A fisherman with mass m stands at the center of a small boat which is stationary on the water. The boat also has


mass m and is a distance d from the shore. The fisherman walks on the boat toward the shore. Assume there is


no drag force between the boat and water, and that there is no net external force applied to the system.


What happens to the boat?

Answers

Answer 1

As the fisherman walks towards the shore on the boat, the boat moves away from the shore to maintain the center of mass of the fisherman-boat system.

When the fisherman (mass m) stands at the center of the small boat (also mass m) and walks towards the shore, the following occurs:

1. As the fisherman moves towards the shore, he exerts a force on the boat in the opposite direction, due to Newton's Third Law of Motion (action and reaction forces are equal and opposite).

2. The boat will move away from the shore in response to the force exerted by the fisherman's movement. This is because the fisherman-boat system is initially stationary, and there is no net external force acting on it.

3. The center of mass of the fisherman-boat system remains constant. This means that as the fisherman moves closer to the shore, the boat must move further away from the shore to maintain the same center of mass.

4. When the fisherman stops walking, the boat will also stop moving away from the shore, but at a greater distance than initially. The fisherman and the boat would have moved relative to each other, but their combined center of mass remains at the same distance (d) from the shore.

To know more about Newton's Third Law of Motion, click here;
https://brainly.com/question/29768600

#SPJ11


Related Questions

How did Millikan's oil drop experiment lead to quantum nature of electric charge?​

Answers

Millikan's oil drop experiment established the discrete nature of the electric charge, paving the way for the development of quantum mechanics and revolutionizing our understanding of the nature of matter and energy.

Millikan's oil drop experiment, conducted in 1909, was a critical contribution to the understanding of the nature of the electric charge. The experiment involved suspending charged oil droplets in an electric field and observing their behavior. Millikan was able to measure the charge on each droplet and found that the charges were always multiples of a fundamental unit, which he called the "elementary charge."

This discovery was significant because it implied that electric charge was not continuous but rather came in discrete units. This idea laid the groundwork for the development of quantum mechanics, which revolutionized our understanding of the nature of matter and energy.

In conclusion, Millikan's oil drop experiment was instrumental in establishing the quantum nature of the electric charge. By providing evidence for the discrete nature of the electric charge, the experiment paved the way for the development of quantum mechanics, which has had far-reaching implications for physics, chemistry, and technology.

To learn more about electric charge

https://brainly.com/question/9194793

#SPJ4

PLEASE HELP DUE IN 5 MINUTES


The acceleration due to gravity g at a distance r from the center of a planet of mass Mis 9 m/s2. In terms of the orbital distance r, what
would the speed of this satellite have to be to remain in a circular orbit around this planet at this distance?
Ov=3/5
v=3r
v=6r
v=9râ

Answers

To stay in a circular orbit at a specific distance, the satellite must have a speed that is three times the square root of that distance. Therefore, the correct answer is option B.

The speed of a satellite in a circular orbit around a planet can be determined by equating the centripetal force required to keep the satellite in orbit with the gravitational force of the planet on the satellite.

The centripetal force is given by [tex]F = mv^2/r[/tex], where m is the mass of the satellite, v is its speed, and r is the distance from the center of the planet.

The gravitational force is given by [tex]F = G(Mm)/r^2[/tex], where G is the gravitational constant, M is the mass of the planet, and m is the mass of the satellite. Equating these two forces and solving for v gives [tex]v = \sqrt{(GM/r)}[/tex]

Substituting the given values for g = 9 m/s² and r, we get [tex]v = \sqrt{(gr)}[/tex], which simplifies to [tex]v = \sqrt{(9r)} = 3\sqrt{r}[/tex].

Therefore, the correct answer is v = 3r. This means that the speed of the satellite must be three times the square root of the distance from the center of the planet to remain in a circular orbit at that distance.

To know more about satellite refer here:

https://brainly.com/question/31661653#

#SPJ11

A 2 kg ball is thrown upward with an initial speed of 12 m/s. after rising a vertical distance of 3.0 meters, the ball is moving upwards at only 5 m/s. determine the average force the ball experiences from air resistance during this time.

Answers

A 2 kg ball is thrown upward with an initial speed of 12 m/s. After rising 3.0 meters, it is moving upwards at 5 m/s. The average force of air resistance on the ball is 32.3 N.

When an object is thrown upward, it experiences air resistance that opposes its motion. In this scenario, a 2 kg ball is thrown upward with an initial velocity of 12 m/s.

After rising a vertical distance of 3.0 meters, its velocity reduces to 5 m/s. We need to find the average force the ball experiences due to air resistance during this time.

To solve this problem, we can use the work-energy principle which states that the net work done on an object is equal to its change in kinetic energy. Since the ball is moving upward, the net work done on the ball is the work done by gravity and air resistance.

We can assume that the work done by gravity is negligible because the vertical displacement of the ball is small. Therefore, the work done by air resistance is equal to the change in the ball's kinetic energy.

The change in kinetic energy of the ball can be calculated using the equation: [tex]\Delta KE = 1/2 \times m \times (vf^2 - vi^2)[/tex], where m is the mass of the ball, vi is the initial velocity, and vf is the final velocity. Substituting the given values, we get [tex]\Delta KE = 1/2 \times 2 kg \times (5 \;m/s)^2 - (12 \;m/s)^2) = -97 J[/tex].

Since the change in kinetic energy is negative, the work done by air resistance is negative. Therefore, the average force the ball experiences due to air resistance is [tex]F = -\Delta KE/d = -(-97 J)/3 m = 32.3 N[/tex].

In summary, we can calculate the average force the ball experiences from air resistance during its upward journey using the work-energy principle. The force is negative as it opposes the motion of the ball, and its magnitude is 32.3 N.

To know more about force refer here:

https://brainly.com/question/26115859#

#SPJ11

You put a force of 550

n in an area of 9 cm² on the tops of my feet! the pressure on

my feet was 611111 pa. what is the ratio of this pressure to

atmospheric pressure?

