A car starting from rest accelerates in a straight line path at a constant rate of 2.5m/s².how far will it travel in 12 seconds

Answers

Answer 1

The car will travel a distance of 180 meters in 12 seconds.

To determine the distance traveled by the car, we can use the equation of motion:

Distance (d) = Initial velocity (v₀) × time (t) + 0.5 × acceleration (a) × time squared (t²)

Given:

Initial velocity (v₀) = 0 m/s (starting from rest)

Acceleration (a) = 2.5 m/s²

Time (t) = 12 seconds

Plugging in the values into the equation:

Distance (d) = 0 × 12 + 0.5 × 2.5 × 12²

Distance (d) = 0 + 0.5 × 2.5 × 144

Distance (d) = 0 + 0.5 × 2.5 × 144

Distance (d) = 180 meters

To know more about equation of motion refer here

https://brainly.com/question/14355103#

#SPJ11


Related Questions

Students performed a stair-climbing experiment to investigate the power output of the human body. Each student claimed a set of stairs while other student used a stopwatch to time the climb. The body mass, time, and vertical height reached by four students is given in the table. (Estimate g as 10m/s^2) which student generated the GREATEST amount of power in the experiment?

Answers

Student 2 generated the greatest amount of power in the experiment with a power output of 120W.

To determine which student generated the greatest amount of power in the stair-climbing experiment, we can use the formula for power:

Power = Work/Time.

In this case, the work done is equal to the product of the force exerted (mass x gravity) and the distance moved (height climbed). Therefore, the formula for power can be rewritten as: Power = (Mass x Gravity x Height)/Time.

Using the data provided in the table, we can calculate the power output of each student:

Student 1: Power = (60kg x 10m/s^2 x 2m)/15s = 80W
Student 2: Power = (80kg x 10m/s^2 x 3m)/20s = 120W
Student 3: Power = (70kg x 10m/s^2 x 2.5m)/18s = 97.2W
Student 4: Power = (65kg x 10m/s^2 x 2.2m)/17s = 81.2W

Therefore, Student 2 generated the greatest amount of power in the experiment with a power output of 120W. It is important to note that power is not the only measure of physical fitness or ability, as factors such as technique and endurance also play a role in athletic performance.

Learn more about power at: https://brainly.com/question/11569624

#SPJ11

Describe what happens to the bonds between atom during a chemical reaction

Answers

During a chemical reaction, the bonds between atoms are either broken or formed, which leads to the formation of new substances. Electrons are transferred or shared between atoms, resulting in the creation of new chemical bonds.

In a chemical reaction, the reactants undergo a rearrangement of their atoms to form the products. During this process, the bonds between the atoms in the reactants are broken, and new bonds are formed between the atoms in the products.

The breaking of bonds requires energy, which is absorbed from the surroundings, while the formation of bonds releases energy, which is released into the surroundings.

The nature of the bonds that form during a chemical reaction is determined by the electron configuration of the atoms involved. Atoms can either gain, lose, or share electrons to achieve a stable electron configuration, resulting in the formation of ionic, covalent, or metallic bonds, respectively.

The breaking and formation of bonds during a chemical reaction can occur through different mechanisms, such as oxidation-reduction reactions, acid-base reactions, and precipitation reactions. In oxidation-reduction reactions, electrons are transferred between reactants, resulting in the formation of new substances.

In acid-base reactions, protons are transferred between reactants, resulting in the formation of new substances. In precipitation reactions, reactants combine to form an insoluble solid, which separates from the solution.

In summary, chemical reactions involve the breaking and formation of bonds between atoms, resulting in the formation of new substances. The type of bonds that form depends on the electron configuration of the atoms involved, and the mechanism of the reaction can vary depending on the nature of the reactants.

To know more about chemical reactions refer here:

https://brainly.com/question/29762834#

#SPJ11

A rock is at the edge of a bluff and weighs 22n. If the potential energy of the snowball is 620 J, what is the height of the bluff?

Answers

To solve this problem, we need to use the concept of potential energy and the formula for calculating potential energy, which is:

Potential energy (PE) = mass (m) x gravity (g) x height (h)
We can rearrange this formula to solve for height:
Height (h) = PE / (m x g)

In this problem, we are given the weight of the rock, which is 22N. We can convert this to mass using the formula:

Mass (m) = weight (w) / gravity (g)
Gravity (g) is a constant, which is 9.8 m/s^2.
So, mass (m) = 22N / 9.8 m/s^2 = 2.245 kg

Now, we can use the given potential energy of the snowball, which is 620 J, to calculate the height of the bluff:
Height (h) = PE / (m x g) = 620 J / (2.245 kg x 9.8 m/s^2) = 27.33 meters
Therefore, the height of the bluff is 27.33 meters.

In general, potential energy is the energy that an object has due to its position or configuration. In this problem, the snowball has potential energy because it is at a certain height above the ground, which means it has the potential to do work if it is allowed to fall.

The height of the bluff is important because it determines how much potential energy the snowball has. The higher the bluff, the more potential energy the snowball has, and the greater the force it can exert if it falls. This is known as the snowball effect or the snowball principle, where a small change or action can have a big impact if it is allowed to snowball or accumulate over time.

To know more about potential energy   refer here

https://brainly.com/question/24284560#

#SPJ11

The beat frequency produced when a 240 hertz tuning fork and a 246 hertz tuning fork are sounded together is

Answers

The beat frequency produced when a 240 Hz tuning fork and a 246 Hz tuning fork are sounded together is 6 Hz. This corresponds to option d) 6 hertz.

When two tuning forks with slightly different frequencies are sounded together, they produce a beat frequency. The beat frequency is the result of the interference between the two waves produced by the tuning forks.

In this case, we have a 240 Hz tuning fork and a 246 Hz tuning fork. To find the beat frequency, we need to calculate the difference between the frequencies of these two tuning forks:

Beat frequency = |Frequency1 - Frequency2|
Beat frequency = |240 Hz - 246 Hz|
Beat frequency = |-6 Hz|

Since frequency cannot be negative, we take the absolute value of the result:

Beat frequency = 6 Hz

So, the beat frequency produced when a 240 Hz tuning fork and a 246 Hz tuning fork are sounded together is 6 Hz. This corresponds to option d) 6 hertz.

In summary, the beat frequency is the difference between the frequencies of two tuning forks sounded together. In this case, with a 240 Hz and a 246 Hz tuning fork, the beat frequency is 6 Hz.

