To calculate the amount of aluminum produced from 9.00 tons of Al2O3, we need to use stoichiometry. First, we'll convert the mass of Al2O3 to moles, and then use the balanced chemical equation to find the moles of aluminum. Finally, we'll convert the moles of aluminum back to mass.
1. Convert mass of Al2O3 to moles:
9.00 tons = 9,000 kg
Molar mass of Al2O3 = (2 * 26.98) + (3 * 16.00) = 101.96 g/mol
9,000 kg * (1000 g/kg) = 9,000,000 g
moles of Al2O3 = 9,000,000 g / 101.96 g/mol = 88,258 moles
2. Use balanced chemical equation to find moles of aluminum:
The balanced chemical equation is:
2 Al2O3 → 4 Al + 3 O2
Using stoichiometry, we find the ratio of Al2O3 to Al is 2:4 or 1:2.
moles of Al = 88,258 moles Al2O3 * (2 moles Al / 1 mole Al2O3) = 176,516 moles
3. Convert moles of aluminum back to mass:
Molar mass of Al = 26.98 g/mol
Mass of Al = 176,516 moles * 26.98 g/mol = 4,762,984 g
Mass of Al in tons = 4,762,984 g / (1000 g/kg) / (1000 kg/ton) = 4.76 tons
So, 4.76 tons of aluminum can be produced from 9.00 tons of Al2O3.
For more questions on: aluminum
https://brainly.com/question/30369776
#SPJ11
Chlorine can be prepared in the laboratory by the reaction of manganese dioxide with hydrochloric acid, HCl(aq)
, as described by the chemical equation
MnO2(s)+4HCl(aq)⟶MnCl2(aq)+2H2O(l)+Cl2(g)
How much MnO2(s)
should be added to excess HCl(aq)
to obtain 105 mL Cl2(g)
at 25 °C and 765 Torr
?
N
01H
H
The property of water shown allows it to-
A freeze faster than it boils due to sharing metallic bonds
B. support floating objects due to forces between covalent bonds
C remain stable due to electrons forming ionic bonds
D. be both cohesive and adhesive due to hydrogen bonds
Answer:
D
Explanation:
The special property of water is that it is able to be cohesive and adhesive due to their hydrogen bonds
A freezer is maintained at -7°C by removing heat from it at a rate of 80 kJ/min. The power input to the freezer is 0.5 kW, and the surrounding air is at 25°C. Determine (C) the second-law efficiency of this freezer
The second-law efficiency of this freezer is 94.7%.
What is the the second-law efficiency of a refrigerator?The second-law efficiency of a refrigerator or freezer is described as as the ratio of the desired cooling effect which is the heat removed from the cold reservoir) to the energy input required to achieve this cooling effect.
The second-law efficiency of a refrigerator formula is
η = Qc / W
we have the equation as
Qh = mCΔT = Qc
Tc = -7°C = 266 K
Th = 25°C = 298 K and
W = Qh / (1 - Tc/Th) = Qc / (1 - Tc/Th) = 3.3 W
we have found Qc = 3.125
W = 3.3 W
we then substitute into the second-law efficiency formula:
η = Qc / Wmin
η= 3.125 W / 3.3 W
η= 0.947 or 94.7%
Learn more about second-law efficiency at:
https://brainly.com/question/15025185
#SPJ1
2. Using the law of conservation of mass, explain why the following reaction is
wrong: HCI + NaOH → NaCl.
According to the law of conservation of mass, the mass of the reactant must be equal to the mass of the product, hence the reaction is wrong
What is the conservation of mass?The law of conservation of mass states that mass within a closed system remains the same over time.
It states that the mass in an isolated system can neither be created nor be destroyed but can be transformed from one form to another.
Thus, the mass of the reactants must be equal to the mass of the products for a low energy thermodynamic process.