Answers

The ratio of the pressure on your feet to atmospheric pressure is 6.03. To calculate the ratio of the pressure on your feet to atmospheric pressure, we need to first determine the atmospheric pressure at the time of the force being applied. The standard atmospheric pressure at sea level is approximately 101,325 Pa. However, atmospheric pressure can vary based on factors such as altitude and weather conditions. For the purpose of this calculation, we will assume the atmospheric pressure is at the standard value of 101,325 Pa.

Now, let's use the given information to calculate the ratio of the pressure on your feet to atmospheric pressure. We know that the force applied was 550 N and the area on which it was applied was 9 cm². To convert this area to m², we need to divide by 10,000, which gives us 0.0009 m².

Using the formula pressure = force/area, we can calculate the pressure on your feet to be:

pressure = 550 N / 0.0009 m² = 611,111 Pa

Now, to calculate the ratio of this pressure to atmospheric pressure, we simply divide the pressure on your feet by atmospheric pressure:

ratio = 611,111 Pa / 101,325 Pa = 6.03

Therefore, the ratio of the pressure on your feet to atmospheric pressure is 6.03. This means that the pressure on your feet was over 6 times greater than the standard atmospheric pressure at sea level. This level of pressure can be quite significant and may cause discomfort or even injury if sustained for an extended period. It is important to ensure that any activities that involve applying pressure to the feet are performed safely and with appropriate support.

Know more about atmospheric pressure here:

https://brainly.com/question/13407492

#SPJ11

the input signal into an envelope detector is an am signal of carrier frequency 500 khz. the envelope detector employs a smoothing capacitor of 20 nf. the modulating signal has a bandwidth of 5 khz. specify an appropriate value for the resistance in parallel with the smoothing capacitor for a good tracking of the am envelope. if the am signal

Answers

An appropriate value for the resistance in parallel with the smoothing capacitor would be 1.59 kΩ.

To ensure good tracking of the AM envelope, the resistance in parallel with the smoothing capacitor should be low enough to discharge the capacitor quickly during the troughs of the modulated signal, but high enough to avoid discharging it too quickly during the peaks of the signal.

The time constant (τ) of the RC circuit formed by the smoothing capacitor and the parallel resistance is given by the formula:

τ = RC

where R is the resistance and C is the capacitance.

To determine an appropriate value for the resistance, we need to calculate the time constant and compare it to the period of the modulated signal.

The period of a 500 kHz signal is T = 1/f = 2 μs. The modulating signal has a bandwidth of 5 kHz, which means its period is 200 μs.

Assuming a small signal approximation, we can use the formula for the time constant to calculate an appropriate value for the resistance:

τ = 20 nF × R = T/2π = 31.8 ns

Solving for R, we get:

R = τ/C = 31.8 ns / 20 nF = 1.59 kΩ

To learn more about signal click on,

https://brainly.com/question/23967169

#SPJ4

Complete question is:

The input signal into an envelope detector is an am signal of carrier frequency 500 khz. the envelope detector employs a smoothing capacitor of 20 nf. the modulating signal has a bandwidth of 5 khz. specify an appropriate value for the resistance in parallel with the smoothing capacitor for a good tracking of the am envelope.

Computer simulations are used to predict the weather. A computer simulation is a kind of model. Large amounts of data are entered into the computer. Then the computer performs complicated calculations with the data. The result is a prediction about what the weather might be like in the coming hours or days.



Why are computers widely used for modeling weather systems?

Answers

Computers are widely used for modeling weather systems because they can quickly process and analyze large amounts of data.

Weather is a complex and dynamic system that is affected by many different factors, such as temperature, pressure, humidity, and wind.

It is difficult to accurately predict the weather using traditional methods because of the sheer amount of data that needs to be considered.

With computer simulations, scientists and meteorologists can input vast amounts of data and use complex algorithms to predict how the weather may change over time.

This allows for more accurate and reliable weather forecasting, which is essential for a wide range of industries and activities.

To know more about weather systems, refer here:

https://brainly.com/question/31456817#

#SPJ11

A defensive driving solution for a mature driver with diminished


vision is to


DRIVERS ED PLEASE ANSWER Select your answer, then click or


tap Submit.


Avoid driving at night


Drive 5 miles per hour under the


speed limit


Take frequent rest breaks


Ask other passengers to watch


the traffic

Answers

A defensive driving solution for a mature driver with diminished capabilities is to ask other passengers to watch and assist. This approach is beneficial because it promotes a safer driving experience for all occupants and others on the road.

Firstly, the mature driver must recognize their limitations, such as slower reaction times or diminished visual acuity. This self-awareness is crucial for ensuring safe driving practices.

Next, it is essential to communicate openly with passengers about the driver's needs. Inform them about any specific concerns or areas where they may require assistance. This honest communication fosters trust and understanding among all occupants.

Then, assign specific roles to passengers. For instance, one passenger can be responsible for monitoring blind spots while another keeps an eye on the speed limit. This way, the mature driver can focus on the task at hand with reduced distractions.

Another defensive driving strategy is for the mature driver to adapt their driving habits. This includes maintaining a safe distance from other vehicles, allowing more time for braking and accelerating, and using turn signals well in advance.

Additionally, it is crucial to encourage passengers to speak up if they notice any dangerous situations or unsafe driving behaviors. This collaborative effort will provide an extra layer of protection for everyone in the car.

Lastly, the mature driver should consider attending a defensive driving course specifically designed for their age group. This will help them stay updated on current best practices and techniques for safe driving.

In conclusion, a defensive driving solution for a mature driver with diminished capabilities involves asking passengers to watch and assist while also adapting their driving habits and attending defensive driving courses. This approach ensures a safer driving experience for all parties involved.