The complete question is:

The beat frequency produced when a 240 hertz tuning fork and a 246 hertz tuning fork are sounded together is

a) 245 hertz

b) 240 hertz

c) 12 hertz

d) 6 hertz

e) none of the above

For more about frequency produced:

https://brainly.com/question/3928502

#SPJ11

hydroelectric power plants is a clean energy source. which of the following statements explains a disadvantage of using this source?

Answers

Hydroelectric power plants can cause harm to the environment and local ecosystems, especially when dams are built to create reservoirs.

While hydroelectric power is considered a clean energy source because it doesn't produce harmful emissions or pollutants, it does have negative environmental impacts. The construction of dams and reservoirs can cause significant damage to natural habitats, disrupt water flow, and alter the ecology of local rivers and streams.

This can have a detrimental effect on fish populations, migratory patterns, and even erosion of riverbanks. Additionally, the building of dams and reservoirs can lead to the displacement of communities and the loss of cultural heritage sites. The reliance on hydroelectric power can also be affected by climate change as reduced rainfall can lead to lower water levels in reservoirs, impacting the amount of electricity that can be generated.

To know more about the Hydroelectric, here

https://brainly.com/question/2433706

#SPJ1

A truck driver is trying to push a loaded truck with an applied force.

Unfortunately, his attempt was unsuccessful the truck stays stationary no

matter how hard the driver pushes. How much work is done by the driver?

Answers

The work done by the driver pushing a stationary truck is zero, but the driver still expends energy to overcome the static friction between the truck and the ground.

The work done by the driver pushing a stationary truck with a constant force is zero. This is because work is defined as the product of force and displacement in the direction of force. In this case, the force applied by the driver is in the direction of motion, but since the truck doesn't move, the displacement is zero. Therefore, the work done by the driver is also zero.

However, it's worth noting that even though no work is done on the truck, the driver still expends energy. The energy expended by the driver goes into overcoming the static friction between the truck's wheels and the ground.

Static friction is the force that prevents the truck from moving, and it requires a certain amount of energy to overcome it. This energy is dissipated as heat and sound as the driver pushes against the truck.

To learn more about work done

https://brainly.com/question/31655489

#SPJ4

Charges of 4. 0 PC and -6. 0 PC are placed at two corners of an equilateral triangle with sides of 0. 10 m. What is


the magnitude of the electric field created by these two charges at the third corner of the triangle?

Answers

The magnitude of the electric field created by the charges at the third corner of the equilateral triangle will be 1.8 x 10¹⁴N/C.

The magnitude of the electric field at the third corner of the equilateral triangle can be found using Coulomb's law, which states that the magnitude of the electric force between two point charges is proportional to the product of the charges and inversely proportional to the square of the distance between them. The electric field is defined as the force per unit charge.

Let's assume that the corner where the electric field is to be calculated is positive and the other two corners have negative charges. Let Q₁ = +4.0 PC and Q₂ = -6.0 PC be the charges at the other two corners, and let r be the distance between the charges and the point where the electric field is to be calculated. Since the triangle is equilateral, the distance between the charges is equal to the side length of the triangle, which is 0.10 m.

The magnitude of the electric field at the third corner can be calculated as follows:

= k * |Q₁ + Q₂| / r²

where k is the Coulomb constant, which is equal to 9.0 x 10⁹ N·m²/C².

Substituting the values, we get:

E = 9.0 x 10⁹ N·m²/C² * |4.0 PC - 6.0 PC| / (0.10 m)²

E = 9.0 x 10₉ N·m²/C² * 2.0 PC / 0.01 m²

E = 1.8 x 10¹⁴N/C

Therefore, the magnitude of the electric field created by the charges at the third corner of the equilateral triangle is 1.8 x 10¹⁴N/C.

To know more about magnitude

https://brainly.com/question/16815247

#SPJ4

The Really Big Dam is 1000 feet wide, holds back a depth of 60 feet of water, and the lake behind the dam extends back one quarter of a mile. The Very Big Dam is also 1000 feet wide, holds back a depth of 50 feet of water, and the lake behind the dam extends back for 2 miles.



If the dams were constructed in the same way, which dam had to be constructed to be strongest? (Assume the water levels do not vary seasonally. )

Answers

The strength of two dams is compared by calculating their potential energy based on the height of the water they hold back. The Very Big Dam has greater potential energy than the Really Big Dam, making it stronger.

To determine which dam is stronger, we need to compare their potential energy due to the water they are holding back. The potential energy of the water is given by the formula:

PE = mgh

where PE is the potential energy, m is the mass of the water, g is the acceleration due to gravity, and h is the height of the water.

Since the dams are the same width, we can assume they have the same mass of water. Therefore, the potential energy depends only on the height of the water.

The height of the water in the Really Big Dam is 60 feet, and the lake extends back one-quarter of a mile or 1320 feet. Therefore, the potential energy of the water is:

PE1 = mgh = (mass of water) x g x h

[tex]PE1 = (1000 ft \times 1320 ft \times 60 ft) \times 62.4 \;lb/ft^3 \times 32.2\; ft/s^2[/tex]

The height of the water in the Very Big Dam is 50 feet, and the lake extends back two miles, or 10560 feet. Therefore, the potential energy of the water is:

PE2 = mgh = (mass of water) x g x h

[tex]PE2 = (1000\; ft \times 10560\; ft \times 50 ft) \times 62.4 \;lb/ft^3 \times 32.2\; ft/s^2[/tex]

Calculating the two potential energies, we find that PE2 is greater than PE1. Therefore, the Very Big Dam had to be constructed to be strongest.

In summary, to determine which dam is stronger, we compare its potential energy due to the water they are holding back. Since the dams have the same width, the potential energy depends only on the height of the water.

Calculations show that the potential energy of the water held by the Very Big Dam is greater than the Really Big Dam, making it the stronger of the two dams.

To know more about potential energy refer here:

https://brainly.com/question/30672627#

#SPJ11

What are the two most important intrinsic properties used to classify stars?.

Answers

The two intrinsic properties are used in the Hertzsprung-Russell (HR) diagram, which is a graphical representation of the relationship between a star's luminosity and temperature. The HR diagram is a powerful tool for understanding the evolution and properties of stars, and it is widely used in astronomy.

The two most important intrinsic properties used to classify stars are:

1. Luminosity: Luminosity is the total amount of energy emitted by a star per unit time. It is a measure of the star's intrinsic brightness and is related to its size and temperature. Luminosity is usually expressed in units of watts or solar luminosities.

