We have evidence to suggest that the true percentage of college degrees in mathematics is different from 1%.
What is null hypothesis?The null hypothesis is a type of hypothesis that explains the population parameter and is used to examine if the provided experimental data are reliable.
To test the claim that the percentage of college degrees in mathematics is not 1%, we can use a hypothesis test. Let's assume the null hypothesis is that the true percentage of college degrees in mathematics is 1%, and the alternative hypothesis is that it is different from 1%.
- Null hypothesis: The percentage of college degrees in mathematics is 1%.
- Alternative hypothesis: The percentage of college degrees in mathematics is different from 1%.
We can use a binomial distribution to model the number of graduates with math degrees in a sample of 12,317. Under the null hypothesis, the expected number of graduates with math degrees is:
Expected value = sample size * probability of math degrees = 12,317 * 0.01 = 123.17
Since we are testing at a 0.10 level of significance, the critical values for a two-tailed test are ±1.645 (using a standard normal distribution table).
The test statistic can be calculated as:
z = (observed value - expected value) / standard deviation
The standard deviation of the binomial distribution can be calculated as:
√(sample size * probability of success * (1 - probability of success))
So,
standard deviation = √(123.17 * 0.01 * 0.99) = 1.109
The observed value is 148.
The test statistic is:
z = (148 - 123.17) / 1.109 = 22.38
Since the absolute value of the test statistic is greater than 1.645, we can reject the null hypothesis at the 0.10 level of significance.
Therefore, we have evidence to suggest that the true percentage of college degrees in mathematics is different from 1%.
Learn more about null hypothesis on:
https://brainly.com/question/28042334
#SPJ4
In triangle STU as equals 50 inches to equals 58 inches and you equals 27 inches find the measure of angle us to the nearest 10th of a degree
The measure of the angle ∠S, obtained using the law of cosines is about 59.4°
What is the law of cosines?The law of cosines states that the square of the length of a side of a triangle is equivalent to the sum of the squares of the other two sides less the product of the length of the other two sides and the angle between them. Mathematically; a² = b² + c² - 2·b·c·cos(A)
Where;
a, b, and c = The length of the sides of the triangle
A = The angle between b and c
The lengths of the sides of the triangle, obtained from a similar triangle are;
s = 50 inches, t = 58 inches, and u = 27 inches
The measure of the angle ∠S is required
The angle ∠S is the angle facing TU or the side s
According to law of cosines, we get;
s² = t² + u² - 2·t·u·cos(∠S)
Therefore;
50² = 58² + 27² - 2 × 58 × 27 × cos(∠S)
2 × 58 × 27 × cos(∠S) = 58² + 27² - 50²
cos(∠S) = (58² + 27² - 50²)/(2 × 58 × 27)
∠S = cos((58² + 27² - 50²)/(2 × 58 × 27)) ≈ 59.4°
The measure of the angle ∠S is about 59.4°
Learn more on the law of cosines here: https://brainly.com/question/13409288
#SPJ4
This system of equations has been placed in a matrix: y = 700x + 200
y = 5,000 − 75x
Complete the matrix by filling in the missing numbers
The completed matrix represents the system of equations in a convenient format for solving using matrix operations.
How to find the matrix ?The given system of equations has been represented in a matrix form, where the coefficients of the variables x and y and the constant terms are arranged in a matrix. To solve the system of equations, we can use matrix operations to isolate the variables and find their values. The completed matrix shows that the coefficient of x is 700, the coefficient of y is -200, and the constant term is 0 for the first equation. Similarly, the coefficient of x is -75, the coefficient of y is 200, and the constant term is 5000 for the second equation.
To solve this system using matrix operations, we can perform row operations to eliminate one of the variables. For example, we can multiply the first row by 75 and the second row by 200, and then add the two rows to eliminate x. This gives us a new system of equations with only one variable, which we can solve to find the values of x and y.
Learn more about matrix
brainly.com/question/9967572
#SPJ11
Nancy's Cupcakes recorded how many cupcakes it recently sold of each flavor. â
â
âchocolate cupcakes 2
âpistachio cupcakes â 1
âbanana cupcakes â 5
âpumpkin cupcakes â 6
ââConsidering this data, how many of the next 21 cupcakes sold would you expect to be pumpkin cupcakes?â
A
9
B
7
C
6
D
3
Part B
What is probability of a chocolate cupcakes being sold?