To know  more about  defensive refer here

https://brainly.com/question/30673507#

#SPJ11

A student swings a ball on a light rod at a constant speed in a vertical circle, as shown in the figure. Which of the following correctly ranks the magnitudes of the forces exerted by the rod on the ball F1, F2, F3, and F4 when the ball is at locations 1, 2, 3, and 4, respectively? Responses

F1=F2=F3=F4
(F2=F3)>F4>F
F4>F1>(F2=F3)
F1>F4>(F2=F3)

Answers

The expression that correctly ranks the magnitudes of the forces exerted by the rod on the ball is C, F4 > F1 > (F2 = F3).

How to determine magnitude?

At location 4, the force exerted by the rod on the ball is equal to the weight of the ball plus the centripetal force required to keep the ball moving in a circle. At locations 1 and 2, the force exerted by the rod on the ball is equal to the weight of the ball minus the centripetal force.

At location 3, the force exerted by the rod on the ball is equal to the weight of the ball because there is no centripetal force required at the highest point of the circle. Therefore, the ranking of the forces is F4 > F1 > (F2 = F3).

Find out more on magnitudes here: https://brainly.com/question/30337362

#SPJ1

Doug places a toy car at the top of the first hill and releases it. The car stops at point X. Which change to the model would allow the toy car to travel over all three hills?

A. Add a loop after the tallest hill in order to maximize the kinetic energy of the car.

B. Order the three hills from shortest to tallest so that the potential energy builds up according to the height of each hill.

C. Order the three hills from tallest to shortest to provide the potential energy needed for the car to make it over each hill

Answers

Adding a loop after the tallest hill in order to maximize the kinetic energy of the car change to the model would allow the toy car to travel over all three hills. Therefore, the correct answer is option A.

The toy car stopping at point X indicates that it lacks sufficient energy to overcome the potential energy barriers of the subsequent hills. In order to allow the toy car to travel over all three hills, we need to provide it with more kinetic energy.

Therefore, adding a loop after the tallest hill could provide the car with enough kinetic energy to overcome the subsequent hills. Option B, which orders the hills from shortest to tallest, would not provide the car with enough potential energy to overcome the tallest hill, let alone the subsequent hills.

On the other hand, option C, which orders the hills from tallest to shortest, would provide too much potential energy to the car at the beginning, resulting in the car overshooting the first hill and losing energy in the process.

In conclusion, adding a loop after the tallest hill would be the most appropriate change to the model to allow the toy car to travel over all three hills. Therefore, the correct answer is option A.

To know more about kinetic energy refer here:

https://brainly.com/question/7674744#

#SPJ11

Newtons Second Law

An elevator is moving up at a constant velocity of 2.5 m/s, The passenger has a mass of 85kg.
a. Construct a free body diagram for the passenger.
b. Calculate the force the floor exerts on the passenger.

The elevator now accelerates upward at 2.0 m/s^2.
a. What additional force is needed to accelerate the passenger at that acceleration? what is the direction of this force?
b. Construct a free body diagram for the passenger

Upon reaching the top of the building, the elevator accelerates downward at 3.0 m/s^2.
a. how much net force is needed to accelerate the passenger at 3.0 m/s^2? What does this do to the normal force?
b. Construct a free body diagram for the passenger, with the magnitude of each force labeled.
While descending in the elevator, the cable suddenly breaks. How big is the force on the passenger by the floor? Explain your answer.

Answers

Then both passengers, as well as the lift, are in free fall, and both accelerate downwards at the same acceleration. so, there is zero force between them.

How to solve

3. vertical forces on the passenger = Fv= N-w, upwards [where N is normal force and w is its weight]

Fv= N-w= m*a =>so the force the floor exerts on the passenger is N = m*a + m*g = 1003 N.

4. vertical forces on the passenger = Fv= N-w, upwards

Fv= N-w= -m*a [-ve sign because acceleration is downwards while Fv is upwards]

so, N= m*g - m*a = 663 N.

5. if the cable breaks suddenly, the passenger's acceleration is same as gravity, so a= g; N= m*g - m*g = 0 N.

Then both passengers, as well as the lift, are in free fall, and both accelerate downwards at the same acceleration. so, there is zero force between them.


Read more about force here:

https://brainly.com/question/12970081

#SPJ1

two blocks are connected by a rope, as shown above. the masses of the blocks are 5 kg for the upper block and 10 kg for the lower block. an upward applied force of magnitude f acts on the upper block. question if the net acceleration is downward but has a magnitude less than g , then which has the larger magnitude, the force f or the tension in the rope?

Answers

If two blocks are connected by a rope. The force of gravity on the lower block is larger in magnitude than both the applied force F and the tension in the rope.

Which has the larger magnitude?

Since the net acceleration is downward but has a magnitude less than g, we know that the force of gravity on the system is greater than the applied force F.

The tension in the rope is equal to the force required to accelerate the lower block upward, which is less than the force of gravity on the lower block. Therefore, the tension in the rope is less than the force of gravity on the lower block, which has a magnitude of 10 kg x 9.8 m/s^2 = 98 N.

Therefore, the force of gravity on the lower block is larger in magnitude than both the applied force F and the tension in the rope.

Learn more about magnitude here:https://brainly.com/question/30337362

#SPJ1

this type of lightning extends up to 95 kilometers above the top of a thunderstorm, and it resembles a jellyfish: this type of lightning extends up to 95 kilometers above the top of a thunderstorm, and it resembles a jellyfish: sheet lightning. sprite. st. elmo's fire. ball lightning.

Answers

The type of lightning that extends up to 95 kilometers above the top of a thunderstorm and resembles a jellyfish is called a sprite. Option B is correct.

Sprites are electrical discharges that occur high above thunderstorms and are often red or orange in color. They are caused by the same type of electrical breakdown that produces lightning, but they occur in the mesosphere, rather than the troposphere where lightning occurs. Sprites are relatively short-lived, lasting only a few milliseconds, and are difficult to observe from the ground due to their high altitude.