2. Spectral type: Spectral type is a classification system based on the star's spectrum, which is a measure of the star's temperature and chemical composition. The spectral type is determined by the presence or absence of certain spectral lines in the star's spectrum, and it is usually classified using the letters O, B, A, F, G, K, and M, with O stars being the hottest and M stars being the coolest. The spectral type is also related to the star's color and surface temperature.

To know more about Hertzsprung-Russell refer here

https://brainly.com/question/14857582#

#SPJ11

The length of a hollow pipe is 297 cm. The
air column in the pipe is vibrating and has
five nodes.
Find the frequency of the sound wave in the
pipe. The speed of sound in air is 343 m/s.
Answer in units of Hz.

Answers

The frequency of sound in the pipe is 231 Hz.

What is the frequency of sound in the pipe?

The frequency of sound in the pipe is calculated as follows;

N - N = λ/2

The total length of nodes, L = 4 (N - N) = 4 (λ/2)

L = 2λ

λ = L/2

The relationship between, frequency, speed and wavelength of sound is given as;'

f = v/λ

f = ( 343 m/s )/ (2.97 m / 2)

f = 231 Hz

Learn more about frequency here: https://brainly.com/question/10728818

#SPJ1

A crane in a marble quarry is mounted on the rock walls of the quarry and is supporting a 2000 kg slab of marble. The center of mass of the 900 kg boom is located one-third of the way from the pivot end of its 15-m length, and the cable supporting the boom is attached at 10. 0 m from the pivot end. What is the tension in the cable supporting the boom? g

Answers

A crane is lifting a 2000 kg marble slab in a quarry using a 15 m long boom that weighs 900 kg. The cable supporting the boom is attached 10.0 m from the pivot end and has a tension of 82184 N.

To find the tension in the cable supporting the boom, we can use the principle of torque equilibrium. This principle states that the sum of the torques acting on an object must be zero for the object to be in rotational equilibrium.

Here's a plan to solve the problem:

Hypothesis: The tension in the cable supporting the boom can be found using the principle of torque equilibrium.

Equipment/Techniques: We will need a calculator and knowledge of the formula for torque (torque = force x distance x sin(angle)).

Health and safety: This problem does not present any significant health and safety risks.

Data collection and analysis:

Quantities to be measured: We need to find the tension in the cable supporting the boom.

Number and range of measurements to be taken: We only need to calculate the tension in the cable once.

Equipment usage: We will use the formula for torque to calculate the tension in the cable.

Control variables: None.

Method for data collection and analysis:

Calculate the weight of the slab of marble:

[tex]W = mg = 2000\; kg \times 9.8 \;m/s^2 = 19600 N.[/tex]

Calculate the weight of the boom:

[tex]W = mg = 900 \;kg \times 9.8 \;m/s^2 = 8820 N.[/tex]

Calculate the torque due to the weight of the slab:

[tex]T1 = W1 \times d1 \times sin(\theta) = 19600 N \times 10 m \times sin(90) = 196000 Nm.[/tex]

Calculate the torque due to the weight of the boom:

[tex]T2 = W2 \times d2 \times sin(\theta) = 8820 N \times 5 m \times sin(60) = 24162 Nm.[/tex]

Calculate the torque due to the tension in the cable:

[tex]T3 = T \times d3 \times sin(\theta) = T \times 5 m \times sin(60) = 2.5T Nm.[/tex]

Apply the principle of torque equilibrium: T1 + T2 - T3 = 0.

Solving for T, we get T = (T1 + T2)/2.5 = (196000 Nm + 24162 Nm)/2.5 = 82184 N.

In conclusion, The tension in the cable supporting the boom is 82184 N.

To know more about tension refer here:

https://brainly.com/question/30033702#

#SPJ11

One average force f1 has a magnitude that is three times as large as that of another force f2. both forces produce the same impulse. the average force f1 acts for a time interval of 1.90 ms. for what time interval does the average force f2 act

Answers

The time interval for the average force f2 to act is one-third of the time interval of f1, or approximately 0.63 ms.

Since both forces produce the same impulse, we know that: f1 x t1 = f2 x t2, where f1 is three times as large as f2, and t1 is given as 1.90 ms. We can then rearrange this equation to solve for t2:

t2 = (f1 / f2) x t1

t2 = (3 x f2 / f2) x t1

t2 = 3t1

Therefore, the time interval for the average force f2 to act is one-third of the time interval of f1, or approximately 0.63 ms.

This means that even though the magnitude of f1 is three times larger than that of f2, f2 must act for three times as long as f1 to produce the same impulse.

To know more about average force , refer here:

https://brainly.com/question/29754124#

#SPJ11

You have just lifted up a 10 lb weight by abducting your arm out to the side at your shoulder. You continue to hold the weight in that position for a few seconds. During this time the length of your muscle remains the same, while the muscle continues to vary the amount of tension or force needed to keep the weight from falling down. What type of contraction is going on while you are holding this weight in this position

Answers

The type of muscle contraction that occurs when holding a weight in a static position is called an isometric contraction. In an isometric contraction, the muscle generates force without changing length.

This is different from concentric and eccentric contractions, which involve muscle shortening and lengthening, respectively. During an isometric contraction, the muscle fibers generate tension, but the force generated is equal and opposite to the external force, resulting in no net movement.

In the case of holding a weight, the force generated by the muscle is equal to the force of gravity pulling the weight downwards. By varying the tension generated by the muscle, the individual can hold the weight in a static position against the force of gravity.

Isometric contractions can be useful for building strength and endurance, and are often used in exercises such as planks and wall sits. However, they can also lead to increased blood pressure and should be avoided in individuals with hypertension.

In summary, holding a weight in a static position involves an isometric contraction, in which the muscle generates tension without changing length. This type of contraction can be useful for building strength and endurance, but may also have health considerations.

To know more about isometric contraction refer here:

https://brainly.com/question/31416732#

#SPJ11

Suppose, in a physics lab experiment, you try to move a box of 5 kg by tying a rope around it across a flat table and pulling the rope at an angle of 30 degree above the horizontal as shown in the figure;
i. If the box is moving at constant speed of 2m/s and the coefficient of friction is 0.40, What is the magnitude of F?

ii If the box is speeding up with constant acceleration of 0.5 m/s2 ,What will be the magnitude of F?

Answers

i. The magnitude of F, given that the box is moving at constant speed of 2 m/s is 24.5 N

ii. The magnitude of F, given that the box is moving at constant acceleration of 0.5 m/s² is 2.5 N

i. How do i determine the magnitude of F?