From the information given, we have the reaction written as;
HCI + NaOH → NaCl
The mass of the reactant Hydrogen(H) is not found on the product
The mass of the reactant(Oxygen) is also not found
Learn more about law of conservation of mass at: https://brainly.com/question/15289631
#SPJ1
what element has 68 degrees Celsius
1. How many joules of heat is needed to heat 68.00 grams of aluminum foil from 55.00 °C to 93.00 °C if aluminum has a specific heat of 0.90 J/g °C?
2. Which of the following equations is an exothermic reaction?
Answer:
7. C. 2326 J
8. B
Explanation:
7. Use the equation q=m*c* change in temp, where m is mass, c is specific heat capacity.
q= 68 g* (0.9 J/g*c) * (93-55) C
q= 2326 J
8. An exothermic reaction is characterized by a negative delta H (change in enthalpy) since energy is released during the reaction. B is the only choice with a negative delta H.
What common name is given to group 0 elements of the periodic table
Lead(II) nitrate and ammonium iodide react to form lead(II) iodide and ammonium nitrate according to the reaction
Pb(NO3)2(aq)+2NH4I(aq)⟶PbI2(s)+2NH4NO3(aq)
What volume of a 0.350 M NH4I solution is required to react with 415 mL of a 0.120 M Pb(NO3)2 solution?
How many moles of PbI2 are formed from this reaction?
1. The volume of 0.350 M NH₄I solution is required is 286 mL
2. The mole of PbI₂ formed is 0.0498
1. How do i determine the volume of NH4I required?First, we shall determine the mole in 415 mL of 0.120 M Pb(NO₃)₂. Details below:
Molarity of Pb(NO₃)₂ = 0.120 M MVolume of Pb(NO₃)₂ = 415 mL = 415 / 1000 = 0.415 LMole of Pb(NO₃)₂ =?Mole = molarity × volume
Mole of Pb(NO₃)₂ = 0.120 × 0.415
Mole of Pb(NO₃)₂ = 0.0498 mole
Next, we shall determine the mole of NH₄I that reacted. Details below:
Pb(NO₃)₂(aq) + 2NH₄I(aq) ⟶ PbI₂(s) + 2NH₄NO₃(aq)
From the balanced equation above,
1 moles of Pb(NO₃)₂ reacted with 2 moles of NH₄I
Therefore,
0.0498 mole of Pb(NO₃)₂ will react with = 0.0498 × 2 = 0.1 mole of NH₄I
Finally, we shall determine the volume of NH₄I required for the reaction. Details below:
Molarity of NH₄I = 0.350 MMole of NH₄I = 0.1 moleVolume of NH₄I =?Volume = mole / molarity
Volume of NH₄I = 0.1 / 0.350
Volume of NH₄I = 0.286 L
Multiply by 1000 to express in mL
Volume of NH₄I = 0.286 × 1000
Volume of NH₄I = 286 mL
2. How do i determine the mole of PbI₂ formed?The mole of PbI₂ formed can be obtain as follow:
Pb(NO₃)₂(aq) + 2NH₄I(aq) ⟶ PbI₂(s) + 2NH₄NO₃(aq)
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted to produced 1 mole of PbI₂
Therefore,
0.0498 mole of Pb(NO₃)₂ will also react to produce 0.0498 mole of PbI₂
Thus, the number of mole of PbI₂ formed is 0.0498 mole
Learn more about mole produced:
https://brainly.com/question/13375719
#SPJ1
The specific heat of gold is 0.129 J/g C. A king gets sold a gold crown but he's unsure if it's pure gold. He takes the crown which weighs 1,130 grams, heats it to 98.8 C, and then places it in 1.34 L of water with a starting point of 25.83 C. The final temperature of the water is 27.84 C. What is the specific heat of the crown and is it pure gold?
We can use the formula:
Q = mcΔT
where Q is the heat absorbed or released, m is the mass, c is the specific heat, and ΔT is the change in temperature.