â Probability (chocolate cupcakes) =
%
Note: Write your answer as a percentage rounded to the nearest whole number. â
We would expect 9 pumpkin cupcakes to be sold in the next 21 cupcakes. The probability of a chocolate cupcake being sold is approximately 14%.
The question asks to determine how many of the next 21 cupcakes sold would be expected to be pumpkin cupcakes, and also to find the probability of a chocolate cupcake being sold.
First, let's analyze the given data:
- Chocolate cupcakes: 2
- Pistachio cupcakes: 1
- Banana cupcakes: 5
- Pumpkin cupcakes: 6
Total cupcakes sold: 2 + 1 + 5 + 6 = 14
To find the expected number of pumpkin cupcakes in the next 21 sold, calculate the proportion of pumpkin cupcakes in the original data, and then multiply by 21:
(6 pumpkin cupcakes / 14 total cupcakes) * 21 = 9 (rounded)
So, we would expect 9 pumpkin cupcakes to be sold in the next 21 cupcakes (Answer A).
For Part B, we need to find the probability of a chocolate cupcake being sold. To do this, divide the number of chocolate cupcakes by the total number of cupcakes:
Probability (chocolate cupcakes) = (2 chocolate cupcakes / 14 total cupcakes) = 0.142857
Now, convert this probability to a percentage and round to the nearest whole number:
0.142857 * 100 = 14.29% ≈ 14%
So, the probability of a chocolate cupcake being sold is approximately 14%.
To know more about probability, visit:
https://brainly.com/question/30034780#
#SPJ11
A random sample of 500 people were classified by their ages into 3 age-groups: 29 years and younger, 30 to 64 years, and 65 years and older. Each person from the sample was surveyed about which of 4 major brands of cell phone they used. Their responses were compiled and displayed in a 3-by-4 contingency table. A researcher will use the data to investigate whether there is an association between cell phone brand and age-group
To investigate whether there is an association between cell phone brand and age-group, the researcher can conduct a chi-squared test of independence.
This test compares the observed frequencies in the contingency table to the expected frequencies if there were no association between the variables. If the test results in a p-value less than the chosen significance level (usually 0.05), then the researcher can reject the null hypothesis of no association and conclude that there is evidence of an association between cell phone brand and age-group. The degrees of freedom for this test would be (3-1) * (4-1) = 6.
More on chi-squared test: https://brainly.com/question/30696573
#SPJ11
Answer:1000
Step-by-step explanation:what about 1000 people
For the following function, find the Taylor series centered at 4 and give the stronger terms of the Taylor series Wite the intervat of convergence of the series (+) = In(1) (t)= Σ ร f(x) + The welval of convergence is (Give your answer in interval notation)
The Taylor series centered at 4 for f(x) = ln(1+x) is: f(x) = ln(5) + (x-4)/5 - (x-4)^2/50 + (2/125)*(x-4)^3 - (6/625)*(x-4)^4 + ... The interval of convergence for this series is (-∞, ∞).
Let's find the Taylor series centered at 4 for the function f(x) = ln(1+x).
We can use the formula for the Taylor series coefficients:
f^(n)(x) = (-1)^(n-1) * (n-1)! / (1+x)^n
where f^(n)(x) denotes the nth derivative of f(x).
Using this formula, we can find the Taylor series centered at 4: f(4) = ln(1+4) = ln(5) f'(x) = 1/(1+x), so f'(4) = 1/5 f''(x) = -1/(1+x)^2, so f''(4) = -1/25 f'''(x) = 2/(1+x)^3, so f'''(4) = 2/125 f''''(x) = -6/(1+x)^4, so f''''(4) = -6/625 and so on.
Putting it all together, the Taylor series centered at 4 for f(x) is:
f(x) = ln(5) + (x-4)/5 - (x-4)^2/50 + (2/125)*(x-4)^3 - (6/625)*(x-4)^4 + ...