They were first documented in 1989, and since then, they have been observed and studied extensively by scientists using high-speed cameras and other specialized equipment. Sprites are still not fully understood, but their study is providing valuable insights into the physics of lightning and the behavior of the Earth's atmosphere. Option B is correct.

To know more about the Thunderstorm, here

https://brainly.com/question/11020011

#SPJ4

A body is given an initial velocity of 40m/s at a point P . The body decelerates uniformly and attains a velocity of 20m/s at a point X.The body is finally brought to rest at a point M. If the time taken by the body through the whole journey is 20s and the distance covered from P to X it's 200m, calculate the deceleration of the body

Answers

The deceleration of the body is -4 m/s^2.

Deceleration is the rate at which an object slows down, and is defined as the negative acceleration of an object. It represents the change in velocity per unit of time when an object slows down.

We can use the kinematic equations to solve this problem.

First, we can find the acceleration of the body between points P and X using the equation:

v^2 = u^2 + 2as

where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the distance covered. We know that u = 40 m/s, v = 20 m/s, s = 200 m, so we can rearrange the equation to solve for a:

a = (v^2 - u^2) / 2s

a = (20^2 - 40^2) / 2(200)

a = -4 m/s^2 (negative sign indicates deceleration)

So the deceleration of the body between points P and X is -4 m/s^2.

Next, we can find the time taken by the body to travel from point X to M using the equation:

v = u + at

where v is the final velocity (0 m/s since the body comes to rest), u is the initial velocity (20 m/s), a is the deceleration (-4 m/s^2), and t is the time taken. Rearranging the equation, we get:

t = (v - u) / a

t = (0 - 20) / (-4)

t = 5 s

So the time taken by the body to travel from point X to M is 5 seconds.

Finally, we can find the distance covered by the body between points X and M using the equation:

s = ut + 1/2 at^2

where s is the distance covered, u is the initial velocity (20 m/s), a is the deceleration (-4 m/s^2), and t is the time taken (5 s). Plugging in the values, we get:

s = 20(5) + 1/2 (-4)(5)^2

s = 100 - 50

s = 50 m

So the distance covered by the body between points X and M is 50 meters.

Therefore, the deceleration of the body is -4 m/s^2.

To learn more about kinematic equations click:

https://brainly.com/question/24458315

#SPJ1

Which describes one feature of the image formed by a plane mirror?.

Answers

A plane mirror is a flat mirror that produces an image that is equal in size to the object being reflected. The most notable feature of a plane mirror is that it produces an image that is a virtual, or exact, replica of the object.

This is because a plane mirror reflects light in a way that preserves the orientation of the object, meaning the image appears as a mirror image of the object. For example, if someone is facing a plane mirror, the image of the person will appear to be facing the opposite direction.

The image produced by a plane mirror is also reversed from left to right. This means that if someone raises their left arm in front of the mirror, their reflected image will appear to raise their right arm. However, the image formed by a plane mirror preserves the size, shape, and color of the object. This means that the reflected image will appear to be the exact same size, shape, and color as the object being reflected. Additionally, the image will appear to be the same distance from the mirror as the object is from the mirror.

Know more about image here

https://brainly.com/question/25029470#

#SPJ11

When removing a wool sweater, a static discharge of 6. 43 µC dissipates 5. 72 10-3 J of energy. What voltage was involved?

Answers

The voltage involved in the static discharge is 2.98 kV (kilovolts).

The voltage involved in a static discharge can be determined using the equation:

V = √(2E/q)

where V is the voltage, E is the energy dissipated, and q is the charge involved in the discharge.

Substituting the given values, we get:

V = √(2 * 5.72 x [tex]10^{-3[/tex]J / 6.43 x [tex]10^{-6[/tex] C)

V = √(8.889 J/C)

V = 2.98 x [tex]10^3[/tex] V

It's worth noting that static electricity is a common phenomenon that occurs when two objects with different electrical charges come into contact and then separate.

The friction between the objects can cause electrons to transfer from one object to the other, resulting in a buildup of charge.

When the charge buildup becomes large enough, a static discharge can occur, which can be seen as a spark or shock.

Understanding the properties and behavior of static electricity is important in many areas of science and technology, from materials science and electronics to meteorology and environmental science.

To know more about static discharge refer here

https://brainly.com/question/30525800#

#SPJ11

A certain one-dimensional conservative force is given as a function of x by the expression F = -kx^3, where F is in newtons and x is in meters. A possible potential energy function U for this force is

Answers

Answer:

Choice D

Explanation:

F(x) = -kx^3

Integrate F(x) with respect to x:

U(x) = - ∫ F(x) dx

= - ∫ (-kx^3) dx

= k/4 * x^4 + C

C is a constant of integration. Find C by specifying the potential energy at a particular value of x. To make it easy, assume that U = 0  at x = 0:

U(0) = k/4 * 0^4 + C = 0

C = 0

Therefore, the potential energy function for the given force F = -kx^3 is:

U(x) = k/4 * x^4

Choice D:  U = [tex]\frac{1}{4}[/tex]kx⁴

QUESTION 1


A uniform solid cylindrical disk of mass M = 1. 4 kg and radius R = 0. 085 m, rolls without slipping across a horizontal surface at velocity v = 15


m/s. What is the total kinetic energy, Ktotal, of the rolling disk? (Idisk = 12 MR2)


O a. 236. 3J


O b. 350. 3 J


O c. 144. 5 J


O d. 970. 1

Answers

The total kinetic energy, Ktotal, of the uniform solid cylindrical disk of mass M = 1. 4 kg and radius R = 0. 085 m is (D) 393.8 J.

To solve this problem, we need to use the formula for the kinetic energy of a rotating object, which includes both translational and rotational kinetic energy.

The translational kinetic energy of the disk is given by 1/2 mv², where m is the mass of the disk and v is its velocity. In this case, m = 1.4 kg and v = 15 m/s, so the translational kinetic energy is 1/2 (1.4 kg) (15 m/s)² = 157.5 J.