First, let's calculate the heat absorbed by the crown:
Q1 = mcΔT
Q1 = (1130 g)(0.129 J/g C)(98.8 C - 25.83 C)
Q1 = 107,776.6 J
Next, let's calculate the heat released by the crown into the water:
Q2 = mcΔT
Q2 = (m)(c)(ΔT)
Q2 = (1340 g)(4.184 J/g C)(27.84 C - 25.83 C)
Q2 = 11096.64 J
Since Q1 = -Q2 (heat lost by the crown is equal to heat gained by the water),
mcΔT = -mcΔT
We can then solve for the specific heat of the crown:
c = -(Q2/mΔT)
c = -(11096.64 J)/(1130 g)(27.84 C - 25.83 C)
c = 0.131 J/g C
The specific heat of pure gold is 0.129 J/g C, and the specific heat of the crown is 0.131 J/g C. Since the specific heat of the crown is slightly higher than that of pure gold, it is possible that the crown is not pure gold. However, other factors such as impurities or alloying metals can also affect the specific heat, so further analysis would be necessary to confirm if the crown is pure gold.
Efficient synthesis in 7 steps or less.
1) Bromination of propylene to form 2-bromopropane using NBS and a Lewis acid catalyst.
What is Bromination?Bromination is a chemical process in which bromine is added to a molecule. This can be done by either direct substitution or as a substitution reaction, allowing for the addition of one or more bromine atoms to the molecule. Bromination is a commonly used organic reaction, particularly in the laboratory, and can be used to alter the properties of a compound. It can also be used to produce a wide range of products, including aromatics and halogenated compounds. Bromination is particularly useful in pharmaceutical synthesis, as the products of this reaction often have desirable bioactivity.
2) Reduction of 2-bromopropane to 2-propanol using NaBH₄
3) Reaction of 2-propanol with phosphorus tribromide to form 2-bromopropanol
4) Alkylation of 2-bromopropanol with methyl iodide to form 2-bromopropyl methyl ether
5) Reduction of 2-bromopropyl methyl ether to 2-methoxypropane using NaBH₄
6) Reaction of 2-methoxypropane with phosphorus tribromide to form 2-bromo-2-methoxypropane
7) Reduction of 2-bromo-2-methoxypropane to Compound X using NaBH₄
To learn more about Bromination
https://brainly.com/question/24202507
#SPJ1
What mass of CO2 can be produced from 25.0 g CaCO3 given the decomposition reaction CaCO3 => CaO + CO2
25.0 g of CaCO3 will produce 11.0 g of CO2. Mass is an intrinsic property of an object, meaning it does not depend on the object's location or the presence of other objects.
What is Mass?
Mass is a measure of the amount of matter in an object. It is a scalar quantity and is typically measured in units such as grams (g) or kilograms (kg). Mass is not the same as weight, which is a measure of the force exerted on an object due to gravity.
The balanced chemical equation for the decomposition of calcium carbonate (CaCO3) is:
CaCO3 → CaO + CO2
According to the equation, 1 mole of CaCO3 produces 1 mole of CO2. The molar mass of CaCO3 is 100.09 g/mol, which means that 1 mole of CaCO3 has a mass of 100.09 g.
To calculate the mass of CO2 produced from 25.0 g of CaCO3, we first need to convert the mass of CaCO3 to moles:
25.0 g CaCO3 x (1 mol CaCO3/100.09 g CaCO3) = 0.2498 mol CaCO3
Since 1 mole of CaCO3 produces 1 mole of CO2, we know that 0.2498 mol of CaCO3 will produce 0.2498 mol of CO2.
To convert the moles of CO2 to mass, we can use the molar mass of CO2, which is 44.01 g/mol:
0.2498 mol CO2 x 44.01 g/mol = 11.0 g CO2
Learn more about Mass from the given link
https://brainly.com/question/86444
#SPJ9
Thanks so much to anyone who can help!!!!!!!!!!!
Answer:
1.8mol
Explanation:
this is the ans but in the option there is
not give
How many moles of solute are in 2 L of an 8.0 M solution?
