their constituent ions, Na+ and OH-. Option A is incorrect as potential energy is not mentioned in the equation, and option D is not related to the given equation. Option C is not necessarily true, as the temperature change of the solution depends on the amount of NaOH dissolved and the specific heat of the solution. Overall, we can conclude that the dissolution of NaOH is an endothermic process, where heat is absorbed by the system, and the enthalpy of the system increases.
Know more about Endothermic Process here:
https://brainly.com/question/29555731
#SPJ11
The NaOH solution was made from 142. 1 g NaOH, dissolved in water and diluted to 1000. 0 +/- 0. 6 mL
What is the molarity of the NaOH solution prepared to react with the pennies?
What was the pH of the solution?
The pH of the NaOH solution prepared to react with the pennies is 14.550.
To determine the molarity of the NaOH solution prepared to react with the pennies, follow these steps:
1. Calculate the moles of NaOH: Divide the mass of NaOH by its molar mass (142.1 g / 39.997 g/mol) = 3.553 moles of NaOH.
2. Calculate the volume of the solution: Convert the volume from mL to L (1000.0 mL * (1 L / 1000 mL)) = 1.000 L.
3. Calculate the molarity: Divide the moles of NaOH by the volume of the solution (3.553 moles / 1.000 L) = 3.553 M.
The molarity of the NaOH solution prepared to react with the pennies is 3.553 M.
To determine the pH of the solution:
1. Use the formula: pH = -log[H+], where [H+] represents the concentration of hydrogen ions in the solution.
2. Since NaOH is a strong base, it dissociates completely in water. The concentration of OH- ions is equal to the molarity of NaOH (3.553 M).
3. Calculate the pOH: pOH = -log[OH-] = -log(3.553) = -0.550.
4. Convert pOH to pH: pH = 14 - pOH = 14 - (-0.550) = 14.550.
The pH of the NaOH solution prepared to react with the pennies is 14.550.
To know more about pH :
https://brainly.com/question/29766400
#SPJ11
PLEASE HELP!! WILL GIVE BRAINLIEST!!!
Calculate the number of atoms there are in 2. 75 moles of oxygen
Answer: 1.20x10^24 atoms O
Explanation:
Oxygen is a diatomic element and is O2
Each molecule of oxygen, O2, has 2 atoms of O.
Each mole has 6.022 x 10^23 molecules of O2.
So our equation is
(6.022x10^23) x 2 = 1.2044x10^24 atoms of O2.
and because our initial problem uses 3 sig figs we round that to
1.20 x 10^24 atoms of O.
Who attempted to measure the relative distances in the S.S. with Geometry?
Answer:
Posidonius of Rhodes
Explanation:
Explain use the tyndall effect to explain why it is more difficult to drive through
fog using high beams than using low beams.
The Tyndall effect is the scattering of light by colloidal particles or suspensions, causing the particles to become visible.
In fog, water droplets act as colloidal particles and scatter light, making it difficult to see clearly. High beams produce a greater amount of light, which causes more scattering and reflection in the fog, resulting in decreased visibility. This is because the water droplets in the fog are closer together and more concentrated in the path of the high beams, causing more light to be reflected back towards the driver's eyes.
Using low beams, on the other hand, produces less light and reduces the amount of scattering and reflection in the fog, resulting in better visibility. Therefore, it is recommended to use low beams when driving in foggy conditions to avoid glare and improve visibility.
To learn more about Tyndall effect, here
https://brainly.com/question/14431922
#SPJ4
For #12 - #14, write the balanced chemical equation and identify each by type of reaction.
12. copper + chlorine → copper(II) chloride
13. calcium chlorate → calcium chloride + oxygen
14. lithium + water → lithium hydroxide + hydrogen
Answer:
12. Balanced chemical equation: Cu + Cl2 → CuCl2
Type of reaction: Combination or synthesis reaction
13. Balanced chemical equation: 2Ca(ClO3)2 → 2CaCl2 + 3O2
Type of reaction: Decomposition reaction
14. Balanced chemical equation: 2Li + 2H2O → 2LiOH + H2
Type of reaction: Single displacement or substitution reaction
Explanation:
Hope it helps^^
Calculate the mass (in g) of BSA contained in a solution that is prepared by mixing 25. L of a 1. 0 mg/mL BSA solution, 25. L of distilled water, and 2. 4 mL of assay dye solution. Show your work for full credit
The mass of BSA in the solution is 24.96 μg, calculated by diluting 25 μL of 1.0 mg/mL BSA solution with 25 μL of distilled water and finding a final concentration of 0.0104 mg/mL.