The rotational kinetic energy of the disk is given by 1/2 Iω², where I is the moment of inertia of the disk and ω is its angular velocity. For a solid cylindrical disk, the moment of inertia is 1/2 MR². We also know that the disk is rolling without slipping, so the velocity of its center of mass is equal to the product of its angular velocity and its radius, v = ωR. Solving for ω, we get ω = v/R.

Substituting these values into the formula for rotational kinetic energy, we get 1/2 (1/2 MR²) (v/R)^2 = 1/8 Mv². Plugging in the values for M and v, we get 1/8 (1.4 kg) (15 m/s)² = 236.3 J.

Adding the translational and rotational kinetic energies together, we get Ktotal = 157.5 J + 236.3 J = 393.8 J.

Therefore, the correct answer is (D) 393.8 J.

Learn more about mass at: https://brainly.com/question/12242087

#SPJ11

Each airport has a runway that is about 500 m long.
when it lands, the speed of the aeroplane is 40 m/s.
explain why the airline should not use an aeroplane that has more mass and
needs a higher speed for landing.

Answers

An airport with a 500 m long runway should not use an aeroplane with a higher mass and landing speed because it can pose safety risks.

A higher mass requires more braking force to slow down the plane, and a higher landing speed means that the plane will travel a longer distance before coming to a stop.

These factors can make it difficult for the aeroplane to safely decelerate within the limited runway length, increasing the chances of a runway overrun or accident.

Braking force and mass: When an airplane lands, it needs to decelerate to a complete stop. The deceleration is achieved by applying braking force through the aircraft's landing gear.

A higher mass aircraft requires more braking force to slow down due to its increased inertia. If the runway is not long enough to provide sufficient space for the aircraft to decelerate, the increased mass can make it more challenging to bring the aircraft to a safe stop within the available distance.

Landing distance and speed: The landing speed of an aircraft is the speed at which it touches down on the runway. Higher landing speeds typically require more distance for the aircraft to come to a stop.

This distance is influenced by various factors, including aircraft weight, wind conditions, runway condition, and braking efficiency. If an airplane with a higher landing speed lands on a shorter runway, it will require a longer distance to decelerate to a safe stop.

Runway overrun and accidents: When an airplane is unable to decelerate within the available runway length, it can lead to a runway overrun. A runway overrun occurs when an aircraft is unable to stop on the runway and continues off the end of the runway, potentially causing damage to the aircraft, injuries, or even fatalities.

Additionally, the lack of sufficient deceleration can increase the chances of accidents, such as collisions with obstacles or other aircraft on the ground.

To learn more about inertia, refer below:

https://brainly.com/question/3268780

#SPJ11

a. Calculate the gravitational force between two objects of mass 25 kg and 20 kg separated by a distance of 5 m. (1.33 × JO⁹N) 1030 1.​

Answers

Answer:

The gravitational force between two objects of mass 25 kg and 20 kg separated by a distance of 5 m is [tex]1.334 * 10^-9[/tex]

Explanation:

Given

Mass of the body (MA)= 25kg

Mass of the other body (MB)= 20kg

Distance of separation between them (R)= 5m

We know that

The gravitational force between two masses

[tex]F= (G*MA*MB)/R^2[/tex]  N

where

[tex]G=6.67 * 10^-11 m^3 kg^-1 s^-2[/tex]

Putting all the values in the above formula,

[tex]F=(6.67*10^-11 *25*20)/5*5[/tex] N

[tex]F=1.33*10^-9 N[/tex]

To learn more about Gravity among two bodies

https://brainly.in/question/29339927#:~:text=Answer%3A,the%20distance%20between%20their%20centers.

the flywheel of a steam engine runs with a constant angularspeed of 110 rev/min. when steam is shut off, the friction of thebearings and the air brings the wheel to rest in 1.6 h.a) what is the magnitude of the constant angular acceleration ofthe wheel in rev/min^2? do not enter the units.b) how many rotations does the wheel make before coming torest? c) what is the magnitude of the tangential component of thelinear acceleration of a particle tha...

Answers

a) The magnitude of the constant angular acceleration of the wheel is  -1.146 rev/min^2.

b) The wheel makes 10512 rotations before coming to rest.

c) The magnitude of the tangential component of linear acceleration of the particle is 0.037 m/s^2.

a) To find the angular acceleration, we first need to convert the time taken for the wheel to come to rest from hours to minutes. 1.6 hours is equal to 96 minutes. We can use the equation of motion for rotational kinematics:

ωf = ωi + αt

where ωf is the final angular velocity (0 in this case), ωi is the initial angular velocity (110 rev/min), α is the angular acceleration, and t is the time taken (96 minutes).

Substituting the given values, we get:

0 = 110 + α(96)

Solving for α, we get:

α = -1.146 rev/min^2 (Note that the negative sign indicates a decrease in angular velocity.)

b) The number of rotations made by the wheel before coming to rest can be found using the formula:

θ = ωit + 1/2 αt^2

where θ is the angle of rotation, ωi is the initial angular velocity, α is the angular acceleration, and t is the time taken.

Substituting the given values, we get:

θ = (110 rev/min)(96 min) + 1/2 (-1.146 rev/min^2)(96 min)^2

Simplifying, we get:

θ = 10512 rev

c) The tangential component of linear acceleration can be found using the formula:

at = rα

where at is the tangential component of linear acceleration, r is the distance from the axis of rotation, and α is the angular acceleration.

Substituting the given values, we get:

at = (0.44 m)(2π/60)(-1.146 rev/min^2)

Simplifying, we get:

at = -0.037 m/s^2

To learn more about speed click on,

https://brainly.com/question/13245800

#SPJ4

Complete question is:

The flywheel of a steam engine runs with a constant angularspeed of 110 rev/min. when steam is shut off, the friction of thebearings and the air brings the wheel to rest in 1.6 h.

a) what is the magnitude of the constant angular acceleration ofthe wheel in rev/min^2? do not enter the units.

b) how many rotations does the wheel make before coming torest?

c) what is the magnitude of the tangential component of the linear acceleration of a particle that is located at a distance of 44 cm from the axis of rotation when the flywheel is turning at 58 rev/min?