Answer: 4 moles i think this is right im not sure
oxygen at 1mole and 0°c has a density of 14,290g/k ,find the root mean squared velocity of molecules??
The root mean squared velocity of molecules is 461.15 m/s
The root-mean square (RMS) velocity is the value of the square root of the sum of the squares of the stacking velocity values divided by the number of values.
The root-mean-square speed addresses both molecular weight and temperature, two parameters that have a direct influence on a material’s kinetic energy. The Maxwell-Boltzmann equation, which is the foundation of gas kinetic theory, defines the speed distribution for gas at a specific temperature.
Given,
Pressure = 1 atm = 101300 Pa
Density = 1.4290 kg/m³
c = [tex]\sqrt{\frac{3P}{d} }[/tex]
c = [tex]\sqrt{\frac{303900}{1.4290} }[/tex]
c = 461.15 m/s
Learn more about Root mean square velocity, here:
https://brainly.com/question/13751940
#SPJ1
Why does the air feel "sticky" on warm summer days? What is in the air that caausses this
Anyone know how to solve this?
The ratio of the concentrations at equilibrium is as follows:
3.7 0.85 0.04 21.3 42.6 12212.92 0.81 0.11 7.4 14.8 6012.2 0.63 0.43 1.5 3 274What are reactions in equilibrium?Chemical equilibrium is the point in a chemical reaction where both the forward and backward processes are occurring at the same rate.
The concentrations of the reactants and products are constant at equilibrium because the forward and reverse speeds are equal.
Considering the given statements based on the reaction equilibrium concentrations, the correct options are:
TrueFalseTrueFalseTrueLearn more about reactions in equilibrium at: https://brainly.com/question/18849238
#SPJ1
a tank truck carries 34,000 of sulphuric acid. The density of sulfuric acid is 1.84kg/L.
(a) what mass of sulfuric acid is in the truck?
(b) what amount of sulfuric acid is in the truck?
(a) To calculate the mass of sulfuric acid in the truck, we can multiply the volume of sulfuric acid by its density. Given that the truck carries 34,000 liters of sulfuric acid and the density of sulfuric acid is 1.84 kg/L.
we can use the formula:
Mass (m) = Volume (V) × Density (D)
Plugging in the given values:
Volume (V) = 34,000 L Density (D) = 1.84 kg/L
m = 34,000 L × 1.84 kg/L
m ≈ 62,560 kg (rounded to the nearest whole number)
Therefore, the mass of sulfuric acid in the truck is approximately 62,560 kg.
(b) The amount of sulfuric acid in the truck is already given in the question as 34,000 L (volume).
For more questions on: volume
https://brainly.com/question/27100414
#SPJ11
(a) To find the mass of sulfuric acid in the truck, we need to use the formula:
mass = density x volume
The volume of sulfuric acid in the truck is given as 34,000 L. The density of sulfuric acid is 1.84 kg/L. Therefore, the mass of sulfuric acid in the truck is:
mass = 1.84 kg/L x 34,000 L = 62,560 kg
So there are 62,560 kg of sulfuric acid in the truck.
(b) To find the amount of sulfuric acid in the truck, we need to use the formula:
amount = mass / molar mass
The molar mass of sulfuric acid is 98.08 g/mol. To convert the mass from kg to g, we need to multiply by 1000. Therefore, the amount of sulfuric acid in the truck is:
amount = 62,560,000 g / 98.08 g/mol = 636,816.3 mol
So there are 636,816.3 moles of sulfuric acid in the truck.
For more question on sulfuric acid
https://brainly.com/question/10220770
#SPJ11
Difference between practical work inside a laboratory and outside a laboratory?
The main difference between practical work inside and outside a laboratory is the environment and tools used for experimentation.
Practical work inside and outside the laboratoryInside a laboratory, experiments are conducted in a controlled environment with specialized equipment and instruments designed to facilitate experimentation, record data, and ensure safety.
On the other hand, outside the laboratory, experiments are often conducted in a less controlled environment, which can make it more challenging to control variables and obtain accurate results.