To calculate the mass of BSA in the solution, we first need to find out how much BSA is present in the 25 μL of 1.0 mg/mL BSA solution.
1.0 mg/mL means that there is 1.0 mg of BSA per 1 mL of solution. Therefore, in 25 μL of solution (0.025 mL), there will be:
1.0 mg/mL x 0.025 mL = 0.025 mg of BSA
Next, we need to find out the concentration of BSA in the final solution after mixing. Since we are adding 25 μL of distilled water to the BSA solution, the volume of the BSA solution is now 50 μL (0.050 mL).
To calculate the concentration of BSA in the final solution, we can use the following formula:
C1V1 = C2V2
Where C1 is the initial concentration of BSA, V1 is the initial volume of the BSA solution, C2 is the final concentration of BSA, and V2 is the final volume of the solution.
We know that C1 = 1.0 mg/mL, V1 = 0.025 mL, V2 = 2.4 mL, and we want to find C2.
C2 = (C1V1)/V2 = (1.0 mg/mL x 0.025 mL)/2.4 mL = 0.0104 mg/mL
Now that we know the concentration of BSA in the final solution, we can calculate the mass of BSA in the solution by using the following formula:
mass = concentration x volume
The volume of the final solution is 2.4 mL. To convert this to μL, we need to multiply by 1000:
2.4 mL x 1000 μL/mL = 2400 μL
Now we can calculate the mass of BSA:
mass = 0.0104 mg/mL x 2400 μL = 24.96 μg
Therefore, the mass of BSA in the solution is 24.96 μg.
To know more about the BSA solution refer here :
https://brainly.com/question/24173551#
#SPJ11
Assuming pressure is constant. There are 12. 75 mL of chemical product associated with a temperature reading of 68 degrees Celsius. What will the final temperature be if the volume increased to 5. 25 mL
The final temperature will be approximately -55.6 degrees Celsius when the volume is reduced to 5.25 mL.
According to Charles' Law, when pressure is constant, the volume of a gas is directly proportional to its temperature (in Kelvin). The formula for Charles' Law is V1/T1 = V2/T2.
First, convert the initial temperature from Celsius to Kelvin (68 + 273.15 = 341.15 K). Then, plug in the values: (12.75 mL / 341.15 K) = (5.25 mL / T2).
To solve for T2, multiply both sides by T2 and divide by 5.25 mL: T2 = (341.15 K * 5.25 mL) / 12.75 mL ≈ 139.6 K. Finally, convert back to Celsius: 139.6 K - 273.15 ≈ -55.6 degrees Celsius.
To know more about Charles' Law click on below link:
https://brainly.com/question/16927784#
#SPJ11
For a particular reaction at 121. 3 °C, ΔG=53. 29 kJ/mol, and ΔS=623. 51 J/(mol⋅K). Calculate ΔG for this reaction at −79. 6°C
The change in Gibbs free energy for a reaction will be ∆G = 76.8 kJ/mol, as calculated in the below section.
Using the below relationship for change in Gibbs free energy, the change in enthalpy can be calculated as follows.
∆G = ∆H - T∆S
We can use this equation to find ∆H:
∆H = ∆G + T∆S
∆G = -64.76 kJ/mol
T = 132 + 273 = 405K
∆S = 676.54 J/Kmol = 0.677 kJ/Kmol
(change units to match those of ∆G)
∆H = -64.76 + (405)(0.677) = -64.76 + 274
∆H = + 209.4 kJ/mol
Now we can use this to find ∆G at -77.1ºC (196K)
∆G = ∆H - T∆S
∆G = 209.4 kJ/mol - (196K)(0.677 kJ/Kmol)
∆G = 209.4 - 132.6
∆G = 76.8 kJ/mol
To learn more about Gibbs free energy check the link below-
https://brainly.com/question/9179942
#SPJ4
A 35. 3 g of element m is reacted with nitrogen to produce 43. 5 g of compound m3n2. what is (i) the molar mass of the element and (ii) name of the element?
To solve this problem, we need to use the law of conservation of mass which states that the total mass of reactants equals the total mass of products in a chemical reaction. In this case, we know the mass of the element m and the mass of the compound m3n2 that is produced.
(i) To find the molar mass of the element, we need to first determine the number of moles of the compound produced. We can do this by dividing the mass of the compound by its molar mass.
molar mass of m3n2 = (molar mass of m x 3) + (molar mass of n x 2)
We can find the molar mass of the compound m3n2 by adding the molar mass of three atoms of element m and two atoms of nitrogen. The molar mass of nitrogen is 14 g/mol, and we can use the mass of the compound (43.5 g) to find its molar mass:
molar mass of m3n2 = (molar mass of m x 3) + (molar mass of n x 2)
43.5 g/mol = (3x molar mass of m) + (2x 14 g/mol)
43.5 g/mol - (2x14 g/mol) = 3x molar mass of m
15.5 g/mol = 3x molar mass of m
molar mass of m = 15.5 g/mol / 3 = 5.17 g/mol
So, the molar mass of element m is 5.17 g/mol.