Anna mixes 200 g of hot coffee at 90 oC with 50 g of cold water at 3 oC to bring down the

temperature of the coffee. Explain what happens to the mixture using kinetic molecular model.

Answers

Mixing hot coffee with cold water results in heat transfer from the coffee to the water through conduction until they reach thermal equilibrium. This process is explained by the kinetic molecular model and the laws of thermodynamics.

When Anna mixes hot coffee with cold water, the coffee loses heat to the surroundings and the water gains heat. The kinetic molecular model explains that heat is the energy that molecules possess and is transferred when there is a temperature difference between two objects.

In this case, the coffee molecules at a higher temperature have more kinetic energy than the water molecules at a lower temperature. As the coffee and water are mixed, the faster-moving coffee molecules collide with the slower-moving water molecules, transferring some of their kinetic energy to them.

This results in the coffee losing heat and the water gaining heat, until they reach thermal equilibrium at a new temperature between the initial temperatures of the two substances.

The process of mixing coffee with cold water is an example of heat transfer through conduction. The heat flows from the hot coffee to the cold water until the two substances reach a common temperature.

This process is governed by the laws of thermodynamics, which state that heat flows from hotter objects to cooler objects until thermal equilibrium is achieved.

To know more about equilibrium refer here:

https://brainly.com/question/31315279#

#SPJ11

Explain why knowing a combination of grappling and striking martial arts is advantageous during a street self defense scenario. Explain how both are beneficial

Answers

Knowing a combination of grappling and striking martial arts is highly advantageous during a street self defense scenario. This is because both grappling and striking techniques offer unique benefits that complement each other, providing a comprehensive set of skills that can be applied in various situations.

In a self defense scenario, grappling techniques, such as throws and joint locks, can be used to immobilize an opponent and prevent them from causing harm. Additionally, grappling allows for control and manipulation of an attacker's body, allowing for strategic positioning and the opportunity to escape or defend oneself.

On the other hand, striking techniques, such as punches and kicks, can be used to incapacitate an attacker quickly and efficiently. Striking can also create distance between oneself and the attacker, reducing the likelihood of further harm.

Combining these two techniques offers an added advantage, as it allows for a wider range of options depending on the situation. For example, if an attacker is too close for striking, grappling can be used to gain control of the situation. Similarly, if an attacker is too far for grappling, striking techniques can be used to keep them at bay.

In conclusion, knowing a combination of grappling and striking martial arts is highly advantageous during a street self defense scenario. Both techniques offer unique benefits that complement each other, providing a comprehensive set of skills that can be applied in various situations.

To know more about striking martial refer here

https://brainly.com/question/7271947#

#SPJ11

if it requires 6.0 j of work to stretch a particular spring by 2.0 cm from its equilibrium length, how much more work will be required to stretch it an additional 4.0 cm

Answers

It would require an additional 1.35 J of work to stretch the spring by an additional 4.0 cm.

The work required to stretch a spring is given by the equation:

W = (1/2)kx²

where W is the work done, k is the spring constant, and x is the displacement from the equilibrium position.

To find the spring constant k, we can use the equation:

k = F/x

where F is the force required to stretch the spring by a certain amount.

Given that it requires 6.0 J of work to stretch the spring by 2.0 cm, we can find the spring constant as follows:

6.0 J = (1/2)k(0.02 m)²

k = 750 N/m

To stretch the spring an additional 4.0 cm, the displacement from the equilibrium position would be:

x = 0.02 m + 0.04 m = 0.06 m

Using the equation for work done, we can find the additional work required:

W = (1/2)kx²

W = (1/2)(750 N/m)(0.06 m)²

W = 1.35 J

As a result, stretching the spring by 4.0 cm would need an additional 1.35 J of labour.

To know more about the Equilibrium, here

https://brainly.com/question/28814005

#SPJ4

Why does it take more energy to heat up 1 kg of cold water than 0.5 kg of cold water to the same temperature?

Answers

It takes more energy to heat up 1 kg of cold water than 0.5 kg of cold water to the same temperature because water has a relatively high specific heat capacity. The specific heat capacity is the amount of energy required to raise the temperature of one unit of mass of a substance by one degree Celsius.

In other words, it takes more energy to raise the temperature of a larger mass of water than a smaller mass of water by the same amount. This is because the larger mass of water requires more energy to overcome the intermolecular forces between its molecules, which are stronger than in a smaller mass of water.

Additionally, since water has a high specific heat capacity, it can absorb a lot of heat energy without a significant increase in temperature. Therefore, a larger mass of water requires more energy to raise its temperature by the same amount compared to a smaller mass of water.

To know more about specific heat capacity here

https://brainly.com/question/2906898

#SPJ4

In ancient times, many people believed that our lives were somehow influenced by the patterns of the stars in the sky. Modern science has not found any evidence to support this belief, but instead has found that we have a connection to the stars on a much deeper level: We are "star stuff. "Do you think these connections have any philosophical implications in terms of how we view our lives and our civilization?

Answers

Yes, I do think that the idea that we are "star stuff" has significant philosophical implications. Firstly, it challenges the notion that we are separate from the universe and reinforces the idea that we are interconnected with everything around us.

This can lead to a sense of awe and wonder about the universe and our place in it.

Additionally, the idea that we are made of the same material as stars can inspire a sense of responsibility to take care of the planet and our fellow human beings. We are not just individuals, but part of a larger whole, and our actions can have an impact on the world around us.

From a societal perspective, this understanding can lead to a greater appreciation for science and the pursuit of knowledge. It can also inspire a sense of unity and cooperation among different cultures and nations, as we all share this common connection to the universe.