Also, experiments outside the laboratory often require different tools and techniques to account for environmental factors such as weather conditions. However, outside the laboratory, there is often more opportunity for real-world applications of experimental findings.
More on practical laboratory works can be found here: https://brainly.com/question/27748008
#SPJ1
A helium-filled balloon of the type used in long-distance flying contains 1.5 ✕ 107 L of helium. Let us say you fill the balloon with helium on the ground where the pressure is 837 mm Hg and the temperature is 18.4°C. When the balloon ascends to a height of 6 miles where the pressure is only 707. mm Hg and the temperature is -31°C, what volume is occupied by the helium gas? Assume the pressure inside the balloon matches the external pressure.
We can use the combined gas law to solve this problem:
(P1V1/T1) = (P2V2/T2)
where P1, V1, and T1 are the initial pressure, volume, and temperature, respectively, and P2, V2, and T2 are the final pressure, volume, and temperature, respectively.
We are given that the initial pressure is P1 = 837 mm Hg and the initial volume is V1 = 1.5 × 10^7 L. The initial temperature is T1 = 18.4°C, which we need to convert to Kelvin by adding 273.15:
T1 = 18.4°C + 273.15 = 291.55 K
We are also given that the final pressure is P2 = 707 mm Hg and the final temperature is T2 = -31°C, which we need to convert to Kelvin:
T2 = -31°C + 273.15 = 242.15 K
Now we can solve for the final volume, V2:
(P1V1/T1) = (P2V2/T2)
V2 = (P1V1T2) / (P2T1)
V2 = (837 mm Hg * 1.5 × 10^7 L * 242.15 K) / (707 mm Hg * 291.55 K)
V2 = 5.26 × 10^6 L
Therefore, the volume occupied by the helium gas at the higher altitude is 5.26 × 10^6 L.
How do I find solution concentration
To find the solution concentration, you need to know the amount of solute and the volume of the solution.
The solution concentration is typically expressed in terms of molarity (moles of solute per liter of solution). To calculate the molarity of a solution, divide the moles of solute by the volume of the solution in liters.
Another way to express solution concentration is in terms of percent by mass or volume, which is calculated by dividing the mass or volume of the solute by the mass or volume of the solution and multiplying by 100.
To find the solution concentration, you'll need to calculate the ratio of solute (substance being dissolved) to solvent (substance doing the dissolving) in the mixture.
Concentration is commonly expressed in units like molarity (M), mass/volume percent, or parts per million (ppm).
To calculate molarity (M), divide the moles of solute by the volume of the solvent (in liters). The formula is:
Molarity (M) = moles of solute / volume of solvent (L)
For mass/volume percent, divide the mass of the solute by the total volume of the solution and multiply by 100. The formula is:
Mass/volume percent = (mass of solute / total volume of solution) x 100
For parts per million (ppm), divide the mass of the solute by the total mass of the solution and multiply by 1,000,000.
The formula is:
ppm = (mass of solute / total mass of solution) x 1,000,000
Choose the appropriate formula based on the units required for your specific problem.
For more question on solution concentration
https://brainly.com/question/26255204
#SPJ11
please help show i need help
The complete table for the phase changes would be as follows:
solid to liquid: melting, heating, IMF's breaking, energy absorbedliquid to gas: vaporization, heating, IMF's breaking, energy absorbedsolid to gas: sublimation, heating, IMF's breaking, energy absorbedliquid to solid: freezing, cooling, IMF's forming, energy releasedgas to solid: deposition, cooling, IMF's forming, energy releasedgas to liquid: condensation, cooling, IMF's forming, energy releasedWhat are phase changes?Phase changes occur when a substance changes from one phase to another. When a significant amount of energy is gained or lost, this process takes place.
Phase change also depends on elements like pressure and temperature.
There are six ways a substance can change between these three phases; melting, freezing, evaporating, condensing, sublimation, and deposition.
Learn more about phase changes at: https://brainly.com/question/25664350
#SPJ1
Which best explains why individual chlorine atoms form covalent bonds with each other?