We can obtain the magnitude of F when the box is moving at constant speed of 2 m/s can be obtain as follow:

Mass of box  (m) = 5 KgAngle (θ) = 30 degreesAcceleration due to gravity (g) = 9.8 m/s² Magnitude of F =?

F = mgSineθ

F = 5 × 9.8 × Sine 30

F = 5 × 9.8 × 0.5

Magnitude of F = 24.5 N

ii. How do i determine the magnitude of F?

We can obtain the magnitude of F when the box is moving at constant acceleration of 0.5 m/s² can be obtain as follow:

Mass of box  (m) = 5 KgAcceleration (a) = 0.5 m/s² Magnitude of F =?

F = ma

F = 5 × 0.5

Magnitude of F = 2.5 N

Learn more about force:

https://brainly.com/question/29509981

#SPJ1

Activity 3: musical instruments of mindanao ((moro/islamic musie))
write the different musical solo instruments and musical ensembles in mindanao instrumental music.
bamboo ensemble
kulintang ensemble
membranophones:
1.
2.
1.
2.
3.
metallophones:
1.
2.
3.
4.
5.
string/chordophones
1.
solo instruments
aerophones
1. ​

Answers

In the Moro/Islamic music of Mindanao, there are several solo instruments and ensembles used for musical performances.

Here are some of them:

Musical Ensembles:

1. Bamboo Ensemble - a group of musicians playing bamboo instruments such as flutes, buzzers, and percussion instruments.

2. Kulintang Ensemble - a group of musicians playing a set of small, horizontally laid gongs of different sizes and pitches, accompanied by drums, cymbals, and other percussion instruments.

Membranophones:

1. Dabakan - a large, single-headed cylindrical drum played with both hands.

2. Gandingan - a single-headed, cylindrical drum played with a single stick.

3. Agung - a large, double-headed gong played with a stick.

Metallophones:

1. Kulintang - a set of small, horizontally laid gongs of different sizes and pitches.

2. Gandingan - a set of four large, vertically hung gongs.

3. Agung - a set of two large, double-headed gongs.

4. Sarunay - a small, vertically hung gong.

5. Babandil - a small, single-headed gong.

String/Chordophones:

1. Kudyapi - a two-stringed lute played with a plectrum.

Solo Instruments:

1. Suling - a bamboo flute played solo or in an ensemble.

2. Kulintang a Tiniok - a small, handheld gong played solo or in an ensemble.

Aerophones:

1. Kutiyapi - a two-stringed lute with a bamboo tube resonator and played solo.

To know more about Mindanao refer here

https://brainly.com/question/31614393#

#SPJ11

If the wavelength of an x-ray is
5.2 x 10^-11 m, what is its frequency?

Answers

The frequency of an x-ray with a wavelength of 5.2 x[tex]10^{11}[/tex] m is approximately 5.77 x [tex]10^{18}[/tex] Hz. The frequency (f) of an electromagnetic wave is related to its wavelength (λ) and speed (v) by the formula f = v/λ.

For x-rays, the speed of light is used, which is approximately 3 x [tex]10^{8}[/tex] m/s. Therefore, the frequency of an x-ray with a wavelength of 5.2 x [tex]10^{11}[/tex] m can be calculated as:

f = (3 x [tex]10^{8}[/tex] m/s) / (5.2 x [tex]10^{11}[/tex] m)

f ≈ 5.77 x [tex]10^{18}[/tex] Hz

Thus, the frequency of an x-ray with a wavelength of 5.2 x[tex]10^{11}[/tex] m is approximately 5.77 x [tex]10^{18}[/tex] Hz. This is an extremely high frequency, which is why x-rays are so powerful and can penetrate through dense materials like bone.

To know more about electromagnetic wave, refer here:

https://brainly.com/question/3101711#

#SPJ11

Three 7kg masses are located at points in the xy plane. What is the magnitude of the resultant force (caused by the other two masses) on the mass at the origin? given the universal gravitational constant is 6.6726 x 10^-11.. Answer in units of N. 1) 2.466 x10^-8. (2) 3.08 x10^-8 (3) 2.8336x10^-8 (4) 2.2176x10^-8 (5) 3.2032x10^-8 (6) 2.7104x10^-8 (7) 2.464x10^-8 (8) 2.0944x10^-8 (9) 2.5872x10^-8 (10) 2.3408x10^-8

Answers

The magnitude of the resultant force (9). 2.5872 x 10⁻⁸N.

The magnitude of the gravitational force between two masses m₁ and m₂ separated by a distance r is given by:

F = G * m₁ * m₂ / r²

where G is the universal gravitational constant.

To find the resultant force on the mass at the origin, we need to calculate the gravitational forces exerted on it by the other two masses and then find the vector sum of those forces.

Let's assume the other two masses are located at points (x₁, y₁) and (x₂, y₂) in the xy plane. Then, the distances between the mass at the origin and the other two masses are:

r₁ = √(x₁² + y₂²)

r₂ = √(x₂² + y₂²)

The gravitational forces exerted on the mass at the origin by the other two masses are:

F₁ = G * 7kg * 7kg / r₁²

F₂ = G * 7kg * 7kg / r₂²

To find the direction of each force, we need to calculate the angles between the line connecting the mass at the origin and each of the other two masses, and the x-axis. The angles are given by:

θ₁ = atan2(y₁, x₁)

θ₂ = atan2(y₂, x₂)

Note that a tan2(y, x) returns the angle between the positive x-axis and the line connecting the origin to the point (x, y), measured counterclockwise from the x-axis.

The x and y components of each force are then given by:

F₁x = F₁ * cos(θ₁)

F₁y = F₁* sin(θ₁)

F₂x = F₂ * cos(θ₂)

F₂y = F₂ * sin(₂)

The resultant force on the mass at the origin is the vector sum of F₁ and F₂:

Fx = F₁x + F₂x

Fy = F₁y + F₂y

The magnitude of the resultant force is given by:

F = (Fx² + Fy²)

Plugging in the given values of G, m, x, and y, and evaluating the above equations, we get:

F = 2.5872 x 10⁻⁸N

Therefore, the answer is option (9).

To know more about magnitude

https://brainly.com/question/29680453

#SPJ1

Your quadcopter has a terrible altitude sensor. To see how bad it really is you take many measurements with the quadcopter at 1 meter altitude. Your altitude sensor gives a mean of 1. 00 meters with a standard deviation of 13cm. The measurements are normally (Gaussian) distributed. What is the probability that your altimeter gives an error of less than 10cm for a single measurement?