To find the interval of convergence, we can use the ratio test:
lim |(f^(n+1)(x) / f^(n)(x)) * (x-4)/(x-4)| = lim |(-1) * (n+1) * (1+x)^2 / (1+x)^n| * |x-4| = lim (n+1) * (1+x)^2 / (1+x)^n * |x-4| = lim (n+1) / (1+x)^(n-2) * |x-4|
Since this limit is zero for all values of x, the interval of convergence is the entire real line, (-∞, ∞).
So the final answer is: The Taylor series centered at 4 for f(x) = ln(1+x) is: f(x) = ln(5) + (x-4)/5 - (x-4)^2/50 + (2/125)*(x-4)^3 - (6/625)*(x-4)^4 + ... The interval of convergence for this series is (-∞, ∞).
Learn more about Taylor series,
https://brainly.com/question/28168045
#SPJ11
Which pair of lines in this figure are perpendicular?
A.
lines B and F
B.
lines F and D
C.
lines C and E
D.
lines A and D
Answer:
D. Lines A and D are perpendicular.
DAnswer:
Step-by-step explanation:
The height, h, in feet of a ball suspended from a spring as a function of time, t, in seconds can be modeled by the equation h = negative 2 sine (pi (t one-half)) 5. which of the following equations can also model this situation? h = negative 2 cosine (pi t) 5 h = negative 2 cosine (pi (t one-half)) 5 h = 2 cosine (pi t) 5 h = 2 cosine (pi (t one-half)) 5
The correct answer for the equation is [tex]h = -2cos(\pi t) + 5[/tex] . The correct option is (1)
Given:
[tex]h= -2sin(\pi\tfrac{t}{2} )[/tex]
Examine the answer choices:
[tex]h = -2cos(\pi t) + 5[/tex]
Amplitude: |-2| = 2 (same as the given equation)
Frequency: π (same as the given equation)
Phase Shift: None (different from the given equation)
[tex]h = -2cos(\pi (t/2)) + 5[/tex]
Amplitude: |-2| = 2 (same as the given equation)
Frequency: π/2 (different from the given equation)
Phase Shift: None (different from the given equation)
[tex]h = 2cos(\pi t) + 5[/tex]
Amplitude: |2| = 2 (different from the given equation)
Frequency: π (same as the given equation)
Phase Shift: None (different from the given equation)
[tex]h = 2cos(\pi(t/2)) + 5[/tex]
Amplitude: |2| = 2 (different from the given equation)
Frequency: π/2 (different from the given equation)
Phase Shift: None (different from the given equation)
The correct equation is [tex]h = -2cos(\pi t) + 5[/tex] .The correct option is (1).
Learn more about Equation here:
https://brainly.com/question/27767092
#SPJ12
What is the probability of spinning a 1 or 2? Write your answer as a fraction AND decimal
Answer:
Probability of spinning 1 or a 2
Fraction=6/8
decimal=0.75
Let me know if it helped
Which of the pair of linear equations has unique solution, no solution or infinitely many solutions. In case there is unique solution find it by using Substitution Method and Elimination Method
(i) x-3y -3=0, 3x-9y-2=0
(ii) 2x+y=5,3x+2y=8
(iii) 3x-5y=20,6x-10y=40
iv) x-3y-7 =0,3x-3y-15=0
v) 8x+5y=9,3x+2y=4
1. x-3y -3=0, 3x-9y-2=0 has no solution
2. 2x+y=5,3x+2y=8 has a unique solution
3. 3x-5y=20,6x-10y=40 has infinitely many solution
4. x-3y-7 =0,3x-3y-15=0 has No solution
5. 8x+5y=9,3x+2y=4 has a unique solution
How to solve the linear equations(i) To solve using substitution method, we can rearrange the first equation to x=3y+3 and substitute it into the second equation:
3(3y+3) - 9y - 2 = 0
9y + 9 - 9y - 2 = 0
7 = 0
This is a contradiction, so the pair of equations has no solution.
(ii) To solve using elimination method, we can multiply the first equation by 2 and subtract it from the second equation:
3x + 2y = 8
(4x + 2y = 10)
-x = -2
So, x = 2. Substituting this value into the first equation, we get:
2x + y = 5
2(2) + y = 5
y = 1
Therefore, the unique solution is (x,y) = (2,1).