A. to increase their mass
B. to become more reactive
C. to maintain positive charges in their nuclei
D. to have eight electrons in their valence shells
The correct answer is D. to have eight electrons in their valence shells.
What is a covalent bond?A covalent bond is a chemical relationship that requires the sharing of electrons between atoms to generate electron pairs. These electron couples are known as bonding pairs or sharing pairs.
Covalent bonding is the steady balance of attractive and repulsive forces between atoms when they share electrons.
Covalent Bond Types
A single ionic bond.Covalent bonds with two protons.The triple covalent bond.Learn more about Covalent Bond here:
https://brainly.com/question/3447218
#SPJ1
Can someone please explain?
The pressure of N₂ gas produced when 42.57 g of NH₃ is reacted with excess NO in a sealed container is 4.95 atm
How do i determine the pressure of N₂ gas produced?First, we shall determine the mole of 42.57 g of NH₃ that reacted. Details below:
Mass of NH₃ = 42.57 g Molar mass of NH₃ = 17 g/mol Mole of NH₃ =?Mole = mass / molar mass
Mole of NH₃ = 42.57 / 1 7
Mole of NH₃ = 2.50 moles
Next, we shall determine the mole of N₂ gas produced. Details below:
4NH₃ + 6NO -> 5N₂ + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted to produced 5 moles of N₂
Therefore,
2.50 moles of NH₃ will react to produce = (2.5 × 5) / 4 = 3.125 moles of N₂
Finally, we shall determine the pressure of N₂ gas produced. This is shown below:
Volume of container (V) = 28 LTemperature (T) = 540 KNumber of mole of N₂ gas (n) = 3.125 molesGas constant (R) = 0.0821 atm.L/mol KPressure of N₂ gas (P) =?PV = nRT
P × 28 = 3.125 × 0.0821 × 540
Divide both sides by 28
P = (3.125 × 0.0821 × 540) / 28
P = 4.95 atm
Thus, we can conclude that the pressure of N₂ gas produced is 4.95 atm
Learn more about pressure:
https://brainly.com/question/15343985
#SPJ1
If the initial temperature of an ideal gas at 2.250 atm
is 62.00 ∘C,
what final temperature would cause the pressure to be reduced to 1.700 atm?
How is oil soap and water sustainable
Oil soap and water are sustainable because they are both natural and biodegradable.
What is oil soap?Oil soap is a cleaning product that is made from natural materials, such as vegetable oils and potassium hydroxide.
One of the main ways in which oil soap and water can be considered sustainable is that they are both natural and biodegradable.
In addition, using oil soap and water to clean wooden surfaces can help to prolong their lifespan, reducing the need for frequent replacements and minimizing waste.
Regular maintenance with oil soap can help to prevent dirt and grime buildup that can cause damage to wooden surfaces.
Learn more about oil soap here: https://brainly.com/question/16375181
#SPJ1
The article talks mainly about A. Dr. Dituri's small underwater habitat B. Dr. Dituri's Project Neptune 100 C. Dr. Dituri's talks with other scientists D. Dr. Dituri's 28 years in the U.S. Navy
We see here that the article is actually talking about: B. Dr. Dituri's Project Neptune 100.
What is an article?A piece of writing known as an article is typically printed in a newspaper, magazine, or journal. It may address a variety of subjects, such as news, features, essays, research findings, and reviews.
We can see here that in the article, being referred to in the question is known as "A Chat With the Scientist Living Underwater for 100 Days,".
From the article, it is very clear that it refers to Dr. Dituri's Project Neptune 100. Retired Navy officer, Joseph Dituri is seeking to break the current record for longest period of time spent submerged.
Note: I can't post the article here. But I have provided the title of the article above.
Learn more about article on https://brainly.com/question/26859358
#SPJ1
Potassium superoxide, KO2, reacts with carbon dioxide to form potassium carbonate and oxygen:
This reaction makes potassium superoxide useful in a self-contained breathing apparatus. How much O2 could be produced from 2.61 g of KO2 and 4.46 g of CO2?