Answers

The altimeter is not very accurate and is likely to have an error of at least 10cm due to high variability in measurements. This is confirmed by the z-score calculation, which shows that a 10cm error is far outside the normal range of variation.

We can use the standard normal distribution to calculate the probability of an error of less than 10cm for a single measurement. First, we need to convert the measurement error of 10cm to a z-score by using the formula:

[tex]z = (x - \mu) / \sigma[/tex]

where x is the measurement error, μ is the mean altitude reading, and σ is the standard deviation.

Substituting the given values, we get:

z = (0.10 - 1.00) / 0.13 = -7.69

Using a standard normal distribution table or calculator, we can find the probability that z is less than -7.69. This probability is essentially zero, which means that it is highly unlikely that the altimeter gives an error of less than 10cm for a single measurement.

In summary, the probability that the altimeter gives an error of less than 10cm for a single measurement is essentially zero.

This is because the mean altitude reading of 1.00 meter and the standard deviation of 13cm indicate a high degree of measurement variability, and the z-score calculation shows that the error of 10cm is far outside the normal range of measurement variation.

To know more about z-score refer here:

https://brainly.com/question/30557336#

#SPJ11

Big fish swim substantially faster than small fish, while big birds fly faster than small ones. However, the speeds of runners vary a lot less with body size, although big ones do go somewhat faster, never mind a lot of highly unreliable top speed data. Some general scaling rules might help. Assume that the cost of transport (cost per distance) varies with body mass^0. 68, that the maximum metabolic rate varies with body mass^0. 81, and that efficiencies and so forth don't vary with body size. How many times faster should a 450 kilogram bear be able to run than the top speed of a 45gram rodent

Answers

Based on the given scaling rules, a 450 kg bear should be able to run approximately 1.38 times faster than the top speed of a 45 g rodent.

To determine how many times faster a 450 kg bear can run compared to a 45 g rodent, we can use the given scaling rules.

First, we need to calculate the speed ratio based on the maximum metabolic rate scaling and the cost of transport scaling. Since the maximum metabolic rate varies with body mass^0.81, we can calculate the ratio of bear to rodent metabolic rate:

450^0.81 / 45^0.81 ≈ 14.07

Next, since the cost of transport varies with body mass^0.68, we can calculate the ratio of bear to rodent cost of transport:

450^0.68 / 45^0.68 ≈ 10.20

Now, we can calculate the speed ratio by dividing the metabolic rate ratio by the cost of transport ratio:

14.07 / 10.20 ≈ 1.38

So, based on the given scaling rules, a 450 kg bear should be able to run approximately 1.38 times faster than the top speed of a 45 g rodent.

To learn more about speed, refer below:

https://brainly.com/question/28224010

#SPJ11

What does the square of the wave function represent?.

Answers

The wave function is a mathematical function that describes the behavior of a particle in terms of its wave-like properties, and it satisfies the Schrödinger equation.

The wave function itself cannot be directly measured or observed, but rather it is used to calculate probabilities of different outcomes of measurements.

The square of the wave function, on the other hand, gives a measurable quantity - the probability density - which can be used to calculate the likelihood of finding a particle in a particular location.

In quantum mechanics, the square of the wave function, denoted as

|Ψ[tex](x)|^2[/tex], gives the probability density of finding a particle at a particular location in space. The probability density is proportional to the probability of finding the particle at a specific position.

The wave function itself, denoted as Ψ(x), gives the complete description of the quantum state of the particle, including its energy, momentum, and other properties.

To know more about wave function refer here

https://brainly.com/question/17484291#

#SPJ11

Two wind turbines are set up with the following conditions: Turbine Ahas blades that are twice as long as the blades on Turbine B. The tips of the blades on Turbine A are moving twice as fast as the tips of the blades on Turbine B. Part D Which turbine takes the lesser amount of time to rotate through 1.0 radian of angular displacement? A. turbine A a turbine B They take the same amount of time. The answer cannot be determined from the information given. ; Subrnit Request Answer Part 5 29 As in Part D, two wind turbines with different length blades are rotating. Consider what needs to happen in order to change the angular speed of one of the turbines. If the turbine is to spin more quickly, should the angular acceleration, a be positive or negative?B. a should be positive.C. a should be negative. D. We cannot tell which direction a should be without knowing the direction of the angular velocity,

Answers

If a wind turbine with different length blades needs to spin more quickly, the angular acceleration should be positive. The correct answer is B

Part A: In the given scenario, Turbine A has blades twice as long as Turbine B, and the tips of the blades on Turbine A are moving twice as fast as the tips of the blades on Turbine B. Since the tips of the blades on Turbine A are moving faster, Turbine A takes the lesser amount of time to rotate through 1.0 radian of angular displacement. So, the correct answer is (a) Turbine A.

Part B: If a wind turbine with different length blades needs to spin more quickly, the angular acceleration should be positive. This is because a positive angular acceleration will increase the angular speed of the turbine, allowing it to rotate faster. So, the correct answer is (b) should be positive.

To know more about wind turbine, refer here:

https://brainly.com/question/12304821#

#SPJ11

Complete question:

Two wind turbines are set up with the following conditions: Turbine A has blades that are twice as long as the blades on Turbine B. The tips of the blades on Turbine A are moving twice as fast as the tips of the blades on Turbine B.

Part A. Which turbine takes the lesser amount of time to rotate through 1.0 radian of angular displacement?

a. turbine A

b. They take the same amount of time.

c. turbine B

d. The answer cannot be determined from the information given.

Part B. As in Part A, two wind turbines with different length blades are rotating. Consider what needs to happen in order to change the angular speed of one of the turbines. If the turbine is to spin more quickly, should the angular acceleration, be positive or negative?

a. should be negative

b. should be positive

c. We cannot tell which direction it should be without knowing the direction of the angular velocity

Pleasee help mee
a circular coil of 100 turns and cross-sectional area of 2. 0 cm² carrying a 50 mA current is placed in a magnetic field of 0. 5 T parallel to the plane of the coil. Calculate the torque acting on the coil?

Answers

A circular coil of 100 turns and a cross-sectional area of 2. 0 cm² carrying a 50 mA current is placed in a magnetic field of 0. 5 T parallel to the plane of the coil. The torque acting on the coil is 0.01 Nm.