(iii) To solve using elimination method, we can multiply the first equation by 2 and subtract it from the second equation:
6x - 10y = 40
(6x - 10y = 40)
0 = 0
This equation is true for any value of x and y, so the pair of equations has infinitely many solutions.
(iv) To solve using elimination method, we can subtract the first equation from the second equation:
3x - 3y - 15 - (x - 3y - 7) = 0
2x - 22 = 0
x = 11
Substituting this value into the first equation, we get:
11 - 3y - 7 = 0
-3y = -4
y = 4/3
Therefore, the unique solution is (x,y) = (11,4/3).
(v) To solve using elimination method, we can multiply the first equation by 2 and subtract it from the second equation:
3x + 2y = 4
(16x + 10y = 18)
-29x - 18y = -14
Solving for y, we get:
y = (29/18)x + (7/9)
Substituting this expression for y into the first equation, we get:
8x + 5((29/18)x + (7/9)) = 9
(143/18)x = 2/9
x = 2/13
Substituting this value into the expression for y, we get:
y = (29/18)(2/13) + (7/9) = 41/117
Therefore, the unique solution is (x,y) = (2/13,41/117).
Read more on linear equations here https://brainly.com/question/2030026
#SPJ1
What are the features of function gif g(x) = f(x + 4) + 8?
=
vertical asymptote of r = -4
x-Intercept at (1,0)
range of (8,00)
y-intercept at (0,10)
domain of (4,00)
The features of function gif g(x) = f(x + 4) + 8 is vertical asymptote of r = -4.
What is logarithm function?Since they enable us to convert an exponential equation into a logarithmic equation and vice versa, logarithmic functions are employed to solve equations involving exponents. They are also used in a variety of disciplines, including science, finance, and engineering.
Given equation:
g(x) = f(x + 4) + 8.
f(x) → f(x + 4)
Horizontal translation less 4 unit.
(x, y) → (x - y), y
f(x, y) + 8
Vertical translation up 4 unit.
(x, y) → (x, y + d)
f(x)
Vertical Asymptote x = 0,
f(x + 4) + 8
Vertical Asymptote x+ 4 = 0
x = -4
Therefore, the features of function gif g(x) = f(x + 4) + 8 is vertical asymptote of r = -4.
Learn more about Asymptote here:
https://brainly.com/question/31405658
#SPJ12
If 2/3 of a mini pizza cost $2. 40, what would 1/2 of a mini pizza cost?
Sorry for bad handwriting
if i was helpful Brainliests my answer ^_^
1/2 of a mini pizza would cost $0.60.
If 2/3 of a mini pizza cost $2.40, then 1/3 of a mini pizza would cost half of that:
1/3 of a mini pizza = 1/2 * $2.40 = $1.20
To find the cost of 1/2 of a mini pizza, we can divide the cost of 1/3 of a mini pizza by 2:
1/2 of a mini pizza = 1/2 * $1.20 = $0.60
Therefore, 1/2 of a mini pizza would cost $0.60.
To learn more about cost, click here:
https://brainly.com/question/30045916
#SPJ11
questions.
1) Choose the correct name for the set of numbers.
{..., -3, -2, 1, 0, 1, 2, 3, ...}
erc
The set of numbers is an example of the integers.
What is the best name for the set of numbers?The set of numbers is an example of the integers. Integers are whole numbers (positive or negative) and zero. They are often represented by the symbol "Z". In this set, we have all the whole numbers from negative infinity to positive infinity, including negative and positive 3, 2, 1, 0, and all the numbers in between. The use of ellipses indicates that the set goes on indefinitely in both directions. It is worth noting that 1 appears twice in the set, indicating that sets of integers may have repeated elements. Overall, the set of numbers shown is an infinite set of integers.
Learn more about numbers in: https://brainly.com/question/17429689
#SPJ1
The original selling price of a jacket was s dollars. The selling price was then changed on two occasions by the store owner. Its price is now represented by 0. 85 (1. 4s). Which expression could explain what happened to the price of the jacket?