(ii) To find the name of the element, we need to look at the periodic table and find an element with a molar mass close to 5.17 g/mol. From the periodic table, we see that the closest element is boron (B), which has a molar mass of 10.81 g/mol.
Therefore, the element m in this reaction is boron (B).
In summary, we can use the law of conservation of mass and the molar mass of the compound produced to determine the molar mass and name of the element reacted with nitrogen. In this case, we found that the element is boron with a molar mass of 5.17 g/mol.
To know more about conservation refer here
https://brainly.com/question/29220242#
#SPJ11
In terms of chemical bonding, explain the difference in the rate of sugar & acid reaction to the reaction between KI(aq) and Pb(NO₃)₂(aq)
The difference in the rate of sugar and acid reaction compared to the reaction between KI(aq) and Pb(NO₃)₂(aq) is due to the type of chemical bonding involved.
The reaction between sugar and acid involves covalent bonding, which is a strong bond that requires significant energy input to break. This type of bonding is responsible for the slow rate of the sugar and acid reaction.
In contrast, the reaction between KI(aq) and Pb(NO₃)₂(aq) involves ionic bonding, which is a much weaker bond than covalent bonding. As a result, the ions in the reactants are more easily separated, leading to a faster reaction rate.
Ionic bonding involves the transfer of electrons from one atom to another, whereas covalent bonding involves the sharing of electrons between atoms. This difference in electron sharing or transfer contributes to the different reaction rates observed between covalent and ionic bond containing compounds.
To know more about chemical bonding, refer here:
https://brainly.com/question/15444131#
#SPJ11
To what pressure must a gas be compressed in order to get into a 3. 00L the entire weight of a gas that occupies 350. 0L at standard pressure?
To answer this question, we need to use the ideal gas law, which is PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature. We also need to use the concept of molar volume, which is the volume occupied by one mole of a gas at a specific temperature and pressure.
First, we need to find the number of moles of gas that occupies 350.0L at standard pressure (1 atm) and temperature (273 K). This can be calculated using the formula n = PV/RT, where P = 1 atm, V = 350.0L, R = 0.08206 L atm/mol K, and T = 273 K. Substituting these values, we get n = (1 atm x 350.0L)/(0.08206 L atm/mol K x 273 K) = 14.15 mol.
Next, we need to find the molar volume of the gas at the pressure and volume we want it to occupy. Using the same formula, but with the new pressure (P') and volume (V') values, we get V' = nRT/P'. Since we want the gas to occupy 3.00L, we have V' = 3.00L. We also know that the number of moles (n) and temperature (T) are constant, so we can rearrange the formula to solve for the new pressure (P'). Thus, P' = nRT/V' = (14.15 mol x 0.08206 L atm/mol K x 273 K)/3.00L = 2,062.58 atm.
Therefore, the gas must be compressed to a pressure of 2,062.58 atm in order to occupy a volume of 3.00L, assuming constant temperature and number of moles. This is a very high pressure, and it highlights the importance of understanding the properties of gases and how they behave under different conditions.
To know more about ideal gas law refer here
https://brainly.com/question/13821925#
#SPJ11
In the equation:
2h2 + o2 + 2h2o
a. 1 l of hydrogen reacts with 2 l of oxygen
b. 1 l of hydrogen reacts with 22.4 l of oxygen.
c. 22.4 l of hydrogen react with 1 l of oxygen
d. 2 l of hydrogen react with 1 l of oxygen
In the equation 2h2 + o2 + 2h2o, the two hydrogen molecules (H2) react with one oxygen molecule (O2) to form two molecules of water (H2O). This reaction is known as combustion and it requires a certain ratio of hydrogen to oxygen in order for the reaction to take place.
Here correct answer is D)
In this equation, the ratio of hydrogen to oxygen is 2:1. This means that for every one liter of hydrogen, two liters of oxygen are needed in order for the reaction to take place.
In answer to the questions, a) one liter of hydrogen would react with two liters of oxygen, b) one liter of hydrogen would react with 22.4 liters of oxygen, c) 22.4 liters of hydrogen would react with one liter of oxygen, and d) two liters of hydrogen would react with one liter of oxygen.