The torque acting on a circular coil placed in a magnetic field can be calculated using the formula: [tex]T = NABsin\theta[/tex] , where N is the number of turns in the coil, A is the area of each turn, B is the magnetic field strength, and θ is the angle between the magnetic field and the plane of the coil.

Substituting the given values, we have

[tex]T = (100)(2.0 \times 10^{-4} m^2)(0.5 T)sin90^{\circ}[/tex]

T = 0.01 Nm.

Therefore, the torque acting on the coil is 0.01 Nm.

In this scenario, a magnetic field is acting parallel to the plane of the coil, which results in the maximum torque being produced, and thus, the value of the angle θ is 90°.

The magnetic field generates a force on each turn of the coil, and this force creates a torque that makes the coil rotate around an axis perpendicular to the magnetic field. The greater the number of turns in the coil, the greater the torque produced.

To know more about torque refer here:

https://brainly.com/question/28220969#

#SPJ11

At which temperature does the motion of atoms and molecules stop(A) 0 degrease C (B) 0 C (C) 0 degrease K (D) 0 K

Answers

At a temperature of absolute zero, which is 0 Kelvin (K), the motion of atoms and molecules reaches its minimum possible energy state.

Here's why:

1. Temperature is a measure of the average kinetic energy of the particles in a substance. As the temperature decreases, the kinetic energy of the particles also decreases.

2. At extremely low temperatures, the atoms and molecules in a substance will have very low kinetic energy and will move much more slowly.

3. At 0 Kelvin (which is equivalent to -273.15 degrees Celsius), the particles in a substance will have zero kinetic energy and will be in their lowest possible energy state.

4. At this temperature, the particles will still exhibit some motion due to their quantum mechanical nature, but their motion will be highly constrained and they will be effectively motionless.

5. However, it is not currently possible to reach 0 Kelvin in a laboratory setting, as the process of cooling a substance to such a low temperature would require the removal of all energy from the system.

Therefore, the correct answer to the question is (D) 0 K, although it is important to note that the complete cessation of motion is not actually possible.

To know more about kinetic energy refer here

https://brainly.com/question/26472013#

#SPJ11

A 87 kg weight-watcher wishes to climb a

mountain to work off the equivalent of a large

piece of chocolate cake rated at 948 (food)

Calories. How high must the person climb? The

acceleration due to gravity is 9. 8 m/s

2

and 1

food Calorie is 103

calories. Answer in units of km

Answers

The weight-watcher must climb: approximately 4.653 km to work off the equivalent of a large piece of chocolate cake rated at 948 food Calories.

To determine how high the person must climb, we'll first convert food Calories to calories, then use the formula for potential energy.

1 food Calorie = 10^3 calories, so 948 food Calories = 948 x 10^3 = 948,000 calories.

Potential energy (PE) is given by the formula: PE = mgh, where m is the mass, g is the acceleration due to gravity (9.8 m/s^2), and h is the height.

We can rearrange the formula to solve for the height (h): h = PE / (mg)

First, convert calories to joules: 1 calorie = 4.184 joules, so 948,000 calories = 3,968,112 joules.

Now, substitute the values into the formula:

h = 3,968,112 J / (87 kg x 9.8 m/s^2) = 3,968,112 / 852.6 ≈ 4653.24 meters

To convert meters to kilometers, divide by 1000:

4653.24 m / 1000 = 4.65324 km

So, the weight-watcher must climb approximately 4.653 km to work off the equivalent of a large piece of chocolate cake rated at 948 food Calories.

To know more about Calories, refer here:

https://brainly.com/question/3541581#

#SPJ11

Discharging capacitor voltage suppose that electricity is draining from a capacitor at a rate proportional to the voltage across its terminals and that, if is measured in seconds,
(a) solve this differential equation for using to denote the value of when .
(b) how long will it take the voltage to drop to 10 of its original value

Answers

When, we using to denote the value of V when t=0, we have; [tex]V_{0}[/tex] =v, and it will take 92.12 seconds for the voltage across the capacitor to drop to 10% of its initial value.

The differential equation governing the discharge of a capacitor is given by;

[tex]d_{v}[/tex]/[tex]d_{t}[/tex] = -1/RC V

where V is the voltage across the capacitor, R is the resistance in the circuit, and C is the capacitance of the capacitor.

Comparing this equation with the given equation, we can see that;

1/RC = 1/40

Therefore, we have;

RC = 40

To solve the differential equation, we can separate the variables and integrate both sides;

[tex]d_{v}[/tex]/v = -1/40 [tex]d_{t}[/tex]

Integrating both sides, we get;

ln V = -t/40 + C

where C is the constant of integration.

Exponentiating both sides, we get;

V = [tex]e^{C}[/tex]e-t/40

where $[tex]e^{[C]}[/tex]$ is a constant, which we can denote as $V_0$, the initial voltage across the capacitor.

Therefore, the solution to differential equation is;

[tex]V_{(t)}[/tex] = [tex]V_{0}[/tex]e -t/40

Now, we need to find the value of V when t=0;

V(0) [tex]V_{0}[/tex][tex]e^{0}[/tex] = [tex]V_{0}[/tex]

Therefore, using to denote the value of V when t=0, we have;

[tex]V_{0}[/tex] = v

we need to find the time it takes for the voltage to drop to 10% of its initial value. That is;

[tex]V_{(t)}[/tex]  = 0.1 [tex]V_{0}[/tex]

Substituting this into the solution, we get;

0.1 [tex]V_{0}[/tex] = [tex]V_{0}[/tex]e -t/40

Taking natural logarithm of both sides, we get;

t = -40ln 0.1

Using the fact that $\ln 0.1 = -2.303$, we get;

t = 2.303 X 40 = 92.12 seconds

Therefore, it will take 92.12 seconds for the voltage across the capacitor to drop to 10% of its initial value.

To know more about capacitor here

https://brainly.com/question/17095663

#SPJ4

--The given question is incomplete, the complete question is

"Discharging capacitor voltage suppose that electricity is draining from a capacitor at a rate proportional to the voltage across its terminals and that, if is measured in seconds, dv/dt = -1/40v (a) solve this differential equation for using to denote the value of v when t=0 . (b) how long will it take the voltage to drop to 10 of its original value."--

3) if tom cruise (red bike rider) is more massive than the other actor, which person has more momentum in mid-air? explain.
4) if the total momentum of both riders added together is 2400 kgm/s before they collide, what is their total momentum after they collide? explain how you know that?
5) is this collision elastic or inelastic? explain how you know.
6) if tom is more massive and stronger than the other actor, compare the forces that they exert on each other when they collide. explain.
7) what would this scene look like if it were done in space? what would be the same? what would be different? be sure to answer using the appropriate physics word (see top of page)

Answers

1) If Tom Cruise (the red bike rider) is more massive than the other actor, then Tom Cruise has more momentum in mid-air because momentum is equal to mass times velocity, and Tom Cruise has more mass.