The expression 0.85(1.4s) explains what happened to the price of the jacket through the two changes made by the store owner.
The original selling price of the jacket was s dollars.The store owner made the first change, increasing the selling price by 40%. This can be represented by multiplying the original price (s) by 1.4: 1.4s.The store owner then made a second change, reducing the selling price by 15%. This can be represented by multiplying the new price (1.4s) by 0.85: 0.85(1.4s).So, the expression 0.85(1.4s) explains what happened to the price of the jacket through the two changes made by the store owner.
To learn more about store owner: https://brainly.com/question/25658829
#SPJ11
5. A ramp is to be built using a 20 foot long board and an 18 foot long board. To make die stable, the builders would like to add a third board to create a right triangle. How longed that board be, to the nearest hundredth of a foot?
The length of the third board the builders will add to create a right triangle, according to the Pythagorean Theorem is about 8.72 ft
What is the Pythagorean Theorem?Pythagorean Theorem is the relationship between the lengths of the three sides of a right triangle. The theorem states that the square of the length of the hypotenuse is equivalent to the sum of the square of the other two sides of the right triangle.
The specified dimensions of the ramp are;
Length of one side of the ramp = 20 ft
Length of the other side of the ramp = 18 ft
The shape of the triangle the builders would like to create = A right triangle
Let x represent the length of the third board, and let the 20 ft board represent the hypotenuse side. Pythagorean Theorem indicates that we get;
20² = 18² + x²
20² - 18² = x²
x² = 20² - 18² = 76
x = √(76) = 2·√(19) ≈ 8.72
The length of the third board, x ≈ 8.72 ftLearn more on Pythagorean Theorem here: https://brainly.com/question/30129628
#SPJ4
Evaluate the triple integral ∫∫∫ (x+8y)dV where E is bounded by the parabolic cylinder
y = 7x^2 and the planes
2 = 2x, y = 35x, and
2 = 0.
The triple integral ∫∫∫ (x+8y)dV where E is bounded by the parabolic cylinder is 512,604.17.
The triple integral is ∫∫∫(x+8y)dV.
Curves from the question are:
y = 7x², z = 2x, y = 35x, z = 0
Then, 7x² = 35x
Divide by x on both side, we get
7x = 35
Divide by 7 on both side, we get
x = 5
And z = 2x or z = 0. So
2x = 0
x = 0
Now the limits are:
x = 0 to x = 5
y = 7x² to y = 35x
z = 0 to z = 2x
Now the integral is
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\int_{7x^{2}}^{35x}\int_{0}^{2x}(x+8y)dzdydx[/tex]
Now first integrate with respect to z
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\int_{7x^{2}}^{35x}(x+8y)[z]_{0}^{2x}dydx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\int_{7x^{2}}^{35x}(x+8y)[2x-0]dydx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\int_{7x^{2}}^{35x}(2x^2+16xy)dydx[/tex]
Now integrate with respect to y
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\left[2x^2(y)_{7x^{2}}^{35x}+16x(\frac{y^2}{2})_{7x^{2}}^{35x}\right]dx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\left[2x^2(35x - 7x^2)+16x(\frac{1225x^2}{2}-\frac{49x^4}{2})\right]dx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\left[2x^2(35x - 7x^2)+8x(1225x^2-49x^4)\right]dx[/tex]
∫∫∫(x+8y)dV = [tex]\int_{0}^{5}\left[70x^3 - 14x^4+9800x^3-392x^5\right]dx[/tex]
∫∫∫(x+8y)dV = [tex]\left[\frac{70x^4}{4} - \frac{14x^5}{5}+\frac{9800x^4}{4}-\frac{392x^6}{6}\right]_{0}^{5}[/tex]
∫∫∫(x+8y)dV = [tex]\left[\frac{70(5)^4}{4} - \frac{14(5)^5}{5}+\frac{9800(5)^4}{4}-\frac{392(5)^6}{6}\right]-\left[\frac{70(0)^4}{4} - \frac{14(0)^5}{5}+\frac{9800(5)^4}{4}-\frac{392(5)^6}{6}\right][/tex]
∫∫∫(x+8y)dV = [10937.5 - 8750 + 1531250 - 1020833.33]-0
∫∫∫(x+8y)dV = 512,604.17
To learn more about triple integral link is here
brainly.com/question/30404807
#SPJ4
The complete question is:
Evaluate the triple integral ∫∫∫(x+8y)dV where E is bounded by the parabolic cylinder.