Overall, recognizing our connection to the stars can have profound implications for how we view ourselves and our place in the world, and can inspire us to live more consciously and responsibly.

To learn more about responsibility, refer below:

https://brainly.com/question/29729388

#SPJ11

In the Northern Hemisphere, how do winds rotate in a low pressure area? What about in a high pressure area?

Answers

In the Northern Hemisphere, winds rotate in a counterclockwise direction around a low-pressure area and in a clockwise direction around a high-pressure area. This phenomenon is known as the Coriolis effect.

The Coriolis effect is a result of the rotation of the Earth. As air moves from areas of high pressure to areas of low pressure, it tends to follow a curved path due to the Earth's rotation. In the Northern Hemisphere, the Coriolis effect deflects moving air to the right. As a result, air circulating around a low-pressure area is deflected to the right, causing a counterclockwise rotation.

Conversely, around a high-pressure area, air is descending and moving outward. The Coriolis effect deflects the moving air to the right in the Northern Hemisphere, causing a clockwise rotation.

It's important to note that this rotation pattern is specific to the Northern Hemisphere. In the Southern Hemisphere, the wind rotation is reversed. Low-pressure areas exhibit a clockwise rotation, and high-pressure areas have a counterclockwise rotation due to the opposite deflection of the Coriolis effect in the Southern Hemisphere.

To know more about Northern Hemisphere refer here

https://brainly.com/question/13661560#

#SPJ11

According to the book, the small electric devices that, like vacuum tubes, could receive and amplify radio signals were known as:

Answers

The small electric devices that, like vacuum tubes, could receive and amplify radio signals were known as transistors.

Transistors revolutionized the field of electronics by replacing vacuum tubes, which were bulky, fragile, and consumed a lot of power. The invention of transistors, which was made by John Bardeen, Walter Brattain, and William Shockley at Bell Labs in 1947, paved the way for the development of smaller, more efficient electronic devices, such as radios, televisions, and computers.

Transistors are made of semiconductor materials, such as silicon or germanium, and they work by controlling the flow of electrons through a material. They have three main components: the emitter, the base, and the collector. When a small current is applied to the base of a transistor, it controls the flow of a larger current between the emitter and the collector, allowing the transistor to amplify signals.

Transistors are now found in nearly every electronic device, from smartphones and laptops to cars and medical equipment. They have enabled the development of smaller, more efficient, and more powerful devices that have transformed our daily lives.

To learn more about transistors

https://brainly.com/question/31052620

#SPJ4

A shell that is initially at rest explodes into two fragments, one fragment 25 times heavier than the other. If any gas from the explosion has negligible mass, then:.

Answers

The larger fragment moves at 1/25th the velocity of the smaller fragment.

By conservation of momentum, the total momentum of the system before and after the explosion must be equal. Since the shell is initially at rest, the total initial momentum is zero. After the explosion, the two fragments move in opposite directions with different velocities. Let the mass of the smaller fragment be m and the mass of the larger fragment be 25m. Then, by conservation of momentum:

0 = mv + (25m)(-v')

0 = v - 25v'

where v and v' are the velocities of the smaller and larger fragments, respectively, after the explosion. Solving for v', we get:

v' = v/25

Since the total kinetic energy of the system is also conserved, we can use the conservation of energy equation to solve for the velocities of the two fragments. Let E be the total kinetic energy of the system after the explosion. Then:

E = (1/2)mv^2 + (1/2)(25m)(v/25)^2

E = (1/2)mv^2 + (1/2)mv^2

E = mv^2

Therefore, the kinetic energy of the system after the explosion is equal to the kinetic energy of the smaller fragment before the explosion. Using this, we can solve for the velocity of the smaller fragment:

E = (1/2)mv^2

v = sqrt(2E/m)

And the velocity of the larger fragment is:

v' = v/25 = sqrt(2E/m)/25

So, the ratio of the velocities of the two fragments is:

v'/v = (sqrt(2E/m)/25) / sqrt(2E/m) = 1/25

To know more about momentum refer here

https://brainly.com/question/30487676#

#SPJ11

Apply concepts why can light travel trough outer space but sound cannot?

Answers

Light travels in the form of electromagnetic waves, the reason why light can travel through outer space but sound cannot is due: to the differences in the way light and sound waves propagate, and the properties of the medium through which they travel.

Light travels in the form of electromagnetic waves, which consist of oscillating electric and magnetic fields. These waves can propagate through a vacuum, like outer space, because they do not require a medium for transmission. As a result, light from stars and other celestial bodies can reach us even though they are located in the vacuum of space.

On the other hand, sound waves are mechanical waves that require a medium, such as air, water, or solids, to transmit their energy. Sound waves move by causing vibrations in the particles of the medium, creating areas of compression and rarefaction. Outer space is largely devoid of particles, being a near-perfect vacuum, and thus there is no medium for sound waves to propagate through. Consequently, sound cannot travel through outer space, unlike light.

In summary, light can travel through outer space because it consists of electromagnetic waves that do not require a medium for propagation, while sound cannot travel in outer space because it consists of mechanical waves that require a medium for transmission.

To know more about  electromagnetic waves, refer here:

https://brainly.com/question/3186980#

#SPJ11

What are the advantages and disadvantages of series circuits and parallel circuits? Cite examples from the readings to support your answer. Also cite what you may already know about the topic in your answer

Answers

Advantages of Series Circuits is Simple Design: Series circuits are simple and easy to design as they require only a single path for current flow.

Disadvantages of Series Circuits is Single Point of Failure: If any component in a series circuit fails, the entire circuit fails.

Advantages of Parallel Circuits is that there is Independent Operation: Components in a parallel circuit operate independently, meaning that the failure of one component does not affect the operation of others.

Disadvantages of Parallel Circuits is that Complex Design: Parallel circuits are more complex and require more wiring than series circuits.