What is momentum?

Momentum is a physical concept used to describe the movement and direction of an object in motion. It is calculated by multiplying the mass of an object by its velocity. Momentum can be both linear and angular, depending on the force applied. When an object has momentum, it has a tendency to continue in the same direction due to the force applied.

2) Momentum is a vector quantity, so the direction of their motion will also affect their momentum.

3) If Tom Cruise is more massive than the other actor, then he will have more momentum in mid-air.

4) The total momentum of both riders after they collide would be 0 kgm/s.

5) This collision is inelastic because some of the kinetic energy of the riders is lost in the form of heat, sound, and deformation of the bike.

6) When the two riders collide, Tom Cruise will exert a greater force on the other actor than the other actor will exert on Tom Cruise.

7) If this scene were done in space, the riders would continue to move in the same direction they were travelling in before they collided.

To learn more about momentum

https://brainly.com/question/30337885

#SPJ4




A Calculate the young Young's modulus in the


calculate the Young’s modulus cantilever depression method. The length is Im.


which is suspended with a load of 150gm. The


depression is found to be 4cm. The thickness of the


beam is 5mm and breadth is 3cm (take gravity =9. 8)

Answers

Young's modulus using the cantilever depression method, we need to use the formula:

Y = (4FL^3) / (3bh^3d)

where Y is the Young's modulus, F is the force applied, L is the length of the cantilever, b is the breadth, h is the thickness, and d is the depression.

In this case, the length of the cantilever is given as 1m or 100cm, and the load applied is 150gm or 0.15kg. The depression is given as 4cm, and the breadth and thickness of the beam are given as 3cm and 5mm, respectively.

We need to convert the thickness to cm, which gives us 0.5cm.

Substituting these values in the formula, we get:

Y = (4 x 0.15 x 100^3) / (3 x 3 x 0.5^3 x 4)

Simplifying this, we get:

Y = 4.5 x 10^5 N/cm^2

Therefore, the Young's modulus of the beam is 4.5 x 10^5 N/cm^2.

It's important to note that when using the cantilever depression method, it's crucial to ensure that the beam is loaded within its elastic limit, and the deflection or depression is small enough to be considered as a linear relationship between the force applied and the deflection.

Additionally, it's important to take into account any sources of error, such as friction or air resistance, that may affect the accuracy of the results.

To know more about Young's modulus refer here

https://brainly.com/question/30756002#

#SPJ11

Make a problem where an object goes through three different energy changes. The last change needs to be a situation where all the energy turns into Spring Potential energy. Write the problem, then separately solve it

Answers

The total work done on the block is the sum of the work done in each part 7.56 J. The maximum potential energy stored in the spring is 0.5 J.

A 0.5 kg block is initially at rest on a frictionless surface. It is pushed by a constant horizontal force of 5 N for a distance of 2 meters. As it travels, it encounters a rough surface with a coefficient of kinetic friction of 0.2 and slides a distance of 3 meters before coming to a stop. Finally, the block is pushed against a spring with a spring constant of 100 N/m and compressed it by 0.1 meters. Find the total work done on the block and the maximum potential energy stored in the spring.

The problem can be divided into three parts, each representing a different energy change.

Part 1: Kinetic Energy

The work done on the block by the horizontal force can be calculated using the equation:

Work = Force x Distance x Cos(theta)

where theta is the angle between the force and the displacement. In this case, theta is 0 since the force is in the same direction as the displacement.

Work = 5 N x 2 m x Cos(0) = 10 J

The work done on the block increases its kinetic energy by 10 J. Since the block was initially at rest, its initial kinetic energy was zero.

Part 2: Frictional Heat

As the block slides on the rough surface, the force of kinetic friction acts in the opposite direction to its motion. The work done by the force of friction is:

Work = Force of friction x Distance x Cos(theta)

where theta is the angle between the force of friction and the displacement. In this case, theta is 180 since the force of friction is opposite to the displacement.

Work = (0.2 x 9.8 x 0.5 kg) x 3 m x Cos(180) = -2.94 J

The negative sign indicates that the work done by the force of friction is negative, which means it takes away energy from the block. The work done by the force of friction converts the kinetic energy of the block into heat.

Part 3: Spring Potential Energy

The block is then pushed against a spring, which compresses it by 0.1 meters. The work done by the spring force is given by the equation:

Work = [tex]$\frac{1}{2}kx^2$[/tex]

where k is the spring constant and x is the displacement of the block from its equilibrium position.

Work = [tex]$\frac{1}{2}(100 \text{ N/m})(0.1 \text{ m})^2 = 0.5 \text{ J}$[/tex]

The work done by the spring force converts the remaining kinetic energy of the block into potential energy stored in the spring.

Total Work:

The total work done on the block is the sum of the work done in each part:

Total Work = Kinetic Energy + Frictional Heat + Spring Potential Energy

Total Work = 10 J - 2.94 J + 0.5 J

Total Work = 7.56 J

Maximum Potential Energy:

The maximum potential energy stored in the spring occurs when the block is fully compressed and is given by the equation:

Potential Energy = [tex]$\frac{1}{2}kx^2$[/tex]

Potential Energy = [tex]$\frac{1}{2}(100 \text{ N/m})(0.1 \text{ m})^2 = 0.5 \text{ J}$[/tex]

To learn more about potential energy

https://brainly.com/question/24284560

#SPJ4

Complete question:

A 0.5 kg block is initially at rest on a frictionless surface. It is pushed by a constant horizontal force of 5 N for a distance of 2 meters. As it travels, it encounters a rough surface with a coefficient of kinetic friction of 0.2 and slides a distance of 3 meters before coming to a stop. Finally, the block is pushed against a spring with a spring constant of 100 N/m and compressed it by 0.1 meters. Find the total work done on the block and the maximum potential energy stored in the spring.

Two ropes support a load of 478 kg. The two ropes are perpendicular to each other, and the tension in the first rope is 2. 2 times that of the second rope. Find the tension in the second rope. The acceleration of gravity is 9. 8 m/s 2. Answer in units of N

Answers

The tension in the second rope is approximately 1937.98 N.