y = 7x² and the planes
z = 2x, y = 35x, and
z = 0
A lottery game contains 24 balls numbered 1 through 24. what is the probability of choosing a ball numbered 25? a. 0 c. 24 b. 1 d. startfraction 1 over 24 endfraction
The probability of choosing a ball numbered 25 is 0.
The lottery game contains only 24 balls numbered from 1 to 24. There is no ball numbered 25, so the probability of choosing a ball numbered 25 is 0. The probability of an event is defined as the ratio of the number of favorable outcomes to the total number of possible outcomes.
In this case, the number of favorable outcomes is 0 because there is no ball numbered 25, and the total number of possible outcomes is 24 since there are 24 balls in the game. Therefore, the probability of choosing a ball numbered 25 is 0/24, which simplifies to 0.
Mathematically, the probability of choosing a ball numbered 25 can be calculated as:
P(choosing ball numbered 25) = number of favorable outcomes / total number of possible outcomes
= 0 / 24
= 0
Therefore, the probability of choosing a ball numbered 25 is 0.
For more questions like Probability click the link below:
https://brainly.com/question/30034780
#SPJ11
A path 3 feet wide surrounds a rectangular garden that has a length of 20 feet and a width of 12 feet. Find
the area of the path.
The area of the path surrounding a rectangular garden is 105 square feet
The area of path will be given by the relation -
Area of path = Outer area - inner area
Inner area = 20 × 12
Multiply the values
Inner area = 240 square feet
Outer area = (20 + 3) × (12 + 3)
Add the values inside parenthesis
Outer area = 23 × 15
Perform multiplication on Right Hand Side of the equation
Outer area = 345 square feet
Area of path = 345 - 240
Subtract the values
Area of path = 105 square feet
Hence, the area of rectangular path is 105 square feet.
Learn more about rectangle -
https://brainly.com/question/25292087
#SPJ4
Which of the following is a counterexample for the following statement?
“If a line intersects a circle, then it intersects it in two points.”
According to the information, and example of a counterexample is: A line can cross the circle only at one point.
What would be a counterexample for this statement?To find a counterexample to this statement we must read it carefully and identify the main idea of it. In this case you are stating that a line always crosses a circle at two points.
Later we must analyze this statement and evaluate if it is true or false. In this case it is false because we can make a line that crosses a circle only once. So, the counter example sentence would be.
A line can cross the circle only once.Learn more about counter examples in: https://brainly.com/question/29193211
#SPJ1
Grace has 16 more shoes. Than mark gave grace 12 shoes. Mark then realized he has half as many shoes as grace. How many shoes does grace end up with?
Mark originally had 28 shoes.
Now we can use the equation for Grace's number of shoes to find her final count:
Grace = x + 16 = 28 + 16 = 44
So Grace ends up with 44 shoes.
Grace has 16 more shoes Mark. After Mark gave her 12 shoes, he realized has half as many shoes as Grace. What is the final number of shoes that Grace has?
Let's start by setting up an equation to represent the given information:
Let the number of shoes Mark has be represented by "x"
Grace has 16 more shoes than Mark:
Grace = x + 16
Mark gives Grace 12 shoes, so Grace now has:
Grace = x + 16 + 12 = x + 28
Mark realized he has half as many shoes as Grace:
x = 0.5(x + 28)
Simplifying this equation:
x = 0.5x + 14
0.5x = 14
x = 28
Learn more about Grace:
brainly.com/question/14213136
#SPJ11
The length of the hypotenuse in a °45 degrees-°45 degrees-°90 degrees triangle is 5 square root of 2. What are the sine and secant ratios for a °45 angle?