This equation is a great example of the law of conservation of mass, as the total number of atoms on each side of the equation remain the same
.Know more about Hydrogen molecules here
https://brainly.com/question/31485826#
#SPJ11
When 200. Ml of 2. 0 m naoh(aq) is added to 500. Ml of 1. 0 m hcl(aq), the ph of the resulting mixture is closest to
The pH of the resulting mixture is closest to 2.48, which is in the acidic range.
The reaction between HCl and NaOH produces water and NaCl:
HCl + NaOH → NaCl + H₂O
Moles of HCl = 1.0 mol/L × 0.5 L = 0.5 moles
Moles of NaOH = 2.0 mol/L × 0.2 L = 0.4 moles
NaOH is a limiting factor since it has fewer moles than HCl.
Excess H⁺ ions = 0.5 moles - 0.4 moles = 0.1 moles
Excess OH⁻ ions = 0.4 moles
To calculate the pH of the solution, we need to know the concentration of excess H⁺ or OH⁻ ions. Since we know the amount of excess H⁺ and OH⁻ ions, we can calculate their concentrations using the volume of the solution.
The total volume of the solution is 200 mL + 500 mL = 0.7 L
The concentration of excess H+ ions is:
[H⁺] = 0.1 moles ÷ 0.7 L = 0.143 mol/L
The concentration of excess OH- ions is:
[OH⁻] = 0.4 moles ÷ 0.7 L = 0.571 mol/L
Since the concentration of OH⁻ ions is higher than the concentration of H⁺ ions, the solution is basic. The pH can be calculated using the equation:
pH = 14 - pOH
pOH = -log[OH⁻]
pOH = -log(0.571)
pOH = 0.242
Thus, pH = 14 - 0.242 = 13.76
To learn more about pH follow the link:
https://brainly.com/question/491373
#SPJ4
What will be the products when CuF2 reacts with Li? Do not worry about balancing this.
A. LiF + Cu
B. Li + Cu + F2
C. No Reaction
D. F2 + LiCu
C. No Reaction will be the products when CuF2 reacts with Li
How does a double-replacement response work?The positive and negative ions of two ionic compounds switch positions to generate two new compounds in a process known as a double replacement reaction. In aqueous solution, double-replacement reactions often take place between compounds.
In conclusion, you cannot balance a reaction by modifying or adding new components. To ensure that mass is preserved, the only thing you can do is alter the quantity of particles, or moles of particles, involved.
learn more about double replacement reaction
https://brainly.com/question/1053122
#SPJ1
What is the new boiling point of 35 grams of CaS dissolved in 1. 25 kg if H2O?
The new boiling point of the solution is 100°C + 0.199°C = 100.199°C.
The boiling point of a solution is dependent on the concentration of solute particles in the solvent. This can be calculated using the formula
ΔTb = Kbm
where ΔTb is the boiling point elevation, Kb is the boiling point elevation constant, and m is the molality of the solution (moles of solute per kilogram of solvent).
The molar mass of CaS is 72.14 g/mol, so we can calculate the number of moles of CaS in the solution:
35 g / 72.14 g/mol = 0.4858 mol
The molality of the solution is then:
m = 0.4858 mol ÷ 1.25 kg
m = 0.3886 mol/kg
Next, we need to find the boiling point elevation constant Kb for water. Kb for water is 0.512 °C/m.
Finally, we can calculate the boiling point elevation:
ΔTb = Kb x m
ΔTb = 0.512 °C/m x 0.3886 mol/kg
ΔTb = 0.199 °C
To learn more about boiling follow the link:
brainly.com/question/2153588
#SPJ4
SEP Plan and Carry Out Investigations Suppose that you were a geologist trying to figure out how a long and narrow sea, such as the Red Sea, formed. What geologic features would you look for to determine whether the current shape of the sea is a result of seafloor spreading or ocean subduction? a
To determine whether the current shape of the Red Sea is a result of seafloor spreading or ocean subduction, a geologist would look for evidence of faulting and volcanic activity.
If the Red Sea was formed by seafloor spreading, there would be evidence of a mid-oceanic ridge along the center of the sea. This would be characterized by a linear pattern of volcanic and seismic activity, with magnetic anomalies and a symmetrical pattern of rock age on either side of the ridge. On the other hand, if the Red Sea was formed by ocean subduction, there would be evidence of a subduction zone, characterized by a deep trench along the edge of the sea and a pattern of volcanic activity occurring inland from the trench.
Additionally, there may be evidence of compressional forces, such as folding or faulting, indicating that two tectonic plates are colliding. By analyzing these features, a geologist can determine whether the Red Sea was formed by seafloor spreading or ocean subduction.
To learn more about geologic features, here
https://brainly.com/question/28427699
#SPJ4