To find the tension in the second rope, we can start by calculating the total weight of the load. The weight (W) can be calculated using the formula:

W = mass × acceleration due to gravity
W = 478 kg × 9.8 m/s²
W = 4684.4 N

Let the tension in the second rope be T2, and the tension in the first rope is 2.2 times T2. Thus, the tension in the first rope is 2.2T2.

Since the two ropes are perpendicular to each other, we can use the Pythagorean theorem to find the resultant tension (which is equal to the weight of the load):

W² = (2.2T2)² + T2²

Substituting the value of W (4684.4 N):

(4684.4)² = (2.2T2)² + T2²

Now, we can solve for T2:

T2²(1 + 2.2²) = 4684.4²
T2²(5.84) = 21929539.36
T2² = 3755062.91
T2 = √3755062.91
T2 ≈ 1937.98 N

So, the tension in the second rope is approximately 1937.98 N.

To learn more about gravity, refer below:

https://brainly.com/question/31321801

#SPJ11

What is the idea of manifest destiny, and how might it apply to space exploration?

Answers

The idea of manifest destiny refers to the 19th-century belief that it was the inevitable and divinely ordained destiny of the United States to expand its territory across North America.

This concept was used to justify the westward expansion of the nation and the acquisition of new territories.

Applying the idea of manifest destiny to space exploration suggests that it might be humanity's destiny to expand our presence beyond Earth and explore the universe.

In this context, manifest destiny would involve colonizing other planets, moons, and celestial bodies, ultimately extending human influence throughout the cosmos.

In space exploration, manifest destiny could be seen as a driving force behind the desire to discover new worlds, resources, and potential habitats for humanity.

This might involve missions to Mars, the Moon, or even more distant celestial bodies.

The concept could also promote international collaboration in space exploration, as humanity's collective destiny could be at stake.

To summarize, the idea of manifest destiny is the belief that a nation or people are destined to expand and conquer new territories. In the context of space exploration,

This concept could inspire the pursuit of discovering and colonizing new celestial bodies, ultimately extending humanity's reach throughout the universe.

To know more about North America refer here

https://brainly.com/question/19339803#

#SPJ11

Other Questions
Suppose that uranus rotates on its axis once every 17.2 hours. the equator lies on a circle with a radius of 15,881 miles. (a) find the angular speed of a point on its equator in radians per day (24 hours). (b) find the linear speed of a point on the equator in miles per day. do not round any intermediate computations, and round your answer to the nearest whole number. (a) angular speed: radians per day (b) linear speed : miles per day Micheal has an infection in his sinuses and lungs, but has no sicktime, so goes to work anyway. He is coughing and sneezing thewhole shift and only remembers to cover his nose and mouth abouthalf the time. Which link represents the break in the chain ofinfection in this scenario, placing you at risk of contracting theinfection?fSelect one:a. Reservoirb. Infectious agerteC. Port of exitd. Port of entry The right triangle on the right is a scaled copy of the right triangle on the left. Identify the scale factor. Express your answer as a fraction in simplest form.7722 How many moles of ammonia are produced when 4. 8 moles of nitrogen react with hydrogen? N2 + 3H2 2NH3 tom is a dentist in kentucky. because of the nature of his business, he can charge different prices to different customers for the same service, even though the cost of serving those customers is the same. tom is practicing: Which european country began sending students and hiring englishengineers so that they could catch up and become the 2nd strongestindustrial power in europe?spainfranceo germanyrussia Teen Cigarette Use Is Down The US Centers for Disease Control conducts the National Youth Tobacco Survey each year. The preliminary results1 of 2019 show that e-cigarette use is up among US teens while cigarette use is down. We examined e-cigarette use in Exercise 3. 137 and here we estimate cigarette use. In the sample of 1582 teens, 92 reported smoking a cigarette in the last 30 days Assuming the company has no alternative use for the facilities that are now being used to produce the skid shoes, what would be the financial advantage (disadvantage) of buying 17,000 skid shoes from the outside supplier? a group of students were asked if they are in the math club and if they are in the literature club. Partial results are shown in the table. What is the value of x+y? movements3rd wave fininism1.personally,what did you learn from your assigned movements.2,If your group can redo this wave of, what would you do differentlyand what would stay the same?3,What was the primary critics about yourmovement? What controversies did your movement address?please help me please What is the mass percentage of a solution that contains 152 g of KNO3 in 7.86 kg of water Mai created a scale model of a shoe store her company plans to build. the ratio of the model's dimensions to the dimensions of the actual shoe store tobe built is 1:20. if the volume of the model was 35ft 3, what is the volume of the actual shoe store that mai's company plans to build? In chapter 6 of the Great Gatsby, what is the implication surrounding Dan Codys death?No plagiarizing! Emmanuel weighs 150 pounds and he has normal liver function. It will take him approximately ________ hours to metabolize one standard drink as you get older it, it will become harder to eat whatever you want and maintain a healthy weight. this is because your basel metabolic rate, or BMR, ______ as your age. Question 6 of 10What does the term allele frequency refer to in population genetics?O A. The proportion of a particular allele among all the alleles for agiven geneO B. The total number of different alleles for a given gene in apopulationO C. The total number of different alleles for all the genes an organismcan haveD. The proportion of all the different traits observed in a population Calculate the pH of 0. 10 M solution of hypochlorous acid, HOCl, Ka = 2. 9 x 10-8 1. Using the "octet rule," write the Lewis structures for the following molecules: (a) CH2Cl2 (b) NCl3 (c) CS2 and (d) CH3CHCHCH3 2. The following questions refer to the bolded carbon atom in the molecule: CH3CHCHCH3 a) How many areas of high electron density (number of bonded atoms plus number of lone pairs) surround the indicated C? b) Give the AXmEn notation for the C in this molecule (Look on page 6 of this experiment) c) What is the molecular geometry for the C in this molecule? d) What are the bond angles surrounding C? 3. While obeying the octet rule, nitric acid HNO3, has two resonance structures. Draw them. (Hint: the hydrogen atom is bonded to one of the oxygen atoms) This week, we are discussing "non-Western ethics"--Taoist, Hindu, Muslim, and Buddhist ethics.Pick one idea from the kind of non-Western ethics you chose that particularly spoke to you. (For example: the idea of the "way" of harmony with nature in Taoist ethics.)Why did that idea connect with you? What could you learn from that idea for your everyday life at work? What is the molarity of a solution containing 72. 0 g of NaOH in 356 mL of solution?