First, we need to write out the balanced chemical equation for the reaction: 4 KO2 + 2 CO2 → 2 K2CO3 + 3 O2
From the equation, we can see that 4 moles of KO2 react with 2 moles of CO2 to produce 3 moles of O2. Therefore, we need to convert the given masses of KO2 and CO2 into moles:
moles of KO2 = 2.61 g / molar mass of KO2 = 2.61 g / 71.10 g/mol = 0.0367 mol
moles of CO2 = 4.46 g / molar mass of CO2 = 4.46 g / 44.01 g/mol = 0.1013 mol
Next, we need to determine the limiting reagent (the reactant that will be completely consumed in the reaction) by comparing the mole ratios of KO2 and CO2 in the balanced equation. The ratio of moles of KO2 to moles of CO2 is:
0.0367 mol KO2 / 4 mol KO2 per 2 mol CO2 = 0.0184 mol CO2
Since this ratio is less than the actual number of moles of CO2 we have (0.1013 mol), CO2 is in excess and KO2 is the limiting reagent.
Using the mole ratio from the balanced equation, we can calculate the number of moles of O2 produced:
moles of O2 = 3 mol O2 per 4 mol KO2 × 0.0367 mol KO2 = 0.0275 mol O2
Finally, we can convert the moles of O2 to grams:
mass of O2 = moles of O2 × molar mass of O2 = 0.0275 mol × 32.00 g/mol = 0.88 g
Therefore, 2.61 g of KO2 and 4.46 g of CO2 would produce 0.88 g of O2.
For more questions on: chemical
https://brainly.com/question/29886197
#SPJ11
Propane, C3H8 (approximate molar mass = 44 g/mol) is used in gas barbeques and burns according to the thermochemical equation: C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g) ΔH = –2046 kJ. If it takes 1.7 x 103 kJ to fully cook a pork roast on a gas barbeque, how many grams of propane will be required, assuming all the heat from the combustion reaction is absorbed by the pork?
The mass (in grams) of propane that will be required, assuming all the heat from the combustion reaction is absorbed by the pork is 36.56 grams
How do i determine the mass propane required?The mass of propane that will be required can be obtain as illustrated below:
C₃H₈(g) + 5O₂(g) → 3CO₂(g) + 4H₂O(g) ΔH = –2046 KJ
Molar mass of C₃H₈ = 44 g/molMass of C₃H₈ from the balanced equation = 1 × 44 = 44 gFrom the balanced equation above,
2046 KJ of heat energy required 44 g of propane, C₃H₈
Therefore,
1.7×10³ KJ of heat energy will require = (1.7×10³ KJ × 44 g) / 2046 KJ = 36.56 g of propane, C₃H₈
Thus, we can conclude that the mass of propane, C₃H₈ required is 36.56 grams
Learn more about mass:
https://brainly.com/question/21940152
#SPJ1
barium reacts with cobalt (iii) cyanide to produce
Answer: Ba + Co(CN)₃ → Ba(CN)₂ + Co₂O₃
Explanation:
Barium reacts with cobalt (III) cyanide to produce barium cyanide and cobalt (III) oxide according to the following chemical equation:
Ba + Co(CN)₃ → Ba(CN)₂ + Co₂O₃
It is a type of displacement reaction.
Can someone explain the Glyceraldehyde structure for me in detail please. I read that the first carbon atom is the only asymmetric one out of all three carbons and that the other two carbons do have four attachments that just aren’t different. I can’t even see how the atoms have four attachments though.
Answer:
Glyceraldehyde is a simple sugar with three carbon atoms attached to hydroxyl and hydrogen or carbonyl groups. The first carbon atom has four different groups, including an aldehyde group, which makes it asymmetric. This results in two stereoisomers, D-glyceraldehyde and L-glyceraldehyde, that are mirror images of each other and have opposite optical activities.