The secant of a °45 angle is defined as the ratio of the length of the hypotenuse to the length of the adjacent side. In this case, the adjacent side is also a leg of length 5, so:
secant(45) = hypotenuse/adjacent = 5√2/5 = √2
What is the secant function?The secant function, denoted as sec(x), is a trigonometric function that is defined as the reciprocal of the cosine function, cos(x).
In other words,
sec(x) = 1 / cos(x)
The secant function is defined for all values of x except for those where the cosine function is equal to zero, which corresponds to the values x = (2n+1)π/2 where n is an integer. At these points, the secant function is undefined.
According to the given functionIn a °45-°45-°90 triangle, the two legs are congruent, so if the length of the hypotenuse is 5√2, then each leg has a length of:
leg = hypotenuse/√2 = (5√2)/√2 = 5
The sine of a °45 angle is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse. In this case, the side opposite the angle is a leg of length 5, so:
sine(45) = opposite/hypotenuse = 5/5√2 = 1/√2 = √2/2
The secant of a °45 angle is defined as the ratio of the length of the hypotenuse to the length of the adjacent side. In this case, the adjacent side is also a leg of length 5, so:
secant(45) = hypotenuse/adjacent = 5√2/5 = √2
To know more about the secant function visit:
brainly.com/question/16230804
#SPJ1
Joe bought g gallons of gasoline for $2.85 per gallon and c cans of oil for $3.15 per can. What expression can be used to determine the total amount Joe spent on gasoline and oil?
The expression to represent the situation is 2.85g + 3.15c.
How to represent sentence with an expression?Joe bought g gallons of gasoline for $2.85 per gallon and c cans of oil for $3.15 per can.
An algebraic expression is made up of variables and constants, along with algebraic operations such as addition, subtraction, division, multiplication etc.
Therefore, the expression that can be used to determine the total amount Joe spent on gasoline and oil can be calculated as follows:
Therefore,
total cost = 2.85g + 3.15c
where
g = gallons of gasolinec = cans of oillearn more on expression here: https://brainly.com/question/14059470
#SPJ1
Dixon made a $2,000 down payment on an $8,000 car. The down
payment was what percent of the price?
Answer:
25%
Step-by-step explanation:
one 4th of 8,000 is 2,000 convert it to a percent and there you go!
Give brainliest please! Enjoy your night!
PLEASE ANSWER ASAPPP!!!!!
Using the following equation, find the center and radius:
x2 − 4x + y2 + 8y = −4
The center is located at (−2, −4), and the radius is 4.
The center is located at (2, −4), and the radius is 4.
The center is located at (−2, −4), and the radius is 16.
The center is located at (2, −4), and the radius is 16
The center is located at (2, −4), and the radius is 4.
To find the center and radius of this equation, we need to complete the square for both the x and y terms.
Starting with the x terms:
x^2 - 4x
To complete the square, we need to add and subtract (4/2)^2 = 4:
x^2 - 4x + 4 - 4
Now we can simplify:
(x - 2)^2 - 4
And for the y terms:
y^2 + 8y
We need to add and subtract (8/2)^2 = 16:
y^2 + 8y + 16 - 16
Simplifying:
(y + 4)^2 - 16
Now we can rewrite the original equation:
(x - 2)^2 - 4 + (y + 4)^2 - 16 = -4
Combining like terms:
(x - 2)^2 + (y + 4)^2 = 4
This is in the form of a circle:
(x - h)^2 + (y - k)^2 = r^2
Where the center is (h, k) and the radius is r.
So the center is located at (2, -4) and the radius is 4.
Learn more about equation,
https://brainly.com/question/2972832
#SPJ11
Jon has 8 packets of soup in his cupboard, but all the labels are missing. he knows that there are 5 packets of tomato soup and 3 packets of mushroom soup. he opens three packets at random. work out the probability that all three packets are the same variety of soup.
Answer:
37.5%
Step-by-step explanation:
If all were the same from opening 3, it would all have to be mushroom soup. This would look like: desired outcome/total quantity: 3/8 = 0.375 = 37.5%
Which is a function of a protein macromolecule? a. keeping organisms warm b. providing quick energy for cells c. moving material in and out of cells d. passing traits to offspring
One if the functions of a protein macromolecule is: c. moving material in and out of cells
What is the Function of a Protein Macromolecule?Proteins can be described as a complex macromolecules that are responsible for several key functions such as the regulation of cells, tissue, and organs of living organisms including their structure.