What is series circuits and parallel circuits?

A series circuit is a circuit in which the components are connected in a single path or loop, so that the same current flows through each component in sequence. The components are connected end-to-end, with the output of one component connected to the input of the next component. In a series circuit, the voltage is shared between the components, and the total resistance is equal to the sum of the individual resistances of each component.

A parallel circuit, on the other hand, is a circuit in which the components are connected in multiple paths, so that the current divides and flows through each component independently. The components are connected side-by-side, with each component having its own path for current flow. In a parallel circuit, the voltage across each component is the same, and the total resistance is less than the individual resistance of each component.

Learn more about Parallel Circuits at:

https://brainly.com/question/80537

#SPJ1

Other Questions
Assignment Directions: Summarize the statement of work. Keep in mind that there are several presentations to be made before a statement of work can be created for approval, but knowing the end goal is essential to making sure you have included all the proper information. This is one of Stephan R. Covey's Seven Habits of Highly Effective People: begin with the end in mind. Assignment Guidelines: Summarize the steps you went through to create the statement of work so far, including the details of how and why each step was done. What would you select as the best solutions for these problems? If a+b=3 and ab=4 find the value of a3+b3 PLEASE HELP 30 POINTS The surface of a pool table has a perimeter of 26 feet and an area of 40 square feet. What are the dimensions of the pool table? In a recent poll six hundred adults were asked a series of questions about the state of the economy and their children's future. One question was, "do you expect your children to have a better life than you have had, a worse life, or a life about the same as yours?" Suppose the responses showed 245 better, 311 worse, and 44 about the same. Use the sign test and ???? = 0. 05 to determine whether there is a difference between the number of adults who feel their children will have a better life compared to a worse life. State the null and alternative hypotheses. (Let p = the proportion of adults who feel their children will have a better life. ) H0: p 0. 50 Natalie saves money in her piggy bank. Maria saves money in a savings account at a bank.Which statement about the savings plans is true? ResponsesNatalie uses a safer way to save money because she can protect her piggy bank.Maria's way of saving money allows her to earn interest and make her money grow.Maria will have less money because she must pay sales tax on her money.Natalie's method of saving is better because Maria must pay interest on her money. 14. A film's rated speed is a measure of its ____ to light. Pack Empacanueces is the Colombian Nutty Professor. Find out his strange habits by building sentences from the words below. You must use all of the words provided and add prepositions where necessary. Be sure to start your sentences with a capital letter and end them with a period. If the points a,b and c have the coordinates a(5,2) , b(2,-3) and c(-8,3) show that the triangle abc is a right angled triangle What is the surface area of a triangular prism ASAP HURRY PLEASE. BRAINLIEST FOR WHOEVER IS CORRECT! REPORTING ALL LINKS/SCAMS/VIRUSES. PLEASE PLEASE PLEASE HURRY!!What was one of the similarities between the article about Planetary Resources and the article about our dwindling fossil fuels?A)Both articles focused on companies trying to solve the problem. B)Both articles referenced the need to find new resourcesC)Both articles urged consumers to use less fossil fuels. D)Both articles mentioned mining asteroids. Larijah is creating a circular board game with a spinner with four regions that players use to determine what happens on their turns. she wants to meet these requirements: - exactly a quarter of the circle should contain the ""lose a turn"" region. - ""move one space"" should be three times the angle as ""move two spaces"". - ""move two spaces"" should be twice the angle as ""trade places with any opponent"". what is the measure of the ""trade places with any opponent"" region? What is your net pay after FICA has been taken out if you make $47,000?Remember that FICA is 7.65% 1. Suppose your ISP gives you the address space 18. 28. 32. 0/25. There is a core router and three subnets under the core router. Each of the three subnets have two hosts each. Each subnet will also need to assign an address to its corresponding router and the hosts. Write down the addresses you will assign to the 6 hosts, to the three subnet routers, and to the core router responsible for the address 18. 28. 32. 0/25. Also specify the address range of each router (10 points) How does the point of view affect this story?expert form the poison tree a tale of Hindu life in Bengal It illustrates the protagonists thoughts and feelings behind his actions and decisions about the young girl. It ensures that readers understand the complicated family history, customs, and motivations that influence the present-day actions of the characters. It limits access to all but one characters thoughts and feelings, so readers must infer the thoughts and feelings of the other characters. It creates suspense, leaving readers unsure of the main characters motivations despite witnessing his actions What is most closely the meaning of flame as it is used inthe passage below (paragraph 20)?There are options to combat trolls, but they are oftentemporary. For instance, players can mute these trolls insome games, but that's not a long-term solution. A playercan also make a complaint to the game company. Thatmight get the offender banned. Even then, friends of thebanned person may flame the player who made thecomplaint. Often the banned person will get a newaccount with a new avatar or be able to log on from adifferent computer. Then the player can go right back tomaking nasty comments.A. to use fire in duels within the gameB. to harass another player verballyC. to light the console of the person who complained on fireD. to comfort another player (a) Find a counterexample which shows that WAT is not true if we replace the closed interval [a,b] with the open interval (a,b).(b) What happens if we replace [a,b] with the closed set [a,\infty). Does the theorem hold? Deduce the change in entropy of a gas, in kJ, which contains 105 particles after the volume changes to fifty times its original value All of the following statements are true about attitudes EXCEPT_____________*they are a mixture of our beliefs and emotionsthey often play a role in our responses to other people, objects and institutionsthey are typically formed prior to birth and are acquired through hereditythey can be positive or negativeOther: Match each sound device to its definition.Match Term DefinitionAssonance Consonance Internal rhyme Meter Slant rhymeA) Rhyming words within a line of poetryB) The repetition of consonant sounds within words in a line of poetryC) Rhyming words with similar, not identical, soundsD) The repetition of vowel sounds within words in a line of poetryE) The beat of the poem and the speed at which it moves, controlled by patterns of stressed and unstressed syllables