Proteins also help in performing the following:
Regulation of gene expression
Structural support, and
Many other cellular processes.
Therefore, a function of a protein macromolecule is: c. moving material in and out of cells.
Learn more about protein macromolecule on:
https://brainly.com/question/7286805
#SPJ1
In ΔWXY, x = 4.7 cm, y = 7.9 cm and ∠W=162°. Find the area of ΔWXY, to the nearest 10th of a square centimeter.
The area of the triangle to the nearest tenth is 5.8cm²
What is area of a triangle?A triangle is a closed, 2-dimensional shape with 3 sides, 3 angles, and 3 vertices. A triangle is also a polygon. Examples of triangle include, isosceles, equilateral , scalene e.t.c
The area of a triangle is expressed as;
A = 1/2 b h for right angle triangle and A = absinC for others.
Here; x = 4.7, y = 7.9, W = 162
area = 1/2× 4.7 × 7.9 sin162
= 1/2 × 4.7 × 7.9 × 0.31
= 5.8 cm²( nearest tenth)
Therefore the area of the triangle is 5.8cm²
learn more about area of triangle from
https://brainly.com/question/17335144
#SPJ1
Abde is a rectangle on coordinate axis, the sides of the rectangle are parallel to the axes what are the coordinates of b and d
The coordinates of point D would be (0,y) where y is the vertical distance between points A and D.
How to find the exact location of point A and the dimensions of the rectangle?Without knowing the exact location of point A and the dimensions of the rectangle, it is impossible to determine the coordinates of points B and D with certainty.
However, if we assume that point A is located at (0,0), and the length and width of the rectangle are given by the horizontal and vertical distances between points A and B, and between points A and D, respectively, we can find the coordinates of points B and D.
For example, if the length of the rectangle is 5 and the width is 3, then point B would be located at (5,0) and point D would be located at (0,3).
In general, the coordinates of point B would be (x,0) where x is the horizontal distance between points A and B, and the coordinates of point D would be (0,y) where y is the vertical distance between points A and D.
Learn more about coordinates
brainly.com/question/16634867
#SPJ11
Qn in attachment . ..
Answer:
Step-by-the answer is (a) 16
HELP! WILL GIVE BRAINLEST! An angle of 1. 5 rad intercepts an arc on the unit circle. What is the length of the intercepted arc?
The length of the intercepted arc on the unit circle is equal to the radius of the circle times the angle in radians. In this case, since the unit circle has a radius of 1, the length of the intercepted arc is simply equal to the angle in radians.
So, the length of the intercepted arc for an angle of 1.5 radians is 1.5 units (since the angle is given in radians, not degrees).
To Know more about length of the intercepted arc refer here
https://brainly.com/question/27602835#
#SPJ11
A local flooring company is retiling your kitchen. Your kitchen is a rectangle with dimensions of 7 ft by 15 ft. You are going to use square tiles that measure 6 by 6 inches. Assuming the tiles lay completely flush with one another on the floor (no space in between) How many tiles will the flooring company need to buy?
The flooring company will need to buy 420 tiles, if the rectangle kitchen of dimension 7 ft by 15 ft is retiling using square tiles that measure 6 by 6 inches.
First, we need to convert all the measurements to the same unit. We can convert the dimensions of the kitchen from feet to inches by multiplying by 12:
Length: 7 ft x 12 in/ft = 84 in
Width: 15 ft x 12 in/ft = 180 in
Next, we need to find the area of the kitchen in square inches:
Area = length x width = 84 in x 180 in = 15,120 sq in
Now, we can find the area of one tile in square inches:
Area of one tile = 6 in x 6 in = 36 sq in
Finally, we can divide the area of the kitchen by the area of one tile to find the total number of tiles needed:
Number of tiles = Area of kitchen / Area of one tile
Number of tiles = 15,120 sq in / 36 sq in = 420
Therefore, the flooring company will need to buy 420 tiles.
To learn more about measurements : https://brainly.com/question/777464
#SPJ11